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Abstract

For t ∈ {1, 2, . . .} fixed, a natural class of spherical designs is given by the
vectors v1, . . . , vn in F

d = R
d,Cd (not all zero) which give equality in the bound

n
∑

j=1

n
∑

k=1

|〈vj , vk〉|2t ≥ ct(F
d)
(

n
∑

ℓ=1

‖vℓ‖2t
)2

,

where ct(F
d) is a known constant. These spherical (t, t)-designs integrate a space

of homogeneous polynomials of degree 2t, and are variously known as real spherical
half-designs of order 2t, complex (projective) t-designs, complex spherical semi-
designs, and as tight frames when t = 1. Little is known about the minimal
number of vectors n for such a design.

Here we report on the results of a numerical search for (t, t)-designs with a
minimal number of vectors. In some cases, we obtain the designs explicitly as
an orbit of a unitary action of a finite group on the sphere. We also list all the
currently known (t, t)-designs. It is shown that many of these belong to a family
of designs which we construct from the complex reflection groups. This family
includes several new spherical (t, t)-designs with a small number of vectors.

Key Words: (weighted) spherical designs, integration (cubature) rules for the sphere,
spherical (t, t)-designs, spherical half-designs, finite tight frames, tight spherical designs,
MUBs (mutually unbiased bases), SICs (symmetric informationally complete positive
operator valued measures), equiangular lines, highly symmetric tight frames, complex
reflection groups,
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1 Introduction

Let S = SF be the unit sphere in F
d, where F = R or C, and σ be the normalised surface

area measure on S. A “spherical design” is a sequence of points v1, . . . , vn in S for which
the integration (cubature) rule

∫

S

p(x) dσ(x) =
1

n

n
∑

j=1

p(vj),

holds for all p in some finite dimensional space of polynomials P . For example, when
F = R and P is the polynomials of degree ≤ t one has a (real) spherical t-design.
The existence of a spherical design for n sufficiently large was proved in [SZ84].

There are various equivalent conditions to being a spherical design [DGS77], [BB09].
These include being an integration rule for a subspace of harmonic polynomials, and a
variational characterisation. In this paper, we consider the spherical designs which give
equality in the inequality

n
∑

j=1

n
∑

k=1

|〈vj, vk〉|2t ≥ ct(F
d)
(

n
∑

ℓ=1

‖vℓ‖2t
)2

, (1.1)

where

ct(C
d) :=

1
(

d+t−1
t

) , ct(R
d) :=

1 · 3 · 5 · · · (2t− 1)

d(d+ 2) · · · (d+ 2(t− 1))
. (1.2)

We observe that ct(d,R) ≥ ct(d,C), with strict inequality when t, d > 1. These so called
(spherical) (t, t)-designs are determined by the space of polynomials Fd → F given by

Π◦
t,t(F

d) = Hom(t, t) := span{z 7→ zαzβ : |α| = |β| = t}, (1.3)

which are homogeneous of degree t in z and in z. Equivalently

Π◦
t,t(F

d) = span{z 7→ |〈z, v〉|2t : v ∈ F
d}. (1.4)

We note that Π◦
t,t(R

d) = Π◦
2t(R

d), where Π◦
k(R

d) is the space of homogeneous polynomials
R

d → R of degree k. The (t, t)-designs for Rd are known as spherical half-designs of
order 2t [KP11]. The (t, t)-designs for Cd are of interest because of their applications to
quantum information theory [EF02], [RS07], [Zau10]. They are also known as complex
(projective) t-designs [RS07] and as complex spherical semi-designs [KP17].

The basic theory of (t, t)-designs is developed in [Wal17]. When the vectors v1, . . . , vn
in F

d giving equality in (1.1) are not all of unit norm and not all zero, then one has the
weighted integration rule

∫

S

p(x) dσ(x) =
1

∑

k ‖vk‖2t
n
∑

j=1

p(vj) =
n
∑

j=1

vj 6=0

‖vj‖2t
∑

k ‖vk‖2t
p(

vj
‖vj‖

), ∀p ∈ P = Π◦
t,t(F

d),

and we will call (vj) a weighted (t, t)-design, with weights

wj :=
‖vj‖2t

∑

k ‖vk‖2t
≥ 0, w1 + w2 + · · ·+ wn = 1.
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By its definition, a (t, t)-design (vj) is projectively unitarily invariant, i.e., (cjUvj) is
also a (t, t)-design when cj ∈ F, |cj| = 1, and U is unitary. A real spherical t-design has
this property if and only if it is centrally symmetric, i.e., of the form (±vj).

For t fixed, the set of spherical (t, t)-designs V = [v1, . . . , vn] ∈ F
d×n is the algebraic

variety given by
n
∑

j=1

n
∑

k=1

|〈vj, vk〉|2t = ct(F
d)
(

n
∑

ℓ=1

‖vℓ‖2t
)2

. (1.5)

This variety has been studied in the case t = 1 (tight frames) [CMS17]. The purpose of
this paper is to explore the algebraic variety of spherical (t, t)-designs for the smallest
value of n for which it is nontrivial, i.e., a (t, t)-design of n vectors for Fd exists. This
is done by using the variational characterisation of equality in (1.1) to move towards a
nonzero point on the variety (should there be one), for small values of t and d. From these
numerical results the smallest value of n is then inferred, and any group orbit structure
of the (t, t)-design is identified (using recently developed techniques of [CW16]). In a
number of cases, these putatively optimal (t, t)-designs are then used to find an analytic
form of what we believe to be a (t, t)-design with the minimal number of vectors.

We also give the results of search through the highly symmetric tight frames given
by the complex reflection groups [BW13] for (t, t)-designs. We find these include some
of the sporadic examples of (t, t)-designs known. This allows us to give a neat listing of
all the known spherical (t, t)-designs (with a small number of vectors).

We finish this introduction by giving some examples of spherical (t, t)-designs. In
particular, SICs and MUBs, which are of interest in quantum information theory (where
they are viewed as rank one projections giving quantum measurements).

