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For t ∈ {1, 2, . . .} fixed, a natural class of spherical designs is 
given by the vectors v1, . . . , vn in Fd = Rd, Cd (not all zero) 
which give equality in the bound

n∑
j=1

n∑
k=1

|〈vj , vk〉|2t ≥ ct(Fd)
( n∑
�=1

‖v�‖2t
)2

,

where ct(Fd) is a known constant. These spherical (t, t)-
designs integrate a space of homogeneous polynomials of 
degree 2t, and are variously known as real spherical half-
designs of order 2t, complex (projective) t-designs, complex 
spherical semi-designs, and as tight frames when t = 1. Little 
is known about the minimal number of vectors n for such a 
design.
Here we report on the results of a numerical search for (t, t)-
designs with a minimal number of vectors. In some cases, we 
obtain the designs explicitly as an orbit of a unitary action 
of a finite group on the sphere. We also list all the currently 
known (t, t)-designs. It is shown that many of these belong 
to a family of designs which we construct from the complex 
reflection groups. This family includes several new spherical 
(t, t)-designs with a small number of vectors.
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1. Introduction

Let S = SF be the unit sphere in Fd, where F = R or C, and σ be the normalised 
surface area measure on S. A “spherical design” is a sequence of points v1, . . . , vn in S
for which the integration (cubature) rule

∫
S

p(x) dσ(x) = 1
n

n∑
j=1

p(vj),

holds for all p in some finite dimensional space of polynomials P . For example, when 
F = R and P is the polynomials of degree ≤ t one has a (real) spherical t-design. The 
existence of a spherical design for n sufficiently large was proved in [29].

There are various equivalent conditions to being a spherical design [15], [3]. These in-
clude being an integration rule for a subspace of harmonic polynomials, and a variational 
characterisation. In this paper, we consider (spherical) (t, t)-designs which are defined 
to be points (vj) in Fd = Rd, Cd that give equality in the inequality

n∑
j=1

n∑
k=1

|〈vj , vk〉|2t ≥ ct(Fd)
( n∑
�=1

‖v�‖2t
)2

, (1.1)

where

ct(Cd) := 1(
d+t−1

t

) , ct(Rd) := 1 · 3 · 5 · · · (2t− 1)
d(d + 2) · · · (d + 2(t− 1)) . (1.2)

We observe that ct(Rd) ≥ ct(Cd), with strict inequality when t, d > 1. These designs are 
determined by the space of polynomials Fd → F given by

Π◦
t,t(Fd) = Hom(t, t) := span{z �→ zαzβ : |α| = |β| = t}, (1.3)

which are homogeneous of degree t in z and in z (z ∈ Fd). Equivalently

Π◦
t,t(Fd) = span{z �→ |〈z, v〉|2t : v ∈ Fd}. (1.4)

We note that Π◦
t,t(Rd) = Π◦

2t(Rd), where Π◦
k(Rd) is the space of homogeneous polyno-

mials Rd → R of degree k. For unit vectors, these designs are effectively the t-designs 
in projective spaces introduced by [17]. The (t, t)-designs for Rd are known as spherical 
half-designs of order 2t [21]. The (t, t)-designs for Cd are of interest because of their ap-
plications to quantum information theory [16], [27], [35]. They are also known as complex
(projective) t-designs [27] and as complex spherical semi-designs [22].

The basic theory of spherical (t, t)-designs is developed in [33]. When the vectors 
v1, . . . , vn in Fd giving equality in (1.1) are not all zero, then one has the weighted 
integration rule
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∫
S

p(x) dσ(x) = 1∑
k ‖vk‖2t

n∑
j=1

p(vj) =
n∑

j=1
vj �=0

‖vj‖2t∑
k ‖vk‖2t p(

vj
‖vj‖

), ∀p ∈ P = Π◦
t,t(Fd),

and we will call (vj) a weighted (t, t)-design, with weights

wj := ‖vj‖2t∑
k ‖vk‖2t ≥ 0, w1 + w2 + · · · + wn = 1.

By its definition, a (t, t)-design (vj) is projectively unitarily invariant, i.e., (cjUvj) is also 
a (t, t)-design when cj ∈ F , |cj | = 1, and U is unitary. A real spherical t-design has this 
property if and only if it is centrally symmetric, i.e., of the form (±vj).

