
On the Convergence of Optimal
Measures

T. Bloom
Department of Mathematics

University of Toronto
Toronto, Ontario
Canada M5S 2E4,

L. Bos
Department of Mathematics and Statistics

University of Calgary
Calgary, Alberta

Canada T2N 1N4,

N. Levenberg
Department of Mathematics

Indiana University
Bloomington, Indiana,

USA

and

S. Waldron
Department of Mathematics

University of Auckland
Auckland, New Zealand

June 18, 2009



2 Convergence of Optimal Measures

Abstract

Using recent results of Berman and Boucksom [3] we show that
for a non-pluripolar compact set K ⊂ Cd and an admissible weight
function w = e−φ any sequence of optimal measures converges weak-
* to the equilibrium measure µK,φ of (weighted) pluripotential the-
ory for K,φ.

Mathematics Subject Classification: 32U20, 41A63
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1 Introduction

In classical potential theory in the complex plane, given K ⊂ C compact,
one minimizes the logarithmic energy

I(µ) :=

∫
K

∫
K

log
1

|z − ζ|
dµ(z)dµ(ζ)

over all probability measures µ supported in K. Provided K is non-polar,
there exists a unique energy minimizing measure µK . More generally, given
a nonnegative uppersemicontinuous (usc) weight function w := e−φ on K
with {z ∈ K : w(z) > 0} non-polar (an admissible weight), one minimizes
the weighted logarithmic energy

Iw(µ) :=

∫
K

∫
K

log
1

|z − ζ|w(z)w(ζ)
dµ(z)dµ(ζ)

over all probability measures µ supported in K and one obtains a unique
minimizer µK,φ. Finding µK,φ explicitly is usually difficult; thus one looks
for good approximations to µK,φ. One approach is simply discretizing the
(weighted) energy; this leads to the notion of (weighted) Fekete points
(cf., section 2.2 and the proof of Proposition 3.4). Another approach,
which we take in this paper, is to utilize L2−methods, leading to the
notion of optimal measures. We show this approach is successful in higher
dimensions as well.
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Convergence of Optimal Measures 3

Pluripotential theory in several complex variables (Cd for d > 1) is the
study of plurisubharmonic functions. In this setting, we have analogues
of equilibrium measures µK and µK,φ, but there are no related energy
notions. We recall that a function u : Cd → [−∞,∞) is said to be
plurisubharmonic (psh) if it is usc and, when restricted to any complex
line, is either subharmonic or identically −∞. A set E ⊂ Cd is pluripolar
if E ⊂ {z ∈ Cd : u(z) = −∞} for some psh u (with u 6≡ −∞).

Suppose that K ⊂ Cd is compact and non-pluripolar. As in the univariate
setting, we call a nonnegative usc weight function w := e−φ on K with
{z ∈ K : w(z) > 0} non-pluripolar an admissible weight, and we proceed
to describe a higher-dimensional generalization of µK,φ. First, the class of
psh functions of at most logarithmic growth at infinity is denoted by

L := {u : u is psh and u(z) ≤ log+ |z|+ C}.

We define
VK,φ(z) := sup {u(z) : u ∈ L, u ≤ φ on K}. (1)

The function V ∗K,φ(z) which is the usc regularization of VK,φ, will be called
the weighted extremal function of K,φ. Associated to this extremal func-
tion is the weighted equilibrium measure,

µK,φ :=
1

(2π)d
(ddcV ∗K,φ)d.

Here (ddcv)d is notation for the Monge-Ampere operator (applied to v).
That µK,φ exists and is a probability measure can be found in Appendix
B of [17] (see also [15]). We simply write µK in the unweighted case, i.e.,
w ≡ 1 and φ ≡ 0. We remark, that in one variable, for K = [−1, 1] ⊂ C,

µK =
1

π

1√
1− x2

dx.

For each n = 1, 2, ... we let Pn denote the holomorphic polynomials of
degree at most n. Given µ a probability measure on K and an admissible
weight w on K, for each n = 1, 2, ... we form a weighted inner product of
degree n by

〈f, g〉µ,w :=

∫
K

f(z)g(z)w(z)2ndµ. (2)
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4 Convergence of Optimal Measures

Provided 〈p, p〉µ,w = 0 for p ∈ Pn implies that p = 0, Pn equipped with
the inner-product (2) is a finite dimensional Hilbert space of dimension

N = N(n) :=

(
d+ n

n

)
. (3)

For a fixed basis Bn = {p1, p2, · · · , pN} of Pn we form the Gram matrix

Gµ,w
n = Gµ,w

n (Bn) := [〈pi, pj〉µ,w] ∈ CN×N .

Definition 1.1 Suppose that w is an admissible weight on K. If a proba-
bility measure µ has the property that

(a) det(Gµ′,w
n ) ≤ det(Gµ,w

n )

for all other probability measures µ′ on K then µ is said to be an optimal
measure of degree n for K and w.