Example 1.1 A real spherical 2t-design for Rd is a (t, t)-design for Rd, i.e., a spherical
half-design of order 2t ([HS96] give some putatively optimal examples). Conversely, a
centrally symmetric (t, t)-design for R

d is a real spherical 2t-design for R
d.

Example 1.2 The (1, 1)-designs (vj) for F
d (with vectors of any lengths) are precisely

the finite tight frames [Wal03], [Wal18], i.e., they satisfy the “redundant orthogonal
expansion”

x =
d

∑n
ℓ=1 ‖vℓ‖2

n
∑

j=1

〈x, vj〉vj, ∀x ∈ F
d.

Thus the unit-norm (unweighted) (1, 1)-designs with the minimal number of vectors are
the orthonormal bases.

Example 1.3 Three equally spaced unit vectors in R
2 are a (1, 1)-design for F

2. They
are a (2, 2)-design for R

2, but not for C
2.

Example 1.4 A SIC (or symmetric informationally complete positive operator valued
measure) for C

d, i.e., a set of d2 unit vectors (vj) in C
d with

|〈vj, vk〉|2 =
1

d+ 1
, j 6= k,

is a (2, 2)-design of d2 unit vectors for C
d, with the minimum number of vectors. The

existence of a SIC for every dimension d is a problem of great interest [Zau10], [SG10].
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Example 1.5 A set of d+ 1 MUBs (mutually unbiased bases) for C
d, i.e., orthogonal

bases with

|〈f, g〉| = 1√
d
, for f and g in different bases,

gives a (2, 2)-design of d(d+1) unit vectors for Cd [KR04]. This is called a maximal set
of MUBs, since there cannot be more than d+ 1 MUBs for C

d.

Example 1.6 In [Wal17], it is shown that if (vj)
n
j=1 is a spherical (t, t)-design for F

d,

then (‖vj‖t/r−1vj) is a spherical (r, r)-design for F
d, 1 ≤ r ≤ t, i.e.,

n
∑

j=1

n
∑

k=1

|〈vj, vk〉|2r‖vj‖2(t−r)‖vk‖2(t−r) = cr(F
d)
(

n
∑

ℓ=1

‖vℓ‖2t
)2

. (1.6)

From the above example, it follows that the minimal number of vectors in a spherical
(t, t)-design for F

d is an increasing function of t. We now investigate this minimal
number.

2 The numerical construction of (t, t)-designs

Let V = [vαβ] = [v1, . . . , vn], and p, g : Fd×n → R be the homogeneous polynomials given
by

p(V ) :=
∑

j

∑

k

|〈vj, vk〉|2t, g(V ) :=
∑

ℓ

‖vℓ‖2t. (2.7)

Then the spherical (t, t)-designs of n vectors for Fd (should they exist) are the nontrivial
zeros of the nonnegative homogeneous polynomial

f(V ) := p(V )− ct(d,F
d)g(V )2 (2.8)

of degree 4t in the real (and imaginary) parts of entries of V = [vαβ] ∈ F
d×n. The

minimisers of p(V ) ≥ 0 with g(V ) fixed, e.g., V = [vj] a unit norm sequence, satisfy
the Lagrange equations: ∇p(V ) = λ∇g(V ). Moreover, the ones that give spherical
(t, t)-designs are minima of f , and so satisfy ∇f(V ) = 0, i.e.,

∇p(V ) = 2ct(d,F)g(V )∇g(V ). (2.9)

Thus we obtain the following condition for the existence of spherical (t, t)-designs.

Theorem 2.1 Let t ≥ 1 and f : Fd×n → R be the nonnegative function given by

f([v1, . . . , vn]) :=
n
∑

j=1

n
∑

k=1

|〈vj, vk〉|2t − ct(d,F)
(

n
∑

ℓ=1

‖vℓ‖2t
)2
.

Then the critical points of f satisfy
∑

j

|〈vj, vβ〉|2(t−1)〈vβ, vj〉vj = ct(d,F)
(

∑

ℓ

‖vℓ‖2t
)

‖vβ‖2(t−1)vβ, 1 ≤ β ≤ n.

In particular, for t = 1, the nonzero critical points of f are the tight frames for Fd, which
are all global minima.
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Proof: The critical points of f are given by (2.9), where ∇f is the gradient of f
viewed as a function of real variables. For f : Cd → R with f(x1 + iy1, . . . , xd + iyd)
a differentiable function of the real variables x1, y1, . . . xd, yd ∈ R, define a gradient
∇f = 2(∂1f, . . . , ∂df) : C

d → C
d by

∇f :=
( ∂

∂xj

f(x1 + iy1, . . . , xd + iyd) + i
∂

∂yj
f(x1 + iy1, . . . , xd + iyd)

)d

j=1
. (2.10)

Then for both R
d and C

d, we have

∇(‖ · ‖2)(a) = 2a, ∇(|〈·, b〉|2)(a) = 2〈a, b〉b. (2.11)

Using these, a calculation shows that the β-columns of ∇p(V ) and ∇g(V ) are

4t
∑

j

|〈vj, vβ〉|2(t−1)〈vβ, vj〉vj, 2t‖vβ‖2(t−1)vβ.

Substituting this into (2.9) gives the desired condition.
For t = 1, the V 6= 0 which are critical points of f(V ) satisfy

∑

j

〈vβ, vj〉vj =
1

d

(

∑

ℓ

‖vℓ‖2
)

vβ, 1 ≤ β ≤ n,

and so, by linearity, (vj) is tight frame for H := span{vβ}1≤β≤n ⊂ F
d, with frame bound

A = 1
d

∑

ℓ ‖vℓ‖2, and dim(H) = d, so that (vj) is a tight frame for Fd. Thus the nonzero
critical points of f(V ) are precisely the tight frames for Fd.