For t fixed, the set of spherical (t, t)-designs V = [v1, . . . , vn] ∈ Fd×n is the algebraic 
variety given by

n∑
j=1

n∑
k=1

|〈vj , vk〉|2t = ct(Fd)
( n∑
�=1

‖v�‖2t
)2

. (1.5)

This variety has been studied in the case t = 1 (tight frames) [11]. The purpose of 
this paper is to explore the algebraic variety of spherical (t, t)-designs for the smallest 
value of n for which it is nontrivial, i.e., a (t, t)-design of n vectors for Fd exists. This 
is done by using the variational characterisation of equality in (1.1) to move towards a 
nonzero point on the variety (should there be one), for small values of t and d. From these 
numerical results the smallest value of n is then inferred, and any group orbit structure 
of the (t, t)-design is identified (using recently developed techniques of [12]). In a number 
of cases, these putatively optimal (t, t)-designs are then used to find an analytic form of 
what we believe to be a (t, t)-design with the minimal number of vectors.

We also give the results of a search through the highly symmetric tight frames given 
by the complex reflection groups [10] for (t, t)-designs. We find that these include some 
of the sporadic examples of (t, t)-designs known. This allows us to give a neat listing of 
all the known spherical (t, t)-designs (with a small number of vectors).

We finish this introduction by giving some examples of spherical (t, t)-designs. In 
particular, SICs and MUBs, which are of interest in quantum information theory (where 
they are viewed as rank one projections giving quantum measurements).

Example 1.1. A real spherical 2t-design for Rd is a (t, t)-design for Rd, i.e., a spheri-
cal half-design of order 2t ([19] give some putatively optimal examples). Conversely, a 
centrally symmetric (t, t)-design for Rd is a real spherical 2t-design for Rd.

Example 1.2. A Euclidean t-design (X, w) for points X = ∪jXj on spheres Sj in Rd of 
radius rj and weights w : X → R+ is a spherical design satisfying

∑
j

w(Xj)
|Sj |

∫
f dσj =

∑
x∈X

w(x)f(x), w(Xj) :=
∑
x∈Xj

w(x),

Sj
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for all polynomials f of degree ≤ t. We note that both the integral approximated, and 
the approximation depend on the weights. Taking f ∈ Π◦

m(Rd), i.e., f(x) = ‖x‖mf( x
‖x‖ ), 

x �= 0, gives

∑
j

w(Xj)
∫
S

f(rjx) dσ(x) =
∑
j

w(Xj)
∫
S

rmj f(x) dσ(x) =
∑
x∈X

w(x)‖x‖mf
( x

‖x‖
)
,

which is equivalent to
∫
S

f(x) dσ(x) =
∑
x∈X

w(x)‖x‖m∑
y w(y)‖y‖m f

( x

‖x‖
)
. (1.6)

By taking m = 2t, we see that a Euclidean 2t-design gives a (t, t)-design X∗ = (x∗)x∈X

for Rd, where

x∗ := w(x) 1
2tx, x ∈ X. (1.7)

Conversely, for a spherical (t, t)-design for Rd, one can associate a constant weight 
“Euclidean design” with the spheres taken to be those spheres on which the points lie. 
This satisfies (1.6) for m = 2t, and by making it centrally symmetric (if need be) then 
this Euclidean design integrates all homogeneous polynomials of odd degree. Therefore to 
satisfy the definition of being a Euclidean design, it must also satisfy (1.6) for m = 2r, 1 ≤
r < t, i.e., be a spherical (r, r)-design. This does not follow in general (cf Example 1.7), 
and so bounds on the number of points in a Euclidean design to not apply. A similar 
variational condition for a weighted set of points in Rd to be a Euclidean design is given 
in [25] (see the discussion after Theorem 1). Nevertheless, some of the spherical (t, t)-
designs that we construct do correspond to constant weight Euclidean 2t-designs (see 
Example 3.8).

Example 1.3. The (1, 1)-designs (vj) for Fd (with vectors of any lengths) are precisely 
the finite tight frames [32], [34], i.e., they satisfy the “redundant orthogonal expansion”

x = d∑n
�=1 ‖v�‖2

n∑
j=1

〈x, vj〉vj , ∀x ∈ Fd.

Thus the unit-norm (unweighted) (1, 1)-designs with the minimal number of vectors are 
the orthonormal bases.

Example 1.4. Three equally spaced unit vectors in R2 are a (1, 1)-design for R2 and C2. 
They are a (2, 2)-design for R2, but not for C2.

Example 1.5. A SIC (or symmetric informationally complete positive operator valued 
measure) for Cd, i.e., a set of d2 unit vectors (vj) in Cd with
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|〈vj , vk〉|2 = 1
d + 1 , j �= k,

is a (2, 2)-design of d2 unit vectors for Cd, with the minimum number of vectors. The 
existence of a SIC for every dimension d is a problem of great interest [35], [28].