Our main result is the following.

Main Theorem. Suppose that K ⊂ Cd is compact and that w is an
admissible weight function. Suppose further that µn is an optimal measure
of degree n for K and w. Then

lim
n→∞

µn = µK,φ

where the limit is in the weak−∗ sense.

In the next section, we provide background and motivation for the study of
(unweighted) optimal measures from several perspectives. In section 3 we
discuss weighted optimal measures and various properties. Then in section
4 we prove our main theorem which utilizes recent deep results of Berman
and Boucksom.

2 Introduction to Optimal Measures

Here we give a motivational introduction to optimal measures in the un-
weighted case (w ≡ 1). Suppose that K ⊂ Cd is compact and non-
pluripolar and that µ is a probability measure on K. We assume that µ is
non-degenerate on Pn. This means that with the associated inner-product

〈f, g〉µ :=

∫
K

fgdµ (4)
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Convergence of Optimal Measures 5

and L2(µ) norm, ‖f‖L2(µ) =
√
〈f, f〉µ, we have ‖p‖L2(µ) = 0 for p ∈ Pn

implies that p = 0. For the rest of the paper, we assume all of our measures
are non-degenerate. It follows from the reasoning used in Proposition 3.5 of
[7] that µ is non-degenerate on Pn if and only if supp(µ) is not contained in
an algebraic variety of degree n. Then Pn equipped with the inner-product
(4) is a finite dimensional Hilbert space of dimension N (see (3)). We may
also consider the uniform norm on K,

‖f‖K := max
z∈K
|f(z)|

and it is natural to compare the two norms for p ∈ Pn.
Since µ is a probability measure we always have

‖p‖L2(µ) ≤ ‖p‖K .

Moreover since Pn is finite dimensional there is always a constant C =
C(n, µ,K) such that the reverse inequality holds,

‖p‖K ≤ C‖p‖L2(µ).

In fact, as is well known and easy to verify, the best constant C (sometimes
called the Bernstein-Markov factor) is given by

C = sup
p∈Pn, p 6=0

‖p‖K
‖p‖L2(µ)

= max
z∈K

√
Kµ
n(z)

where

Kµ
n(z) :=

N∑
j=1

|qj(z)|2

is the diagonal of the reproducing (Bergman) kernel for Pn, sometimes
called the (reciprocal of the) Christoffel function, and Qn = {q1, q2, · · · , qN}
is an orthonormal basis for Pn.
It is natural to ask among all probability measures on K, which one pro-
vides the smallest such factor, and this leads to our first

Motivational Definition Suppose that the probability measure µ has the
property that

max
z∈K

√
Kµ
n(z) ≤ max

z∈K

√
Kµ′
n (z)

5



6 Convergence of Optimal Measures

for all other probability measures µ′ on K. Then we say that µ is an optimal
measure of degree n for K.

Note that for any probability measure µ,

∫
K

Kµ
n(z)dµ = N, so that

max
z∈K

Kµ
n(z) ≥ N.

It turns out that for an optimal measure according to Definition 1.1 with
w ≡ 1,

max
z∈K

Kµ
n(z) = N (5)

(see Proposition 3.1). We remark that optimal measures need not be dis-
crete.

2.1 A Second Optimality Property

We show that a measure satisfying (5) also satisfies the extremal property
in Definition 1.1 with w ≡ 1. To see this let

Bn = {p1, p2, · · · , pN}

be a basis for Pn and consider the associated Gram matrix

Gµ
n(Bn) := [〈pi, pj〉µ] ∈ CN×N .

Note that Gµ
n(Bn) is a positive definite Hermitian matrix. If we expand pi

in the orthonormal basis Qn we obtain

pi =
N∑
k=1

〈pi, qk〉µqk (6)

so that

〈pi, pj〉µ =
N∑
k=1

〈pi, qk〉µ〈qk, pj〉µ

=
N∑
k=1

〈pi, qk〉µ〈pj, qk〉µ.

6



Convergence of Optimal Measures 7

It follows that we have the factorization

Gµ
n(Bn) = V µ

n (V µ
n )∗ (7)

where “*” denotes conjugate transpose and

V µ
n = V µ

n (Bn, Qn) := [〈pi, qj〉µ] ∈ CN×N . (8)

If now µ′ is another probability measure on K with associated inner-
product 〈f, g〉µ′ and orthonormal basis Q′n = {q′1, q′2, · · · , q′N}, then from
the expansion (6) we obtain

(V µ′

n )ij = 〈pi, q′j〉µ′

=
N∑
k=1

〈pi, qk〉µ〈qk, q′j〉µ′

=
N∑
k=1

(V µ
n )ikAkj

where

A = A(Qn, Q
′
n, µ, µ

′) := [〈qi, q′j〉µ′ ] ∈ CN×N .