Spherical (t, t)-designs can be found numerically, by minimising f(V ), with g(V )
fixed. This can be done by an iterative algorithm which starts at a random V0, and
chooses Vk+1 = Vk + Wk, where Wk is such that f(Vk+1) = f(Vk + Wk) < f(Vk). In
[Bra11], random directions Wk (of an appropriate size) were considered. Here we take
Wk in the direction of maximal decrease (which is more effective close to a minimum).
The maximal decrease of f at V is in the direction W = −∇f(V ), where

(∇f(V ))αβ = 4t
∑

j

|〈vj, vβ〉|2(t−1)〈vβ, vj〉vαj − 4tct(d,F
d)
(

∑

ℓ

‖vℓ‖2t
)

‖vβ‖2(t−1)vαβ.

It is also possible to calculate (numerically) the Hessian (second derivative) of f and p
at V to investigate the nature of the critical points of f (these are all minima for t = 1).
The formulas for these Hessians are given in the appendix.

We present the results of our numerical construction of (t, t)-designs in the next
two sections (the real and complex cases), together with some explicit constructions
motivated by them. We are only aware of two other numerical searches for putatively
optimal spherical designs: Hardin and Sloane’s list of real spherical t-designs in R

3 [HS96]
(for t ≤ 12) and Scott and Grassl’s list of SICs (complex spherical (2, 2)-designs of d2

vectors for Cd) [SG10].
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3 Real spherical (t, t)-designs (spherical half-designs)

In Table 1 below, we summarise our numerical results for real spherical (t, t)-designs,
i.e., spherical half-designs of order 2t. This is followed by the other known real spherical
(t, t)-designs, including those obtained in §5 (see Tables 4, 5), to give a complete list.
We use grey when an analytic form of a putatively optimal design is not known, and
give details of those that are known after the table.

Table 1: The minimum numbers nw and ne of vectors in a weighted and in a equal-norm
spherical (t, t)-design for Rd (spherical half-design of order 2t) as calculated numerically.

t d nw ne Comments

1 d d d orthonormal bases in R
d (Example 1.2)

t 2 t+ 1 t+ 1 equally spaced lines in R
2 (Example 3.2)

2 3 6 6 equiangular lines in R
3 (Example 3.3)

2 4 11 12 no structure §5, ST 28, Table 4

2 5 16 20 Example 3.5 no structure

2 6 22 24 group structure work in progress

2 7 28 28 equiangular lines in R
7 (Example 3.3)

2 8 45 >45 no structure

3 3 11 16 no structure possible group structure

3 4 23 >23 group structure

3 5 41 >41 group structure

4 3 16 25 Example 3.6 no structure

4 4 43 >43 work in progress

5 3 24 35 no structure no structure

Other known real (t, t)-designs with a small number of vectors

2 6 27 §5, ST 35, Table 5

Other known optimal real (t, t)-designs

2 23 276 equiangular lines in R
23 (Example 3.3)

3 8 120 §5, ST 37, Table 5 (due to [KP11])

3 23 2300 tight spherical design

5 4 60 60 §5, ST 30, Table 4 (Example 3.4)

5 24 98280 tight spherical design

t d
(

d−1+t
t

)

tight spherical (2t+ 1)-designs

With just one exception (Example 3.4), all the currently known optimal spherical
half-designs appear in the following way.
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Example 3.1 (Tight spherical designs) A spherical (2t+1)-design of m vectors for Rd

is said to be tight (not to be confused with a tight frame) if it gives equality in the lower
bound

m ≥ 2

(

d− 1 + t

t

)

of [DGS77]. A tight spherical (2t+ 1)-design is necessarily centrally symmetric, i.e., of
the form (±vj) with m = 2n, so that (vj) is a spherical half-design of order 2t. This is
a 1-1 correspondence [KP11], and so each tight spherical (2t + 1)-design of 2n vectors
gives rise to an optimal spherical (t, t)-design of n =

(

d−1+t
t

)

vectors for R
d [HW18].

Optimal spherical half-designs which come from tight spherical designs in this way
include orthonormal bases, equally spaced lines, and maximal sets of equiangular lines.

Example 3.2 (Equally spaced lines) The n = t + 1 equally spaced lines in R
2 given by

the vectors
(vj) =

{(

cos π
n
j, sin π

n
j
)

: j = 0, . . . , n− 1
}

are a spherical half-design of order 2t, i.e., a (t, t)-design.

Example 3.3 (Maximal lines) The unit vectors (vj) in R
d (or the lines that they give)

are said to be equiangular if they have equal cross-correlation, i.e.,

|〈vj, vk〉| = α, j 6= k, for some angle α > 0.

The number n of equiangular lines in R
d satisfies the absolute bound n ≤ 1

2
d(d+1). When

this bound is attained, the set of lines has angle 1√
d+2

, and hence is a (2, 2)-design, by
the calculation

n · 1 + (n2 − n)
( 1√

d+ 2

)4

=
3

4

d(d+ 1)2

d+ 2
=

1 · 3
d(d+ 2)

n2.

Such lines can exist only when d = 2, 3 or d + 2 is the square of an odd integer. Those
that appear in Table 1 for d = 2, 3, 7, 23 are well known. (see §5).

The only known optimal spherical-half design which is not given by a tight spherical
design is the following.

Example 3.4 There is a 120-point spherical 11-design for R4 given by the vertices of the
regular four-dimensional polyhedron with the Schläfli symbol {3, 3, 5} [And00]. This was
proved to be optimal in the class of weighted spherical 11-designs [And00], and unique
(up to unitary equivalence) in the class of (unweighted) spherical 11-designs [BD01].
The corresponding 60-vector spherical half-design for R4 of order 10 is therefore optimal
in the class of weighted half-designs for R

4 of order 10 (weighted (5, 5)-designs). This
spherical half-design is a highly symmetric tight frame (see Table 4, ST 30). If it had
come from a tight spherical 11-design, then it would have had 56 vectors.
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The 21-point spherical half-design for R6 of order 4 given by a highly symmetric tight
frame (see Table 5, ST 35) is good candidate for a second optimal spherical half-design,
since if it corresponded to a tight spherical 5-design, then it would have 21 points.

Motivated by our results, [HW18] shows that following spherical half-designs exist.