Example 1.6. A set of d + 1 MUBs (mutually unbiased bases) for Cd, i.e., orthogonal 
bases with

|〈f, g〉| = 1√
d
, for f and g in different bases,

gives a (2, 2)-design of d(d + 1) unit vectors for Cd [23]. This is called a maximal set of 
MUBs, since there cannot be more than d + 1 MUBs for Cd.

Example 1.7. In [33], it is shown that if (vj)nj=1 is a spherical (t, t)-design for Fd, then 
(‖vj‖t/r−1vj) is a spherical (r, r)-design for Fd, 1 ≤ r ≤ t, i.e.,

n∑
j=1

n∑
k=1

|〈vj , vk〉|2r‖vj‖2(t−r)‖vk‖2(t−r) = cr(Fd)
( n∑
�=1

‖v�‖2t
)2

. (1.8)

From the Example 1.7, it follows that the minimal number of vectors in a (t, t)-design 
for Fd is an increasing function of t. We now investigate this minimal number.

For spherical designs X with unit vectors, there are Fisher type lower bounds for the 
number of lines in a projective t-design, which depend on the cardinality of the angle 
set A = {|〈x, y〉| : x, y ∈ X, x �= y}, that apply. Those projective t-designs meeting these 
bounds are said to be tight. These bounds are rarely met, e.g., one must have t ≤ 5, 
t �= 4, and there are only two tight 5-designs [5], [18]. A universally applicable lower 
bound (see [34] Exercise 6.22, [6]) is that

n ≥
(
t + d− 1
d− 1

)
,

where n is the number of vectors in a spherical (t, t)-design for Fd.

2. The numerical construction of (t, t)-designs

Let V = [vαβ ] = [v1, . . . , vn], and p, g : Fd×n → R be the homogeneous polynomials 
given by

p(V ) :=
∑
j

∑
k

|〈vj , vk〉|2t, g(V ) :=
∑
�

‖v�‖2t. (2.9)

Then the spherical (t, t)-designs of n vectors for Fd (should they exist) are the nontrivial 
zeros of the nonnegative homogeneous polynomial
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f(V ) := p(V ) − ct(Fd)g(V )2 (2.10)

of degree 4t in the real (and imaginary) parts of entries of V = [vαβ ] ∈ Fd×n. The 
minimisers of p(V ) ≥ 0 with g(V ) fixed, e.g., V = [vj ] a unit norm sequence, satisfy 
the Lagrange equations: ∇p(V ) = λ∇g(V ). Moreover, the ones that give spherical (t, t)-
designs are minima of f , and so satisfy ∇f(V ) = 0, i.e.,

∇p(V ) = 2ct(Fd)g(V )∇g(V ). (2.11)

Thus we obtain the following condition for the existence of spherical (t, t)-designs.

Theorem 2.1. Let t ≥ 1 and f : Fd×n → R be the nonnegative function given by

f([v1, . . . , vn]) :=
n∑

j=1

n∑
k=1

|〈vj , vk〉|2t − ct(Fd)
( n∑
�=1

‖v�‖2t)2.
Then the critical points of f satisfy∑

j

|〈vj , vβ〉|2(t−1)〈vβ , vj〉vj = ct(Fd)
(∑

�

‖v�‖2t
)
‖vβ‖2(t−1)vβ , 1 ≤ β ≤ n.

In particular, for t = 1, the nonzero critical points of f are the tight frames for Fd, which 
are all global minima.

Proof. The critical points of f are given by (2.11), where ∇f is the gradient of f
viewed as a function of real variables. For f : Cd → R with f(x1 + iy1, . . . , xd + iyd)
a differentiable function of the real variables x1, y1, . . . xd, yd ∈ R, define a gradient 
∇f = 2(∂1f, . . . , ∂df) : Cd → Cd by

∇f :=
( ∂

∂xj
f(x1 + iy1, . . . , xd + iyd) + i

∂

∂yj
f(x1 + iy1, . . . , xd + iyd)

)d
j=1. (2.12)

Then for both Rd and Cd, we have

∇(‖ · ‖2)(a) = 2a, ∇(|〈·, b〉|2)(a) = 2〈a, b〉b. (2.13)

Using these, a calculation shows that the β-columns of ∇p(V ) and ∇g(V ) are

4t
∑
j

|〈vj , vβ〉|2(t−1)〈vβ , vj〉vj , 2t‖vβ‖2(t−1)vβ .