Hence we have the transition

V µ′

n = V µ
n A. (9)

Now, the transition matrix has the property that

N∑
i=1

N∑
j=1

|Aij|2 =
N∑
i=1

{
N∑
j=1

|〈qi, q′j〉µ′|2
}

=
N∑
i=1

|〈qi, qi〉µ′ |2 (by Parseval)

=
N∑
i=1

∫
K

|qi(z)|2dµ′

=

∫
K

Kµ
n(z)dµ′.

7



8 Convergence of Optimal Measures

Hence if µ is a measure satisfying (5), we have

tr(A∗A) =
N∑
i=1

N∑
j=1

|Aij|2 ≤ N

for any other probability measure µ′. From this it follows that the sum of
the eigenvalues

N∑
k=1

λk(A
∗A) = tr(A∗A) ≤ N

and hence, by the Arithmetic-Geometric Mean inequality,

det(A∗A) =
N∏
k=1

λk(A
∗A) ≤

(
1

N

N∑
k=1

λk(A
∗A)

)N

≤ 1,

i.e., if µ is a measure satisfying (5) and µ′ is any other probability measure,
then the determinant of the transition matrix A satisfies

| det(A)| ≤ 1.

Consequently, by (9),

|det(V µ′

n )| ≤ |det(V µ
n )|

and by the factorization (7)

|det(Gµ′

n (Bn))| ≤ |det(Gµ
n(Bn))|,

i.e., a measure µ satisfying (5) also maximizes the determinant of the
associated Gram matrix as in Definition 1.1 with w ≡ 1.

We end this subsection with an observation which will be useful. If we
write

P (x) =


p1(x)
p2(x)
·
·

pN(x)

 ∈ CN (10)

then it is not difficult to see that

P (x)∗(Gµ
n(Bn))−1P (x) = Kµ

n(x). (11)

8



Convergence of Optimal Measures 9

For G := Gµ
n(Bn) and G−1 are positive definite, Hermitian matrices; hence

G1/2, G−1/2 := (G−1)1/2 exist; writing P := P (x), we have

P ∗G−1P = P ∗G−1/2G−1/2P = (G−1/2P )∗G−1/2P.

To see that the right-hand-side yields Kµ
n(x), we first observe that since

G =
∫
K
PP ∗dµ the polynomials {p̃1, p̃2, · · · , p̃N} defined by

G−1/2P :=


p̃1(x)
p̃2(x)
·
·

p̃N(x)

 ∈ CN (12)

form an orthonormal basis for Pn in L2(µ): for∫
K

G−1/2P · (G−1/2P )∗dµ = G−1/2[

∫
K

PP ∗dµ]G−1/2 = G−1/2GG1/2 = I,

the N ×N identity matrix. Thus

Kµ
n(x) =

N∑
j=1

|p̃j(x)|2 = (G−1/2P )∗G−1/2P.

2.2 Optimal Polynomial Interpolation

There is a close connection between optimal measures and Fekete points of
polynomial interpolation. Indeed, suppose that µ is a discretely supported
(probability) measure of the form

µ =
1

N

N∑
i=1

δxi
, xi ∈ K. (13)

Then if µ is non-degenerate on the polynomials of degree n, it is easy to
see that qi =

√
N`i, 1 ≤ i ≤ N, where `i is the ith fundamental Lagrange

polynomial for the points {xi}, form an orthonormal set with respect to

9



10 Convergence of Optimal Measures

〈·, ·〉µ. Hence

(V µ
n )ij = 〈pi, qj〉µ

=
√
N〈pi, `j〉µ

=
√
N

1

N

N∑
k=1

pi(xk)`j(xk)

=
1√
N
pi(xj)

so that V µ
n is in this case (a multiple of) the Vandermonde matrix for

the basis Bn and the points {xi}. Hence maximizing |det(Gµ
n)| over all

discrete probability measures of the form (13) is equivalent to maximizing
the modulus of the Vandermonde determinant. A set of N points which
do this are called Fekete points of order n for K and the corresponding
discrete measure is said to be a Fekete measure of order n. In general,
Fekete points are not unique.

With regard to the Christoffel function, we have

Kn(z) =
N∑
k=1

|qi(z)|2 = N
N∑
k=1

|`k(z)|2

so that minimizing maxz∈K Kn(z) over discrete measures of the form (13)
is equivalent to finding N points for which maxz∈K

∑N
k=1 |`k(z)|2 is as small

as possible. This problem (for the interval K = [−1, 1]) was first studied
by Fejér [12] and hence we refer to solution points as Fejér points of order
n and the corresponding measure as a Fejér measure. We remark that,
in general, Fekete measures and Fejér measures need not coincide nor be
unique (although they do coincide and are unique for each order n in the
univariate case of K = [−1, 1]), cf. [10].