Example 3.5 There is a weighted spherical (2, 2)-design of 16 vectors for R
5. This

consists of six equiangular lines in R
5 at an angle of 1

5
(the vertices of a simplex) given

by vectors of length (20
21
)1/4, and ten equiangular lines in R

5 at an angle of 1
3
given by

vectors of length (36
35
)1/4, where the angle between lines from different families is 1√

5
. The

corresponding weights are

16
(

20
21

)

6
(

20
21

)

+ 10
(

36
35

) =
20

21
≈ 0.9523,

16
(

36
35

)

6
(

20
21

)

+ 10
(

36
35

) =
36

35
≈ 1.0286.

Example 3.6 There is a weighted spherical (4, 4)-design of 16 vectors for R3. This can
be given explicitly by lines given by the antipodal vertices of the pentakis dodecahedron
(a Catalan solid) as follows (the six vertices/lines of icosahedron are first columns)

[vj] :=
1√
3







0 1 τ 0 −1 τ 1 1 1 1 0 0 1
τ

1
τ

τ −τ

τ 0 1 τ 0 −1 1 1 −1 −1 1
τ

1
τ

τ −τ 0 0

1 τ 0 −1 τ 0 1 −1 1 −1 τ −τ 0 0 1
τ

1
τ







(

αΛ1

Λ2

)

τ :=
1 +

√
5

2
(the golden ratio), α :=

√

3

1 + τ 2
, Λ1 :=

(

20
21

) 1

8 I6, Λ2 :=
(

36
35

) 1

8 I10.

Here the weights are the same as in Example 3.5, i.e., 20
21

≈ 0.9523 and 36
35

≈ 1.0286.
Compare this with Hardin and Sloan [HS96], who give evidence for an 8-design for
n = 36, 40, 42,≥ 44, and of a 9-design for n = 48, 50, 52,≥ 54. By taking this (4, 4)-
design and the negatives of its vectors, one has a weighted 9-design of 32 points.

The putatively optimal 16-vector weighted spherical (t, t)-designs of Examples 3.5
and 3.6 are the orbit of two vectors of close to equal norm (under the projective symmetry
group of [CW14]). In both cases, the number of vectors in an optimal (unweighted)
spherical (t, t)-design given by a tight spherical design would be 15 =

(

5−1+2
2

)

=
(

3−1+4
4

)

.
This suggests that these weighted spherical half-designs are indeed optimal, and that in
certain situations weighted designs are quite natural.

The only other numerical search for putatively optimal real designs is that of [HS96]
for spherical t-designs in R

3. We now compare this with our results for small t.

Example 3.7 There is a minimal 2-design given by the four vertices of the regular
tetrahedron (these sum to zero), whilst the minimal (1, 1)-design is the three vectors of
an orthonormal basis (these don’t sum to zero). The minimal (2, 2)-design is given by
the six equiangular lines which go through the vertices of the icosahedron. Taking the
corresponding 12 vectors (which add to zero) gives the minimal 4-design and 5-design.
For the (3, 3)-design, there is the snubcube of 24 points, which is a minimal 6-design and
7-design. This is not centrally symmetric, and so gives only a 24 point (3, 3)-design,
whilst the mininum numbers of vectors for a (3, 3)-design calculated are 11 and 16.
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4 Complex spherical (t, t)-designs

In Table 2 below, we give the corresponding results of our numerical search for putatively
optimal complex spherical (t, t)-designs.

Table 2: The minimum numbers nw and ne of vectors in a weighted and in a equal-norm
spherical (t, t)-design for Cd, as calculated numerically.

t d nw ne Comments

1 d d d orthonormal bases in C
d (Example 1.2)

2 d d2 d2 SICs (when known to exist) (Example 1.4)

3 2 6 6 three MUBs for C2 (Example 1.5)

3 3 22 27 some structure

3 4 40 40 highly symmetric tight frame (§5, ST 32, Table 4)

3 5 >100

4 2 10 12 Example 4.1 (two orbits)

4 3 47 >47

4 4 >85 >85

5 2 12 12 Example 4.2 (one orbit)

6 2 18 24 some structure

7 2 22 24 some structure

8 2 37 >37 some structure

9 2 44 >44 some structure

Other known complex (t, t)-designs with a small number of vectors

2 d d(d+ 1) d+ 1 MUBs for Cd, where d is a prime power

2 d d(|H|+ 1) weighted design, with H abelian of order ≥ d [RS07]

3 3 36 highly symmetric tight frame (§5, ST 27, Table 4)

5 4 60 highly symmetric tight frame (§5, ST 30, Table 4)

3 6 126 highly symmetric tight frame (§5, ST 30, Table 5)

4 6 672 highly symmetric tight frame (§5, ST 30, Table 5)

The orthonormal bases, SICs and MUBs appearing in the table are well studied.
A very general construction of weighted (2, 2)-designs is given in [RS07]. These are
presented as weighted complex projective t-designs, and require a function f : G → H
between finite abelian groups with d = |G| ≤ |H| satisfying

f(x+ a)− f(x) = b has a most one solution for each (a, b) 6= (0, 0),

to obtain a weighted (2, 2)-design of |H| + 1 orthornormal bases for Cd. The 40-vector
(3, 3)-design for C4 and others are examples of highly symmetric tight frames, which are
considered in detail in Section 5.
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We now give two explicit examples motivated by our calculations.

Example 4.1 (A spherical (4, 4)-design of 12 lines in C
2) Several unit-norm spherical

(4, 4)-designs of 12 vectors/lines in C
2 were computed numerically. Using the techniques

of [CW14], the projective symmetry group for each was calculated to be the dihedral group
of order 10, with the irreducible projective action giving two orbits: one of size 2 (with
the vectors orthogonal), and one of size 10. This suggested a (4, 4)-design of the form

Φv = (v, av, a2v, a3v, a4v, bv, abv, a2bv, a3bv, a4bv) ∪ (u1, u2), (4.12)

where v ∈ C
2 is a unit vector, a (a rotation) and b (a reflection) are generators of the

dihedral group and {u1, u2} is an orthonormal basis. Taking

a =

(

ω 0

0 ω

)

, ω := e
2πi
5 , b =

(

0 1

1 0

)

, u1 =

(

1

0

)

, u2 =

(

0

1

)

, (4.13)

and optimising over v to obtain a (4, 4)-design numerically suggested that the ratio of

the components of a suitable v was the golden ratio
√
5+1
2

, i.e.,

v = vζ :=
1

√

10 + 2
√
5

(

(1 +
√
5)ζ

2

)

, |ζ| = 1. (4.14)

An elementary calculation shows that (4.12), (4.13), (4.14) define a one-parameter
family {Φvζ}|ζ|=1, of spherical (4, 4)-designs of 12 unit vectors for C

2.