Substituting this into (2.11) gives the desired condition.
For t = 1, the V �= 0 which are critical points of f(V ) satisfy

∑
〈vβ , vj〉vj = 1

d

(∑
‖v�‖2

)
vβ , 1 ≤ β ≤ n,
j �
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and so, by linearity, (vj) is tight frame for H := span{vβ}1≤β≤n ⊂ Fd, with frame bound 
A = 1

d

∑
� ‖v�‖2, and dim(H) = d, so that (vj) is a tight frame for Fd. Thus the nonzero 

critical points of f(V ) are precisely the tight frames for Fd. �
Spherical (t, t)-designs can be found numerically, by minimising f(V ), with g(V ) fixed. 

This can be done by an iterative algorithm which starts at a random V0, and chooses 
Vk+1 = Vk +Wk, where Wk is such that f(Vk+1) = f(Vk +Wk) < f(Vk). In [7], random 
directions Wk (of an appropriate size) were considered. Here we take Wk in the direction 
of maximal decrease (which is more effective close to a minimum). The maximal decrease 
of f at V is in the direction W = −∇f(V ), where

(∇f(V ))αβ = 4t
∑
j

|〈vj , vβ〉|2(t−1)〈vβ , vj〉vαj − 4tct(Fd)
(∑

�

‖v�‖2t)‖vβ‖2(t−1)vαβ .

It is also possible to calculate (numerically) the Hessian (second derivative) of f and p
at V to investigate the nature of the critical points of f (these are all minima for t = 1). 
The formulas for these Hessians are given in the appendix.

We present the results of our numerical construction of (t, t)-designs in the next two 
sections (the real and complex cases), together with some explicit constructions moti-
vated by them. We are only aware of two other numerical searches for putatively optimal
spherical designs: Hardin and Sloane’s list of real spherical t-designs in R3 [19] (for 
t ≤ 12) and Scott and Grassl’s list of SICs (complex spherical (2, 2)-designs of d2 vectors 
for Cd) [28]. We emphasize that the existence of a “numerical” spherical design does not 
prove that such a design exists (though it may lead to an exact construction), nor does 
our failure to find a numerical spherical design prove that one cannot exist.

3. Real spherical (t, t)-designs (spherical half-designs)

In Table 1 below, we summarise our numerical results for real spherical (t, t)-designs, 
i.e., spherical half-designs of order 2t. This is followed by the other known real spherical 
(t, t)-designs, including those obtained in §5 (see Tables 4, 5), to give a complete list. We 
use grey when an analytic form of a putatively optimal design is not known, and give 
details of those that are known after the table (ST denotes a Shephard Todd group).

With just one exception (Example 3.4), all the currently known optimal spherical 
half-designs appear in the following way.

Example 3.1. (Tight spherical designs) A spherical (2t +1)-design of m vectors for Rd is 
said to be tight (not to be confused with a tight frame) if it gives equality in the lower 
bound

m ≥ 2
(
d− 1 + t

)

t
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Table 1
The minimum numbers nw and ne of vectors in a weighted and in a equal-norm spherical 
(t, t)-design for Rd (spherical half-design of order 2t) as calculated numerically.

t d nw ne Comments
1 d d d orthonormal bases in Rd (Example 1.3)
t 2 t + 1 t + 1 equally spaced lines in R2 (Example 3.2)
2 3 6 6 equiangular lines in R3 (Example 3.3)
2 4 11 12 no structure §5, ST 28, Table 4
2 5 16 20 Example 3.5 no structure
2 6 22 24 group structure work in progress
2 7 28 28 equiangular lines in R7 (Example 3.3)
2 8 45 >45 no structure
3 3 11 16 no structure possible group structure
3 4 23 >23 group structure
3 5 41 >41 group structure
4 3 16 25 Example 3.6 no structure
4 4 43 >43 work in progress
5 3 24 35 no structure no structure

Other known real (t, t)-designs with a small number of vectors
2 6 27 §5, ST 35, Table 5

Other known optimal real (t, t)-designs
2 23 276 equiangular lines in R23 (Example 3.3)
3 8 120 §5, ST 37, Table 5 (due to [21])
3 23 2300 tight spherical design
5 4 60 60 §5, ST 30, Table 4 (Example 3.4)
5 24 98280 tight spherical design
t d

(d−1+t
t

)
tight spherical (2t + 1)-designs

of [15]. A tight spherical (2t + 1)-design is necessarily centrally symmetric, i.e., of the 
form (±vj) with m = 2n, so that (vj) is a spherical half-design of order 2t. This is a 1-1
correspondence [21], and so each tight spherical (2t + 1)-design of 2n vectors gives rise 
to an optimal spherical (t, t)-design of n =

(
d−1+t

t

)
vectors for Rd [20].