Further, if we regard the projection πµ from C(K) to Pn

πµ(f) :=
N∑
j=1

〈f, qj〉µqj =
N∑
j=1

f(xj)`j

as a map from C(K)→ C(K), with both spaces equipped with the uniform
norm, then it is easy to see that

‖πµ‖ = Λn := max
z∈K

N∑
k=1

|`k(z)|,

10



Convergence of Optimal Measures 11

the Lebesgue constant for the interpolation process. Points for which Λn

is as small as possible are called Lebesgue points of order n and will in
general be different from both Fekete and Fejér points. We return to
Lebesgue constants in a remark at the end of the paper.

2.3 Optimal Experimental Designs

Consider a polynomial p ∈ Pn which we write in the form

p =
N∑
k=1

θkpk

for a fixed basis {p1, ..., pN} of Pn. Suppose that we observe the values of
p at M ≥ N points xj ∈ K with some random errors, i.e., we observe

yj = p(xj) + εj, 1 ≤ j ≤ N

where we assume that the errors εj are independent normal random vari-
ables with mean 0 and variance σ2. In matrix form this becomes

y = Xθ + ε

where y, θ, ε ∈ CN and

X =



p1(x1) p2(x1) · · · pN(x1)
p1(x2) p2(x2) · · · pN(x2)
· ·
· ·
· ·
· ·
· ·

p1(xM) p2(xM) · · · pN(xM)


∈ CM×N .

Our assumption on the error vector ε means that

cov(ε) = σ2IN ∈ RN×N .

Now, the least squares estimate of θ is

θ̂ := (X∗X)−1X∗y

11



12 Convergence of Optimal Measures

and we may compute the covariance matrix

cov(θ̂) = σ2(X∗X)−1.

Hence the confidence region of level t for θ is the set

{θ ∈ CN : (θ − θ̂)∗[cov(θ̂)]−1(θ − θ̂) ≤ t}
= {θ ∈ CN : σ−2(θ − θ̂)∗(X∗X)(θ − θ̂) ≤ t}.

The volume of such a set is proportional to 1/
√

det(X∗X) and hence max-
imizing det(X∗X) is equivalent to choosing the observation points xi ∈ K
so as to have the most “concentrated” confidence region for the parameter
to be estimated.

Note however that the entries of
1

M
X∗X are the discrete inner products

of the pi with respect to the measure

µ =
1

M

M∑
k=1

δxk
, (14)

i.e.,
1

M
X∗X is the Gram matrix associated to this µ. Hence we may think,

heuristically, of an optimal measure as that which gives the confidence
region of greatest concentration.

There is also a second statistical interpretation of optimal measures. Tak-
ing P (x) as in (10), the least squares estimate of the observed polynomial
is

P (x)tθ̂.

We may compute its variance to be

var(P (x)tθ̂) = σ2P (x)∗(X∗X)−1P (x)

=
1

M
σ2P (x)∗(Gµ

n)−1P (x)

with µ given by (14). From (11)

P (x)∗(Gµ
n)−1P (x) = Kµ

n(x)

so that

var(P (x)tθ̂) =
1

M
σ2Kµ

n(x)

12



Convergence of Optimal Measures 13

and the experiment that minimizes the maximum variance of the estimate
of the observed polynomial is exactly the one that minimizes the maximum
of Kµ

n .

We hope that the reader is convinced that optimal measures are interesting
and worthy of further study. More about optimal experimental design may
be found in the monographs [13] and [11]. In the next section we discuss
a weighted version of optimal measures.

3 Weighted Optimal Measures

Let K ⊂ Cd be compact and non-pluripolar. Fix µ a probability measure
on K and w an admissible weight on K. We recall the notation from the
introduction. For each n we have the weighted inner product of degree n

〈f, g〉µ,w :=

∫
K

f(z)g(z)w(z)2ndµ.

Fixing a basis Bn = {p1, p2, · · · , pN} of Pn we form the Gram matrix

Gµ,w
n = Gµ,w

n (Bn) := [〈pi, pj〉µ,w] ∈ CN×N

and the associated weighted Christoffel function

Kµ,w
n (z) :=

N∑
j=1

|qj(z)|2w(z)2n

where Qn = {q1, q2, · · · , qN} is an orthonormal basis for Pn with respect to
the inner-product (2). If a probability measure µ has the property that

det(Gµ′,w
n ) ≤ det(Gµ,w

n )

for all other probability measures µ′ on K then µ is said to be an optimal
measure of degree n for K and w.

By (the proof of) Lemma 2.1 of [13], Chapter X], the set of matrices

{Gµ,w
n : µ is a probability measure on K}

13



14 Convergence of Optimal Measures

is compact (and convex). Hence an optimal measure of degree n for K and
w always exists. They need not be unique. An equivalent characterization
of optimality is given by the Kiefer-Wolfowitz Equivalence Theorem [14].