Somewhat surprisingly, the search for a (5, 5)-design for C2 gave a unit-norm one of
12 vectors which is a single orbit. A heuristic explanation for why this was not identified
earlier as a (4, 4)-design, is because there was a one parameter family of such designs
and this is an isolated point on the variety.

Example 4.2 A spherical (5, 5)-design of 12 lines in C
2. Let τ := 1

2
(1 +

√
5) be the

golden ratio, and G = 〈a, b〉 be the binary icosahedral group of order 120 generated by
the unitary matrices

a =
1

2

(

τ−1 − τi 1

−1 τ−1 + τi

)

, b =

(

−i 0

0 i

)

.

Then for every unit vector v ∈ C
2, the G-orbit (gv)g∈G is a (5, 5)–design of 120 vectors.

To show this one must verify that (1.5) holds for t = 5. Since G is unitary, this can be
simplified to

1

|G|
∑

g∈G
|〈v, gv〉|10 = c5(C

2)‖v‖20, ∀v ∈ C
2,

i.e., if two homogeneous polynomials of degree 20 in the entries of v and v are equal. This
was done by checking equality at a set of points v on which a polynomial in Π◦

10,10(C
2) is

determined by its values. We observe that a has order 5 and b2 = −I. Hence if v is an
eigenvector of a, then (gv)g∈G consists of 120/10 = 12 lines. From each of these lines
we can select a vector to obtain (5, 5)–design of 12 vectors.

Example 4.2 can be generalised by taking groups other than the binary icosahedral
group. We now consider these so called highly symmetric tight frames.
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5 Highly symmetric tight frames

Many of the putatively optimal spherical (t, t)-designs presented in the previous sections
are the orbit of a single vector/line under the unitary action of a finite group, and have
a larger group of symmetries. One way to capture this, is the idea of a highly symmetric
frame. A finite frame Φ of distinct vectors is highly symmetric if the action of its
symmetry group Sym(Φ) is irreducible, transitive, and the stabiliser of any one vector
(and hence all) is a nontrivial subgroup which fixes a space of dimension exactly one.

In [BW13], all the highly symmetric tight frames with symmetry group a finite
(irreducible) complex reflection group were calculated (in a search for equiangular lines),
except in a few cases. The stabilisers are the maximal parabolic subgroups, and by using
the recent Complements.m software package of of Don Taylor [Tay17], we were able to
compute the few remaining highly symmetric tight frames (Table 6). We then checked
the highly symmetric tight frames obtained from reflection groups to see what order of
(t, t)-designs their set of lines gives (see Tables 3, 4 and 5).

We assume a basic familiarity with complex reflection groups [LT09], [Tay12]. A
linear map F

d → F
d is a complex reflection if it has finite order and fixes a hyperplane,

i.e., it is diagonalisable with one eigenvalue a nontrivial root of unity and all the others
1. A finite group generated by reflections is called a complex reflection group. The
complex reflection groups are classified up to similarity, and can be taken to be unitary.
We will use the numbering of Shephard-Todd (ST) for the irreducible complex reflection
groups, and the notation 〈n,m〉 for the m-th group of order n in magma’s database of
small groups.

In Tables 3, 4 and 5, we give n the number of lines in the spherical (t, t)-design (vj),
m the number of vectors, and s the number of angles, i.e., the number of values |〈vj, vk〉|
which are not equal to 1 (the case when vectors are on the same line). A frame with one
angle is equiangular. We also give the projective symmetry group of the n lines [CW14],
and a group of order m whose orbit is the m vectors, should there be one, i.e., the frame
is a group frame.

Some of the highly symmetric tight frames given by reflection groups are putatively
optimal spherical (t, t)-designs and others appear to have small numbers of vectors (as
indicated in Tables 1 and 2). We now highlight some examples.

Example 5.1 Consider the following unitary complex reflections of orders 2, 2, 4, 3

S =

(

0 1

1 0

)

, F =
1√
2

(

1 1

1 −1

)

, R =

(

1 0

0 −i

)

, Z = e
2πi
24 RF.

The Shephard-Todd group number 6 has order 48, and small group number 〈48, 33〉. It
is generated by S,R2, Z. The standard basis vector v = e1 (which is fixed by R) gives a
highly symmetric tight frame which is a (3, 3)-design. Since the line given by e1 is fixed
by R and −I = (SR2)2 this design is given by 48/(4 · 2) = 6 lines (which are a maximal
set of MUBs). The vector

v =

(
√
3 + 1

1− i

)

is fixed by Z, and its orbit gives (2, 2)-design of 4 vectors, i.e., a SIC.

11



Example 5.2 For d = 2, all the Shephard-Todd groups give spherical (t, t)-designs,
where t = 2, 3, 5, and many of these are repeated, e.g., a SIC and a maximal set of
MUBs. The reason for this is that the design is given by the lines in the orbit, which
only depend on the matrices in the group up to a scalar multiple. One way to obtain a
canonical group with this orbit, is to ensure that all the matrices have determinant 1,
which leads to the notion of a canonical abstract error group [CW17]. For the Shephard-
Todd groups of rank 2, there are just three canonical abstract error groups that appear.
These are the binary tetrahedral group T , the binary octahedral group O, and the binary
icosahedral group I (see [LT09]), where the correspondence is

ST 4-7: T /〈−I〉 = 〈12, 3〉 ∼= A4,

ST 8-15: O/〈−I〉 = 〈24, 12〉 ∼= S4,

ST 16-22: I/〈−I〉 = 〈60, 5〉 ∼= A5.