Optimal spherical half-designs which come from tight spherical designs in this way 
include orthonormal bases, equally spaced lines, and maximal sets of equiangular lines.

Example 3.2. (Equally spaced lines) The n = t + 1 equally spaced lines in R2 given by 
the vectors

(vj) =
{(

cos π
n
j, sin π

n
j
)

: j = 0, . . . , n− 1
}

are a spherical half-design of order 2t, i.e., a (t, t)-design.

Example 3.3. (Maximal lines) The unit vectors (vj) in Rd (or the lines that they give) 
are said to be equiangular if they have equal cross-correlation, i.e.,

|〈vj , vk〉| = α, j �= k, for some angle α > 0.

The number n of equiangular lines in Rd satisfies the absolute bound n ≤ 1
2d(d + 1). 

When this bound is attained, the set of lines has angle 1√
d+2 , and hence is a (2, 2)-design, 

by the calculation
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n · 1 + (n2 − n)
( 1√

d + 2

)4
= 3

4
d(d + 1)2

d + 2 = 1 · 3
d(d + 2)n

2.

Such lines can exist only when d = 2, 3 or d + 2 is the square of an odd integer. Those 
that appear in Table 1 for d = 2, 3, 7, 23 are well known. (see §5).

The only known optimal spherical-half design which is not given by a tight spherical 
design is the following.

Example 3.4. There is a 120-point spherical 11-design for R4 given by the vertices of 
the regular four-dimensional polyhedron with the Schläfli symbol {3, 3, 5} [1]. This was 
proved to be optimal in the class of weighted spherical 11-designs [1], and unique (up 
to unitary equivalence) in the class of (unweighted) spherical 11-designs [4]. The corre-
sponding 60-vector spherical half-design for R4 of order 10 is therefore optimal in the 
class of weighted half-designs for R4 of order 10 (weighted (5, 5)-designs). This spherical 
half-design is a highly symmetric tight frame (see Table 4, ST 30). If it had come from 
a tight spherical 11-design, then it would have had 56 vectors.

The 21-point spherical half-design for R6 of order 4 given by a highly symmetric tight 
frame (see Table 5, ST 35) is a good candidate for a second optimal spherical half-design, 
since if it corresponded to a tight spherical 5-design, then it would have 21 points.

Motivated by our results, [20] shows that the following spherical half-designs exist.

Example 3.5. There is a weighted spherical (2, 2)-design of 16 vectors for R5. This consists 
of six equiangular lines in R5 at an angle of 15 (the vertices of a simplex) given by vectors of 
length (20

21 )1/4, and ten equiangular lines in R5 at an angle of 13 given by vectors of length 
(36
35 )1/4, where the angle between lines from different families is 1√

5 . The corresponding 
normalised weights are

16
( 20

21
)

6
( 20

21
)

+ 10
( 36

35
) = 20

21 ≈ 0.9523,
16

( 36
35
)

6
( 20

21
)

+ 10
( 36

35
) = 36

35 ≈ 1.0286.

Example 3.6. There is a weighted spherical (4, 4)-design of 16 vectors for R3. This can 
be given explicitly by lines given by the antipodal vertices of the pentakis dodecahedron 
(a Catalan solid) as follows (the six vertices/lines of the icosahedron are the first six 
columns)

[vj ] := 1√
3

⎛
⎜⎝0 1 τ 0 −1 τ 1 1 1 1 0 0 1

τ
1
τ τ −τ

τ 0 1 τ 0 −1 1 1 −1 −1 1
τ

1
τ τ −τ 0 0

1 τ 0 −1 τ 0 1 −1 1 −1 τ −τ 0 0 1
τ

1
τ

⎞
⎟⎠

×
(
αΛ1

Λ2

)
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τ := 1 +
√

5
2 (the golden ratio), α :=

√
3

1 + τ2 , Λ1 :=
(20
21

) 1
8 I6, Λ2 :=

(36
35

) 1
8 I10.

Here the weights are the same as in Example 3.5, i.e., 20
21 ≈ 0.9523 and 36

35 ≈ 1.0286. 
Compare this with Hardin and Sloan [19], who give evidence for an 8-design for n =
36, 40, 42, ≥ 44, and of a 9-design for n = 48, 50, 52, ≥ 54. By taking this (4, 4)-design 
and the negatives of its vectors, one has a weighted 9-design of 32 points.