Proposition 3.1 Let w be an admissible weight on K. A probability mea-
sure µ is an optimal measure of degree n for K and w; i.e.,

(a) det(Gµ′,w
n ) ≤ det(Gµ,w

n )

for all other probability measures µ′ on K, if and only if

(b) max
z∈K

Kµ,w
n (z) = N.

We sketch a proof of the equivalence of conditions (a) and (b) following
[10] (but see also [13], Theorem 2.1, Chapter X]). These references prove
this theorem only in the unweighted case, but the generalization to the
weighted case is straightforward. First, with P defined as in (10), the
proof of (11) gives

w2nP ∗(Gµ,w
n )−1P = Kµ,w

n . (15)

A computation shows that

µ→ log detGµ,w
n

is concave on the space of probability measures; i.e., if

h(t) := log detGtµ1+(1−t)µ2,w
n

for two probability measures µ1 and µ2, then h′′(t) ≤ 0. Hence µ1 is
optimal in the sense of (a) if and only if h′(t) ≤ 0 for all µ2. Computing
this derivative one sees that µ1 is optimal in the sense of (a) if and only if

trace[(Gµ1,w
n )−1Gµ2,w

n ] =

∫
K

w2nP ∗(Gµ1,w
n )−1Pdµ2 =

∫
Kµ1,w
n dµ2 ≤ N

(16)
for all µ2. Here we use (15) and the fact that, for an N ×N matrix A, an
N × 1 matrix B, and a 1×N matrix C,

trace(ABC) = trace(CAB) = CAB;

14



Convergence of Optimal Measures 15

thus, writing Gj := G
µj ,w
n and using G2 =

∫
K
w2nPP ∗dµ2,

trace[(Gµ1,w
n )−1Gµ2,w

n ] = trace[G−1
1

∫
K

w2nPP ∗dµ2] =

∫
K

w2nP ∗G−1
1 Pdµ2.

Taking µ2 to be a point mass at a point z ∈ K in (16) gives Kµ1,w
n (z) ≤ N ;

then taking µ2 = µ1 gives
∫
Kµ1,w
n dµ1 = N by orthonormality. This proves

the equivalence of (a) and (b).

Indeed, the end of this argument yields the following key property of op-
timal measures.

Lemma 3.2 Suppose that µ is optimal for K and w. Then

Kµ,w
n (z) = N, a.e. [µ].

Proof. On the one hand

max
z∈K

Kµ,w
n (z) = N

while on the other hand, again by orthonormality of the qj,∫
K

Kµ,w
n dµ =

∫
K

N∑
j=1

|qj(z)|2w(z)2n dµ(z) = N,

and the result follows.

We recall that for a basis Bn and a set of points Zn = {zi : 1 ≤ i ≤ N} ⊂
K the matrix

Vn = Vn(Bn, Zn) = [pi(zj)] ∈ CN×N

is called the Vandermonde matrix of the system. In case that the basis Bn

is the standard monomial basis for Pn then we will write

V DM(z1, z2, · · · , zN) := det(Vn).

Of fundamental importance for us will be

15



16 Convergence of Optimal Measures

Definition 3.3 Suppose that K ⊂ Cd is compact and that w is an admis-
sible weight function on K. We set

δwn (K) :=

(
max
zi∈K
|V DM(z1, · · · , zN)|wn(z1)w

n(z2) · · ·wn(zN)

)1/mn

where mn = dnN/(d+ 1) is the sum of the degrees of the N monomials of
degree at most n. Then

δw(K) = lim
n→∞

δwn (K)

is called the weighted transfinite diameter of K. We refer to δwn (K) as the
weighted nth order diameter of K.

A proof that this limit exists may be found in [9] or [2]; it was first proved
in the unweighted case (w ≡ 1; i.e., δ1(K)) by Zaharjuta [18].

Given the close connection between Vandermonde matrices and Gram ma-
trices, as explained in the Introduction, it is perhaps not suprising that we
have

Proposition 3.4 Suppose that K is compact and that w is an admissible
weight function. Suppose further that µn is an optimal measure of degree
n for K and w. Take the basis Bn to be the standard basis of monomials
for Pn. Then

lim
n→∞

det(Gµn,w
n )1/(2mn) = δw(K).

Proof. We first note the formula (cf. formula (3.3) of [9])∫
KN

|V DM(z1, · · · , zN)|2w(z1)
2n · · ·w(zN)2ndµn(z1) · · · dµn(zN)

= N ! det(Gµn,w
n ). (17)

It follows immediately, since µn is a probability measure, that

det(Gµn,w
n ) ≤ 1

N !
(δwn (K))2mn . (18)

Secondly, note that if f1, f2, · · · , fN ∈ K are weighted Fekete points of
degree n for K, i.e., points in K for which

|V DM(z1, · · · , zN)|wn(z1)w
n(z2) · · ·wn(zN)

16



Convergence of Optimal Measures 17

is maximal, then the discrete measure

νn =
1

N

N∑
k=1

δfk
(19)

based on these points is a candidate probability measure for property (a)
of Definition 1.1. Hence

det(Gνn,w
n ) ≤ det(Gµn,w

n ).