Example 5.3 (Maximal MUBs) We obtain a maximal set of MUBs in the dimensions

d = 2 (ST 6,7,8,9,10,11,13,15),

d = 3 (ST 25, 26),

d = 4 (ST 29).

These MUBs are unique [BSTW07] (Theorem 6.5), and they can be obtained from an
orthogonal decomposition of the special linear Lie algebra sld(C).

Example 5.4 (Real MUBs) For the real Shephard-Todd group ST 28, we obtain a set of
three MUBs for R

4. This gives a 12-vector spherical (2, 2)-design for R
4. This appears

to be the maximal number of real MUBs possible [BSTW05]. Further, were such a design
to come from a tight spherical 5-design, then it would have 10 points (there is no such
design), and so we suspect that this spherical (2, 2)-design is optimal.

Example 5.5 (MUB like configurations) We will say that a (t, t)-design is MUB like
if it has two angles, one of which is zero, but it is not a set of MUBs. We have the
following MUB like spherical (t, t)-designs

40 vector (3, 3)-design for C4 (ST 32, angles 1√
3
, 0),

45 vector (2, 2)-design for C5 (ST 33, angles 1
2
, 0),

126 vector (3, 3)-design for C6 (ST 34, angles 1
2
, 0),

36 vector (2, 2)-design for R6 (ST 35, angles 1
2
, 0),

63 vector (2, 2)-design for R7 (ST 36, angles 1
2
, 0),

120 vector (2, 2)-design for R8 (ST 37, angles 1
2
, 0).

We also have the following two angle (t, t)-designs

10 vector (2, 2)-design for R3 (ST 23, angles
√
5
3
, 1
3
),

40 vector (2, 2)-design for C5 (ST 33, angles 1
3
, 1√

3
),

27 vector (2, 2)-design for R6 (ST 35, angles 1
4
, 1
2
).
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Table 3: The spherical (t, t)-designs of n vectors for Fd given by the highly symmetric
tight frames for the Shephard-Todd listing of the primitive complex reflection groups.
n = number of lines, m = orbit size (number of vectors), s = number of angles.

ST order d t n s F symmetry group m group frame comments

4 24 2 2 4 1 C 〈12, 3〉 8 〈8, 4〉 SIC

5 72 2 4 1 C 〈12, 3〉 24 〈24, 3〉, 〈24, 11〉 SIC

6 48 2 4 1 C 〈12, 3〉 16 〈16, 13〉 SIC

3 6 2 C 〈24, 12〉 24 〈24, 3〉 max MUBs

7 144 2 4 1 C 〈12, 3〉 48 〈48, 47〉, 〈48, 33〉 SIC

3 6 2 C 〈24, 12〉 72 〈72, 25〉 max MUBs

8 96 3 6 2 C 〈24, 12〉 24 〈24, 3〉, 〈24, 1〉 max MUBs

9 192 3 6 2 C 〈24, 12〉 48 〈48, 4〉, 〈48, 28〉, 〈48, 29〉 max MUBs

3 12 4 C 〈24, 12〉 96 〈96, 67〉, 〈96, 74〉
10 288 3 6 2 C 〈24, 12〉 72 〈72, 12〉, 〈72, 25〉 max MUBs

3 8 3 C 〈24, 12〉 96 〈96, 54〉, 〈96, 67〉
11 576 3 6 2 C 〈24, 12〉 144 〈144, 69〉, 〈144, 121〉, 〈144, 122〉 max MUBs

3 8 3 C 〈24, 12〉 192 〈192, 876〉, 〈192, 963〉
3 12 4 C 〈24, 12〉 288 〈288, 400〉, 〈288, 638〉

12 48 3 12 4 C 〈24, 12〉 24 〈24, 3〉
13 96 3 12 4 C 〈24, 12〉 48 〈48, 28〉, 〈48, 29〉

3 6 2 C 〈24, 12〉 48 〈48, 28〉, 〈48, 33〉 max MUBs

14 144 3 8 3 C 〈24, 12〉 48 〈48, 26〉, 〈48, 29〉
3 12 4 C 〈24, 12〉 72 〈72, 25〉

15 288 3 8 3 C 〈24, 12〉 96 〈96, 182〉, 〈96, 192〉
3 12 4 C 〈24, 12〉 144 〈144, 121〉, 〈144, 122〉
3 6 2 C 〈24, 12〉 144 〈144, 121〉, 〈144, 157〉 max MUBs

16 600 5 12 3 C 〈60, 5〉 120 〈120, 5〉, 〈120, 15〉 Example 4.2

17 1200 5 12 3 C 〈60, 5〉 240 〈240, 93〉, 〈240, 154〉 Example 4.2

5 30 8 C 〈60, 5〉 600 〈600, 54〉
18 1800 5 12 3 C 〈60, 5〉 360 〈360, 51〉, 〈360, 89〉 Example 4.2

5 20 5 C 〈60, 5〉 600 〈600, 54〉
19 3600 5 12 3 C 〈60, 5〉 720 〈720, 420〉, 〈720, 708〉 Example 4.2

5 20 5 C 〈60, 5〉 1200 〈1200, 483〉
5 30 8 C 〈60, 5〉 1800 〈1800, 328〉

20 360 5 20 5 C 〈60, 5〉 120 〈120, 5〉
21 720 5 20 5 C 〈60, 5〉 240 〈240, 93〉

5 30 8 C 〈60, 5〉 360 〈360, 51〉
22 240 5 30 8 C 〈60, 5〉 120 〈120, 5〉
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Table 4: The spherical (t, t)-designs of n vectors for Fd given by the highly symmetric
tight frames for the Shephard-Todd listing of the primitive complex reflection groups.
n = number of lines, m = orbit size (number of vectors), s = number of angles.