The putatively optimal 16-vector weighted spherical (t, t)-designs of Examples 3.5 and 
3.6 are the orbit of two vectors of close to equal norm (under the projective symmetry 
group of [14]). In both cases, the number of vectors in an optimal (unweighted) spherical 
(t, t)-design given by a tight spherical design would be 15 =

(5−1+2
2

)
=

(3−1+4
4

)
. This 

suggests that these weighted spherical half-designs are indeed optimal, and that in certain 
situations weighted designs are quite natural.

The only other numerical search for putatively optimal real designs is that of [19] for 
spherical t-designs in R3. We now compare this with our results for small t.

Example 3.7. There is a minimal 2-design given by the four vertices of the regular tetra-
hedron (these sum to zero), whilst the minimal (1, 1)-design is the three vectors of an 
orthonormal basis (these don’t sum to zero). The minimal (2, 2)-design is given by the 
six equiangular lines which go through the vertices of the icosahedron. Taking the cor-
responding 12 vectors (which add to zero) gives the minimal 4-design and 5-design. For 
the (3, 3)-design, there is the snubcube of 24 points, which is a minimal 6-design and 7-
design. This is not centrally symmetric, and so gives only a 24 point (3, 3)-design, whilst 
the mininum numbers of vectors for a (3, 3)-design calculated are 11 and 16.

Finally, we compare our constructions with some known optimal Euclidean designs.

Example 3.8. In [2] Bannai classified all “tight” antipodal Euclidean 5-designs (X, w), 
X = X1 ∪X2, supported on two spheres in Rd, i.e., for which the bound

n ≥ 1
2d(d + 1) + 1,

on the number n of antipodal pairs (lines) holds. These give n vector/line spherical 
(2, 2)-designs. We now go through the classification.

For R2, there is a unique such Euclidean 5-design of four lines given by

X1 = ±{e1, e2}, X2 = ±{ 1√
2
(r,±r)}, r �= 1, w(x) :=

{
1, x ∈ X1;
1
r4 , x ∈ X2.

By (1.7), the corresponding spherical (2, 2)-design of four lines is given by the vectors

x∗ = (1) 1
4 ej = ej , x∗ =

( 1
4

) 1
4 1√ (r,±r) = 1√ (1,±1).
r 2 2
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These give an unweighted spherical (2, 2)-design of four equally spaced lines in R2. Three 
equally spaced lines also give a (2, 2)-design, which indicates that bounds on the number 
of points in a Euclidean design do not apply to the corresponding spherical (t, t)-designs.

For R3, there is a unique such Euclidean 5-design of seven lines given by

X1 = ±{e1, e2, e3}, X2 = ±{ r√
3
v : |vj | = 1}, w(x) :=

{
1, x ∈ X1;
9

8r4 , x ∈ X2.

The corresponding seven vector (2, 2)-design has vectors with two possible norms (up to 
a fixed scalar)

‖x∗‖ = (1) 1
4 1 = 1, ‖x∗‖ =

( 9
8r4

) 1
4
r =

(9
8

) 1
4
.

We observe that this Euclidean design can be chosen to have a constant weight (r4 = 9
8 ), 

whereas in the previous example this was not possible. Let nj = |Xj |. For the purpose 
of comparison, we define the normalised weights for the associated (t, t)-design by

ŵj = ŵ(xj) :=
n‖x∗

j‖2t

n1‖x∗
1‖2t + n2‖x∗

2‖2t = nw(xj)‖x1‖2t

n1w(x1)‖x1‖2t + n2w(x2)‖x2‖2t , xj ∈ Xj .

In this case, they are ŵ1 = 14
15 , ŵ2 = 21

20 . The optimal spherical (2, 2)-design consists of 
six equiangular lines in R3.

For R4, there is no tight Euclidean 5-design of 11 lines, though our numerical calcu-
lations indicate that there is an 11 line spherical (2, 2)-design.

For R5, there is a tight Euclidean 5-design of 16 = 6 + 10 lines, with normalised 
weights 20

21 , 36
35 . This corresponds to the spherical (2, 2)-design of Example 3.5.

For R6 there is a 22 = 6 + 16 line tight Euclidean design with normalised weights 11
12 , 

33
32 , which corresponds to the numerical spherical (2, 2)-design calculated.

There are no further tight antipodal Euclidean 5-designs.

It was later shown that all the tight Euclidean 5-designs are special cases of a general 
construction of (t, t)-designs as a union of two of lower order [26].

4. Complex spherical (t, t)-designs

In Table 2 below, we give the corresponding results of our numerical search for puta-
tively optimal complex spherical (t, t)-designs.