But, as is easy to see,

det(Gνn,w
n ) =

1

NN
|V DM(f1, · · · , fN)|2w(f1)

2nw(f2)
2n · · ·w(fN)2n

=
1

NN

(
max
zi∈K
|V DM(z1, · · · , zN)|wn(z1)w

n(z2) · · ·wn(zN)

)2

=
1

NN
(δwn (K))2mn .

Hence,
1

NN
(δwn (K))2mn ≤ det(Gµn,w

n ) ≤ 1

N !
(δwn (K))2mn

by combining the lower bound with the upper bound (18).

Of course, it then follows that

lim
n→∞

1

2mn

log det(Gµn,w
n ) = log(δw(K)). (20)

Now, suppose that u ∈ C(K) and that w is an admissible weight function.
Following the ideas in [1], [2], [3], [4], [5] we consider the weight wt(z) :=
w(z) exp(−tu(z)), t ∈ R, and let µn be an optimal measure of degree n for
K and w. We set

fn(t) := − 1

2mn

log det(Gµn,wt
n ). (21)

For t = 0, w0 = w and (20) says

lim
n→∞

fn(0) = − log(δw(K)).

We have the following (see Lemma 6.4 in [1]).

17



18 Convergence of Optimal Measures

Lemma 3.5 We have

f ′n(t) =
d+ 1

dN

∫
K

u(z)Kµn,wt
n (z)dµn.

In particular,

f ′n(0) =
d+ 1

dN

∫
K

u(z)Kµn,w
n (z)dµn

=
d+ 1

d

∫
K

u(z)dµn (by Lemma 3.2). (22)

Proof. Recall that Gµn,wt
n is a positive definite Hermitian matrix; hence

it can be diagonalized by a unitary matrix and we can define log(Gµn,wt
n ).

Using log det(Gµn,wt
n ) = trace log(Gµn,wt

n ), we calculate

2mnf
′
n(t) = − d

dt
trace (log(Gµn,wt

n ))

= −trace

(
d

dt
log(Gµn,wt

n )

)
= −trace

(
(Gµn,wt

n )−1 d

dt
Gµn,wt
n

)
= 2n trace

(
(Gµn,wt

n )−1

[∫
K

pi(z)pj(z)u(z)w(z)2n exp(−2ntu(z))dµn

])
As in the proof of Proposition 3.1 we use

trace(ABC) = trace(CAB) = CAB

to write the previous line as

= 2n

∫
K

P ∗(z)(Gµn,wt
n )−1P (z)u(z)w(z)2n exp(−2ntu(z))dµn

= 2n

∫
K

u(z)P ∗(z)(Gµn,wt
n )−1P (z)wt(z)2ndµn

= 2n

∫
K

u(z)Kµn,wt
n (z)dµn

where the last equality follows from the remark (15).

The result follows from the fact that mn = dnN/(d+ 1).

The next result was proved in a slightly different way in [5], Lemma 2.2.

18



Convergence of Optimal Measures 19

Lemma 3.6 The functions fn(t) are concave, i.e., f ′′n(t) ≤ 0.

Proof. First, let

gn(h) := 2mnfn(t+ h)

so that f ′′n(t) =
1

2mn

g′′n(0). Also, note that if we change the basis Bn =

{p1, · · · , pN} to Cn := {q1, · · · , qN} by pi =
∑N

j=1 aijqj, then the Gram
matrices transform (see e.g. [D, §8.7]) by

Gµn,wt
n (Bn) = AGµn,wt

n (Cn)A∗

where A = [aij] ∈ CN×N . Hence,

gn(h) = − log(det(Gµn,wt+h
n (Bn))) = − log(det(Gµn,wt+h

n (Cn)))−log(|det(A)|2)

and we see that the derivatives of gn are independent of the basis chosen.

Let us choose Cn to be an orthonormal basis for Pn with respect to the
inner-product 〈·, ·〉µn,w = 〈·, ·〉µn,wt .

Now, for convenience, write G(h) = G
µn,wt+h
n and set F (h) = log(G(h))

so that G(h) = exp(F (h)). By our choice of basis Cn we have G(0) =
I ∈ CN×N , the identity matrix, and F (0) = [0] ∈ CN×N , the zero matrix.
Then, (see e.g. [6], p. 311]),

dG

dh
=

d

dh
exp(F (h)) =

∫ 1

0

e(1−s)F (h)dF

dh
esF (h)ds.

In particular
dG

dh
(0) =

dF

dh
(0).

Further,

d2G

dh2
=

∫ 1

0

{[
d

dh
e(1−s)F (h)

]
dF

dh
esF (h) + e(1−s)F (h)d

2F

dh2
esF (h)

+e(1−s)F (h)dF

dh

[
d

dh
esF (h)

]}
ds.