ST order d t n s F symmetry group m group frame comments

23 120 3 2 6 1 R 〈60, 5〉 12 〈12, 3〉 equiangular

2 10 2 R 〈60, 5〉 20 − two angles

2 15 4 R 〈60, 5〉 30 −
24 336 2 21 3 C 〈168, 42〉 42 〈42, 2〉

2 28 4 C 〈168, 42〉 56 −
25 648 2 9 1 C 〈216, 153〉 27 〈27, 3〉, 〈27, 4〉 SIC

2 12 2 C 〈216, 153〉 72 − max MUBS

26 1296 2 9 1 C 〈216, 153〉 54 〈54, 8〉, 〈54, 10〉, 〈54, 11〉 SIC

2 12 2 C 〈216, 153〉 72 − max MUBS

2 36 4 C 〈216, 153〉 216 〈216, 88〉
27 2160 3 36 4 C 〈360, 118〉 216 −

3 45 5 C 〈360, 118〉 270 −
3 60 8 C 〈360, 118〉 360 −

28 1152 4 2 12 2 R 〈576, 8654〉 24 〈24, 1〉〈24, 3〉, 〈24, 11〉 real MUBs

2 48 6 R 〈576, 8654〉 96 〈96, 67〉, 〈96, 201〉, 〈96, 204〉
29 7680 2 20 2 C 〈1920, ·〉 80 〈80, 30〉 max MUBs

2 40 3 C 160 −
2 80 5 C 320 〈320, 1581〉, 〈320, 1586〉
2 160 10 C 640 −

30 14400 5 60 4 R 〈7200, ·〉 120 〈120, 5〉, 〈120, 15〉
5 300 15 R 600 〈600, 54〉
5 360 18 R 720 −
5 600 32 R 1200 −

31 46080 3 60 3 C 〈11520, ·〉 240 −
3 480 9 C 1920 〈1920, ·〉
3 960 16 C 3840 −

32 155520 3 40 2 C 〈25920, ·〉 240 − MUB like

3 360 6 C 2160 −
33 51840 5 2 40 2 C 〈25920, ·〉 80 − two angles

2 45 2 C 270 − MUB like

2 216 5 C 432 −
2 540 7 C 1080 −
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Table 5: The spherical (t, t)-designs of n vectors for Fd given by the highly symmetric
tight frames for the Shephard-Todd listing of the primitive complex reflection groups.
n = number of lines, m = orbit size (number of vectors), s = number of angles.

ST order d t n s F symmetry group m group frame comments

34† 39191040 6 3 126 2 C 〈6531840, ·〉 756 − MUB like

4 672 4 C 4032 −
...

...
...

...

35 51840 2 27 2 R 〈51840, ·〉 27 〈27, 3〉, 〈27, 4〉 two angles

2 36 2 R 72 − MUB like

2 216 6 R 216 〈216, 86〉, 〈216, 88〉
2 360 6 R 720 −

36† 2903040 7 2 28 1 R 〈1451520, ·〉 56 〈56, 11〉 equiangular

2 63 2 R 126 − MUB like

2 288 3 R 576 −
2 378 4 R 765 −
2 1008 6 R 2016 −
2 2016 7 R 4032 −
...

...
...

...

37† 696729600 8 3 120 2 R 〈348364800, ·〉 240 〈240, 89〉 MUB like

3 1080 4 R 2160 −
3 3360 6 R 6720 −
...

...
...

...

†
For the Shephard-Todd groups 34, 36 and 37, there are other maximal parabolic subgroups which generate highly

symmetric tight frames (see Table 6), but the number of lines n is too high to determine any properties about them.
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Table 6: Addendum to Table 2 of [BW13]. The highly symmetric tight frames of n
vectors in C

d given by the reflection groups with Shephard-Todd numbers 34, 36, 37.

ST d order m† b s group frame

34 6 39191040 756 756 2 -

4032 95256 4 -

20412

54432

30240

272160

163296

36 7 2903040 56 98 1 -

126 392 2 -

576 14112 3 -

756 88200 4 -

2016 1707552 6 -

4032 5889312 7 -

10080

37 8 696729600 240 576 2 -

2160 217800 4 -

6720 5889312 6 -

17280

60480

69120

241920

483840

†
In Table 2 of [BW13] m is labelled as n.

6 Conclusion

We have shown how numerical techniques can be used to find putatively optimal spherical
(t, t)-designs, from which explicit spherical designs can then be found. This process led to
many known “tight” spherical designs, SICs and MUBs, as well as some new spherical
(t, t)-designs with a high degree of symmetry, which we believe to be optimal. Some
further insights into the geometry of the algebraic variety of optimal (t, t)-designs were
obtained, e.g., the optimal spherical (5, 5)-designs in C

2 seem to be a lower dimensional
subvariety of the optimal (4, 4)-designs. We also investigated the spherical (t, t)-designs
given by the class of highly symmetric tight frames for a complex reflection group. This
gave unified description of many of the putatively optimal spherical (t, t)-designs, as well
several MUB like designs with a small number of vectors.
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7 Appendix

Here we calculate the Hessian of the function f : Fd×n → R of (2.8) whose critical points
with value zero are the spherical (t, t)-designs.

We write each entry of V = [v1, . . . , vn] = [vjk] ∈ F
d×n in the Cartesian form

vjk =

{

xjk + iyjk, F = C;

xjk, F = R,

and let
X = {xαβ} ∪ {yαβ} for F = C, X = {xαβ} for F = R.

We will refer to X as the real variables of a function f : Fd×n → R : V 7→ f(V ), and
define Hf the Hessian of f to be the Hessian of X 7→ f(V ). Thus the Hessian of f at V
is the X ×X real symmetric matrix with (r, s)–entry given by

Hf (V )rs =
∂2f

∂r∂s
(V ), r, s ∈ X.