The orthonormal bases, SICs and MUBs appearing in the table are well studied. A 
very general construction of weighted (2, 2)-designs is given in [27]. These are presented 
as weighted complex projective t-designs, and require a function f : G → H between 
finite abelian groups with d = |G| ≤ |H| satisfying



D. Hughes, S. Waldron / Linear Algebra and its Applications 608 (2021) 84–106 95
Table 2
The minimum numbers nw and ne of vectors in a weighted and in a equal-norm 
spherical (t, t)-design for Cd, as calculated numerically.

t d nw ne Comments
1 d d d orthonormal bases in Cd (Example 1.3)
2 d d2 d2 SICs (when known to exist) (Example 1.5)
3 2 6 6 three MUBs for C2 (Example 1.6)
3 3 22 27 some structure
3 4 40 40 highly symmetric tight frame (§5, ST 32, Table 4)
3 5 >100
4 2 10 12 Example 4.1 (two orbits)
4 3 47 >47
4 4 >85 >85
5 2 12 12 Example 4.2 (one orbit)
6 2 18 24 some structure
7 2 22 24 some structure
8 2 37 >37 some structure
9 2 44 >44 some structure

Other known complex (t, t)-designs with a small number of vectors
2 d d(d + 1) d + 1 MUBs for Cd, where d is a prime power
2 d d(|H| + 1) weighted design, with H abelian of order ≥ d [27]
3 3 36 highly symmetric tight frame (§5, ST 27, Table 4)
5 4 60 highly symmetric tight frame (§5, ST 30, Table 4)
3 6 126 highly symmetric tight frame (§5, ST 34, Table 5)
4 6 672 highly symmetric tight frame (§5, ST 34, Table 5)

f(x + a) − f(x) = b has at most one solution for each (a, b) �= (0, 0),

to obtain a weighted (2, 2)-design of |H| + 1 orthornormal bases for Cd. The 40-vector 
(3, 3)-design for C4 and others are examples of highly symmetric tight frames, which are 
considered in detail in Section 5.

We now give two explicit examples motivated by our calculations.

Example 4.1. (A spherical (4, 4)-design of 12 lines in C2) Several unit-norm spherical 
(4, 4)-designs of 12 vectors/lines in C2 were computed numerically. Using the techniques 
of [14], the projective symmetry group for each was calculated to be the dihedral group 
of order 10, with the irreducible projective action giving two orbits: one of size 2 (with 
the vectors orthogonal), and one of size 10. This suggested a (4, 4)-design of the form

Φv = (v, av, a2v, a3v, a4v, bv, abv, a2bv, a3bv, a4bv) ∪ (u1, u2), (4.14)

where v ∈ C2 is a unit vector, a (a rotation) and b (a reflection) are generators of the 
dihedral group and {u1, u2} is an orthonormal basis. Taking

a =
(
ω 0
0 ω

)
, ω := e

2πi
5 , b =

(
0 1
1 0

)
, u1 =

(
1
0

)
, u2 =

(
0
1

)
, (4.15)

and optimising over v to obtain a (4, 4)-design numerically suggested that the ratio of 
the components of a suitable v was the golden ratio

√
5+1 , i.e.,
2
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v = vζ := 1√
10 + 2

√
5

(
(1 +

√
5)ζ

2

)
, |ζ| = 1. (4.16)

An elementary calculation shows that (4.14), (4.15), (4.16) define a one-parameter family 
{Φvζ}|ζ|=1, of spherical (4, 4)-designs of 12 unit vectors for C2.

Somewhat surprisingly, the search for a (5, 5)-design for C2 gave a unit-norm one of 
12 vectors which is a single orbit. A heuristic explanation for why this was not identified 
earlier as a (4, 4)-design, is because there was a one parameter family of such designs 
and this is an isolated point on the variety.

Example 4.2. A spherical (5, 5)-design of 12 lines in C2. Let τ := 1
2 (1 +

√
5) be the 

golden ratio, and G = 〈a, b〉 be the binary icosahedral group of order 120 generated by 
the unitary matrices

a = 1
2

(
τ−1 − τi 1

−1 τ−1 + τi

)
, b =

(
−i 0
0 i

)
.

Then for every unit vector v ∈ C2, the G-orbit (gv)g∈G is a (5, 5)–design of 120 vectors. 
To show this one must verify that (1.5) holds for t = 5. Since G is unitary, this can be 
simplified to

1
|G|

∑
g∈G

|〈v, gv〉|10 = c5(C2)‖v‖20, ∀v ∈ C2,

i.e., if two homogeneous polynomials of degree 20 in the entries of v and v are equal. This 
was done by checking equality at a set of points v on which a polynomial in Π◦

10,10(C2)
is determined by its values. We observe that a has order 5 and b2 = −I. Hence if v is an 
eigenvector of a, then (gv)g∈G consists of 120/10 = 12 lines. From each of these lines we 
can select a vector to obtain (5, 5)–design of 12 vectors.