19



20 Convergence of Optimal Measures

Evaluating at h = 0, using the fact that F (0) = [0], we obtain

d2G

dh2
(0) =

∫ 1

0

{
(1− s)dF

dh
(0)× dF

dh
(0)× I + I × d2F

dh2
(0)× I

+I × dF

dh
(0)× sdF

dh
(0)

}
ds

=

∫ 1

0

{
(1− s+ s)

(
dF

dh
(0)

)2

+
d2F

dh2
(0)

}
ds

=

(
dF

dh
(0)

)2

+
d2F

dh2
(0).

Hence,

d2F

dh2
(0) =

d2G

dh2
(0)−

(
dF

dh
(0)

)2

= [

∫
K

qi(z)qj(z)(−2nu(z))2wt(z)2ndµn]− [

∫
K

qi(z)qj(z)(−2nu(z))wt(z)2ndµn]2.

Since g′n(h) = d
dh

[− log(det(G(h))] and log(det(G(h)) = trace(log(G(h))) =
trace(F (h)) it follows that

g′′n(0) = −trace

([∫
K

qi(z)qj(z)(−2nu(z))2wt(z)2ndµn

])
+trace

([∫
K

qi(z)qj(z)(−2nu(z))wt(z)2ndµn

]2
)

= −
N∑
i=1

∫
K

|qi(z)|2wt(z)2n(2nu(z))2dµn

+
N∑
i=1

N∑
j=1

∣∣∣∣∫
K

qi(z)qj(z)wt(z)2n(2nu(z))dµn

∣∣∣∣2

= −
N∑
i=1

{∫
K

|qi(z)|2wt(z)2n(2nu(z))2dµn−

N∑
j=1

∣∣∣∣∫
K

qi(z)qj(z)wt(z)2n(2nu(z))dµn

∣∣∣∣2
}
.

20



Convergence of Optimal Measures 21

But notice that

∫
K

qi(z)qj(z)wt(z)2n(2nu(z))dµn is the jth Fourier coef-

ficient of the function 2nu(z)qi(z) with respect to the orthonormal basis

Cn, and also that

∫
K

|qi(z)|2wt(z)2n(2nu(z))2dµn is the L2 norm squared

of this same function. Hence, by Parseval’s inequality, g′′n(0) ≤ 0.

4 The Limit of Optimal Measures

In this section we prove the main theorem. Let K ⊂ Cd be compact with
admissible weight function w := e−φ. Recall from the introduction that
the weighted extremal function V ∗K,φ(z) is the usc regularization of VK,φ in
(1), and the weighted equilibrium measure is

µK,φ :=
1

(2π)d
(ddcV ∗K,φ)d.

Berman and Boucksom [3] have recently shown that the discrete proba-
bility measures based on the weighted Fekete points (19) tend weak−∗ to
µK,φ. This is based on a remarkable sequence of papers (see [1], [2], [3],
[4]). Indeed, the argument in [3] shows that if for each n, we take points

x
(n)
1 , x

(n)
2 , · · · , x(n)

N ∈ K for which

lim
n→∞

[|V DM(x
(n)
1 , · · · , x(n)

N )|w(x
(n)
1 )nw(x

(n)
2 )n · · ·w(x

(n)
N )n]1/mn = δw(K)

(23)
(asymptotically weighted Fekete points), then the discrete measures

νn =
1

N

N∑
k=1

δ
x
(n)
k

converge weak−∗ to µK,φ. The main point of this note is to remark that
their proof may be extended to also give the limit of optimal measures.
For completeness we give the details of the proof, but we emphasize that
it is their same argument as for the Fekete measure case (see also [4]).

Main Theorem. Suppose that K ⊂ Cd is compact and that w is an
admissible weight function. We again set φ := − log(w). Suppose further

21



22 Convergence of Optimal Measures

that µn is an optimal measure of degree n for K and w. Then

lim
n→∞

µn = µK,φ

where the limit is in the weak−∗ sense.

Proof. For u ∈ C2(K) we again set wt(z) := w(z) exp(−tu(z)) which
corresponds to φt := φ+ tu and fn(t) as in (21). As mentioned in (20),

lim
n→∞

fn(0) = − log(δw(K)).