Proposition 7.1 Let f : Fd×n → R be the polynomial f := p− ct(F
d)g2, where p and g

are given by (2.7). Then the (r, s)-entry of the Hessian matrix of f is given by

∂2f

∂r∂s
=

∂2p

∂r∂s
+ 2ct(F

d)
{

g
∂2g

∂r∂s
+

∂g

∂r

∂g

∂s

}

, r, s ∈ X,

where
∂g

∂xαβ

(V ) + i
∂g

∂yαβ
(V ) = 2t‖vβ‖2(t−1)vαβ,

∂2g

∂xab∂xαβ

(V ) + i
∂2g

∂yab∂xαβ

(V ) = t‖vβ‖2(t−1)δaαδbβ + 2t(t− 1)‖vβ‖2(t−2)ℜ(vαβ)δbβvaβ,

∂2g

∂xab∂yαβ
(V ) + i

∂2g

∂yab∂yαβ
(V ) = it‖vβ‖2(t−1)δaαδbβ + 2t(t− 1)‖vβ‖2(t−2) Im(vαβ)δbβvaβ,

∂2p

∂xab∂xαβ

(V ) + i
∂2p

∂yab∂xαβ

(V )

= 2t
∑

j|〈vj, vβ〉|2(t−1)
(

δbjvaβvαj + 〈vj, vβ〉δaαδbj + δbβvajvαj
)

+ 4t(t− 1)
∑

jℜ
(

〈vβ, vj〉vαj
)

|〈vj, vβ〉|2(t−2)
(

〈vj, vβ〉δbjvaβ + δbβvaj〈vβ, vj〉
)

,

∂2p

∂xab∂yαβ
(V ) + i

∂2p

∂yab∂yαβ
(V )

= 2it
∑

j|〈vj, vβ〉|2(t−1)
(

〈vj, vβ〉δaαδbj + δbβvajvαj − δbjvaβvαj
)

+ 4t(t− 1)
∑

j Im
(

〈vβ, vj〉vαj
)

|〈vj, vβ〉|2(t−2)
(

〈vj, vβ〉δbjvaβ + δbβvaj〈vβ, vj〉
)

.
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Proof: The first equation follows from the product rule, i.e.,

∂2

∂r∂s
(g2) =

∂

∂r

(

2g
∂g

∂s

)

= 2g
∂2g

∂r∂s
+ 2

∂g

∂r

∂g

∂s
.

To find the entries of the Hessians of p and g, we use the Wirtinger calculus:

∂

∂z
:=

1

2

( ∂

∂x
+ i

∂

∂y

)

,
∂

∂z
(z) = 0,

∂

∂z
(z) = 1,

∂h

∂x
= 2ℜ

(∂h

∂z

)

,
∂h

∂y
= 2 Im

(∂h

∂z

)

(for h real-valued).

We have

∂g

∂vαβ
(V ) =

∂

∂vαβ

(

∑

ℓ

(

‖vℓ‖2
)t
)

=
∑

ℓ

t‖vℓ‖2(t−1) ∂

∂vαβ

∑

j

vjℓvjℓ = t‖vβ‖2(t−1)vαβ.

Since
∂

∂vαβ
〈vj, vk〉 =

∂

∂vαβ

∑

s

vsjvsk = δkβvαj,

we have

∂p

∂vαβ
(V ) =

∑

j

∑

k

t|〈vj, vk〉|2(t−1) ∂

∂vαβ

(

〈vj, vk〉〈vk, vj〉
)

=
∑

j

∑

k

t|〈vj, vk〉|2(t−1)
(

δkβvαj〈vk, vj〉+ 〈vj, vk〉δjβvαk
)

=
∑

j

t|〈vj, vβ〉|2(t−1)vαj〈vβ, vj〉+
∑

k

t|〈vβ, vk〉|2(t−1)〈vβ, vk〉vαk

= 2t
∑

j

|〈vj, vβ〉|2(t−1)〈vβ, vj〉vαj.

We now consider the second partials. Since

∂g

∂xαβ

(V ) = t‖vβ‖2(t−1)(vαβ + vαβ),
∂g

∂yαβ
(V ) = t‖vβ‖2(t−1)i(vαβ − vαβ),

we have

∂2g

∂vab∂xαβ

(V ) = t‖vβ‖2(t−1)δaαδbβ + t(t− 1)‖vβ‖2(t−2)(vαβ + vαβ)δbβvaβ,

∂2g

∂vab∂yαβ
(V ) = it‖vβ‖2(t−1)δaαδbβ + t(t− 1)‖vβ‖2(t−2)i(vαβ − vαβ)δbβvaβ.

Since
∂p

∂xαβ

(V ) = 2t
∑

j

|〈vj, vβ〉|2(t−1)(〈vβ, vj〉vαj + 〈vβ, vj〉vαj),
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we have

∂2p

∂vab∂xαβ

(V ) = 2t
∑

j

|〈vj, vβ〉|2(t−1) ∂

∂vab

(

〈vβ, vj〉vαj + 〈vj, vβ〉vαj
)

+ 2t
∑

j

2ℜ
(

〈vβ, vj〉vαj
)

(t− 1)|〈vj, vβ〉|2(t−2) ∂

∂vab

(

〈vj, vβ〉〈vβ, vj〉
)

= 2t
∑

j

|〈vj, vβ〉|2(t−1)
(

δbjvaβvαj + 〈vj, vβ〉δaαδbj + δbβvajvαj
)

+ 4t(t− 1)
∑

j

ℜ
(

〈vβ, vj〉vαj
)

|〈vj, vβ〉|2(t−2)
(

〈vj, vβ〉δbjvaβ + δbβvaj〈vβ, vj〉
)

.

Similarly, since

∂p

∂yαβ
(V ) = 2t

∑

j

|〈vj, vβ〉|2(t−1)i(〈vβ, vj〉vαj − 〈vβ, vj〉vαj),

we have

∂2p

∂vab∂yαβ
(V ) = 2it

∑

j

|〈vj, vβ〉|2(t−1)
(

〈vj, vβ〉δaαδbj + δbβvajvαj − δbjvaβvαj
)

+ 4t(t− 1)
∑

j

Im
(

vαj〈vβ, vj〉
)

|〈vj, vβ〉|2(t−2)
(

〈vj, vβ〉δbjvaβ + δbβvaj〈vβ, vj〉
)

.
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