Of fundamental importance is the Rumely formula for the transfinite di-
ameter ([16], [1], [2]):

− log(δw(K)) =
1

d(2π)d
E(V ∗K,φ, VT ). (24)

Here VT is the (unweighted) extremal function for a polydisc that contains
K and E is a certain “mixed energy” whose exact formula is not important
here. What is important is the derivative formula of Berman and Boucksom
[1], [2]:

d

dt
E(VK,φ+tu, VT )

∣∣∣∣
t=0

= (d+ 1)

∫
K

u(ddcV ∗K,φ)d. (25)

In other words, setting g(t) = − log(δwt(K)),

g′(0) =
d+ 1

d(2π)d

∫
K

u(z)(ddcV ∗K,φ)d. (26)

Now note that for each fixed t, the measure µn, being optimal for K and
w = w0, is a candidate for the optimal measure for K and wt. If follows
from property (a) of Definition 1.1 that

det(Gµn,wt
n ) ≤ det(Gµt

n,wt
n )

where we denote an optimal measure for K and wt by µtn. Hence (see (21))

fn(t) ≥ − 1

2mn

log(det(Gµt
n,wt
n ))

and consequently from Proposition 3.4 that

lim inf
n→∞

fn(t) ≥ − log(δwt(K)) = g(t). (27)
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It now follows from Lemma 4.1 in [3] (see Lemma 4.1 below) that

lim
n→∞

f ′n(0) = g′(0).

In other words, by Lemma 3.5,

lim
n→∞

d+ 1

d

∫
K

u(z)dµn =
d+ 1

d(2π)d

∫
K

u(z)(ddcV ∗K,φ)d

=
d+ 1

d

∫
K

u(z)dµK,φ,

and hence µn → µK,φ weak−∗.

Lemma 4.1 (Berman and Boucksom [3]) Let fn(t) be a sequence of con-
cave functions on R and g(t) a function on R. Suppose that

lim inf
n→∞

fn(t) ≥ g(t), ∀t ∈ R

and that

lim
n→∞

fn(0) = g(0).

Suppose further that the fn and g are differentiable at t = 0. Then

lim
n→∞

f ′n(0) = g′(0).

Remark. In [1], [2] the derivative formula (25) is proved in a very general
setting under the assumption that φ is continuous. However, in our setting,
their proof remains valid for lowersemicontinuous φ and hence our main
theorem remains true for general usc weights w.

Remark. The reader will note that the key properties of optimal measures
used here are Lemma 3.2, used in the proof of Lemma 3.5, and Proposition
3.4, which is used in the proof of (27): if µ is optimal for K and w then

Kµ,w
n (z) = N, a.e. [µ]

and

lim
n→∞

det(Gµn,w
n )1/(2mn) = δw(K).

23



24 Convergence of Optimal Measures

These properties are also satisfied for asymptotically weighted Fekete mea-
sures (measures associated to points satisfying (23))

νn =
1

N

N∑
k=1

δfk
.

Thus weak-* convergence to µK,φ for both sequences {µn} and {νn} follows
from (24) and (25).

There exist many other natural sequences of measures {µn} which con-
verge weak-* to µK,φ. For simplicity, we discuss the unweighted case
(φ = 0). Recall from subsection 1.2 that if x1, ..., xN ∈ K, then Λn :=
maxz∈K

∑N
k=1 |`k(z)| is the so-called Lebesgue constant associated to poly-

nomial interpolation at these points. Suppose for each n = 1, 2, ... we
have N = N(n) points x

(n)
1 , ..., x

(n)
N ∈ K with Lebesgue constant Λn. An

elementary argument in [8] shows that if lim supn→∞ Λ
1/n
n ≤ 1, then

lim
n→∞

|V DM(x
(n)
1 , ..., x

(n)
N )|1/mn = δ1(K), (28)

i.e., subexponential growth of the Lebesgue constants implies the array
of points is asymptotically Fekete ((23) holds with w ≡ 1). By the main
result of [4], this asymptotic Fekete property (28) implies that the discrete
measures

µn :=
1

N

N∑
i=1

δ
x
(n)
i

converge weak-* to µK . It is easy to see that the Lebesgue constants for
either the Lebesgue or Fejer points satisfy the subexponential growth of the
Lebesgue constants so the weak-* convergence to the equilibrium measure
holds for these arrays. Furthermore, in Proposition 3.7 of [8] it was shown
that for a Leja sequence {x1, x2, ...} ⊂ K,

lim
n→∞

|V DM(x1, ..., xN)|1/mn = δ1(K).

Thus the asymptotic Fekete property (28) holds for this sequence of points;
so, again from [4], it follows that the discrete measures

µn :=
1

N

N∑
i=1

δxi
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Convergence of Optimal Measures 25

converge weak-* to µK . Such a sequence is defined inductively as follows.
Take the standard monomial basis {p1, p2, ...} for ∪∞n=0Pn ordered so that
degpi ≤degpj if i ≤ j. Given m points z1, ..., zm in Cd, as before we write

V DM(z1, ..., zm) = det[pi(zj)]i,j=1,...,m.

Starting with any point x1 ∈ K, having chosen x1, ..., xm ∈ K we choose
xm+1 ∈ K so that

|V DM(x1, ..., xm, xm+1)| = max
x∈K
|V DM(x1, ..., xm, x)|.

We remark that despite possessing the desirable property that µn → µK
weak-*, it is unknown if lim supn→∞ Λ

1/n
n ≤ 1 always holds for a Leja

sequence, even in the univariate case (d = 1).
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