Example 4.2 can be generalised by taking groups other than the binary icosahedral 
group. We now consider these so called highly symmetric tight frames.

5. Highly symmetric tight frames

Many of the putatively optimal spherical (t, t)-designs presented in the previous sec-
tions are the orbit of a single vector/line under the unitary action of a finite group, 
and have a larger group of symmetries. One way to capture this, is the idea of a highly 
symmetric frame. A finite frame Φ of distinct vectors is highly symmetric if the action 
of its symmetry group Sym(Φ) is irreducible, transitive, and the stabiliser of any one 
vector (and hence all) is a nontrivial subgroup which fixes a space of dimension exactly 
one.
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In [10], all the highly symmetric tight frames with symmetry group a finite (irre-
ducible) complex reflection group were calculated (in a search for equiangular lines), 
except in a few cases. The stabilisers are the maximal parabolic subgroups, and by using 
the recent Complements.m software package of Don Taylor [31], we were able to compute 
the few remaining highly symmetric tight frames (Table 6). We then checked the highly 
symmetric tight frames obtained from reflection groups to see what order of (t, t)-designs 
their set of lines gives (see Tables 3, 4 and 5).

We assume a basic familiarity with complex reflection groups [24], [30]. A linear map 
Fd → Fd is a complex reflection if it has finite order and fixes a hyperplane, i.e., it 
is diagonalisable with one eigenvalue a nontrivial root of unity and all the others 1. A 
finite group generated by reflections is called a complex reflection group. The complex 
reflection groups are classified up to similarity, and can be taken to be unitary. We will 
use the numbering of Shephard-Todd (ST) for the irreducible complex reflection groups, 
and the notation 〈n, m〉 for the m-th group of order n in magma’s database of small 
groups.

In Tables 3, 4 and 5, we give n the number of lines in the spherical (t, t)-design (vj), 
m the number of vectors, and s the number of angles, i.e., the number of values |〈vj , vk〉|
which are not equal to 1 (the case when vectors are on the same line). A frame with one 
angle is equiangular. We also give the projective symmetry group of the n lines [14], and 
a group of order m whose orbit is the m vectors, should there be one, i.e., the frame is 
a group frame.

Some of the highly symmetric tight frames given by reflection groups are putatively 
optimal spherical (t, t)-designs and others appear to have small numbers of vectors (as 
indicated in Tables 1 and 2). We now highlight some examples.

Example 5.1. Consider the following unitary complex reflections of orders 2, 2, 4, 3

S =
(

0 1
1 0

)
, F = 1√

2

(
1 1
1 −1

)
, R =

(
1 0
0 −i

)
, Z = e

2πi
24 RF.

The Shephard-Todd group number 6 has order 48, and small group number 〈48, 33〉. It 
is generated by S, R2, Z. The standard basis vector v = e1 (which is fixed by R) gives a 
highly symmetric tight frame which is a (3, 3)-design. Since the line given by e1 is fixed 
by R and −I = (SR2)2 this design is given by 48/(4 · 2) = 6 lines (which are a maximal 
set of MUBs). The vector

v =
(√

3 + 1
1 − i

)

is fixed by Z, and its orbit gives a (2, 2)-design of 4 vectors, i.e., a SIC.

Example 5.2. For d = 2, all the Shephard-Todd groups give spherical (t, t)-designs, where 
t = 2, 3, 5, and many of these are repeated, e.g., a SIC and a maximal set of MUBs. The 
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Table 3
The spherical (t, t)-designs of n vectors for Fd given by the highly symmetric tight frames for the Shephard-
Todd listing of the primitive complex reflection groups. n = number of lines, m = orbit size (number of 
vectors), s = number of angles.

ST Order d t n s F Symmetry 
group

m Group frame Comments

4 24 2 2 4 1 C 〈12, 3〉 8 〈8, 4〉 SIC
5 72 2 4 1 C 〈12, 3〉 24 〈24, 3〉, 〈24, 11〉 SIC
6 48 2 4 1 C 〈12, 3〉 16 〈16, 13〉 SIC

3 6 2 C 〈24, 12〉 24 〈24, 3〉 max MUBs
7 144 2 4 1 C 〈12, 3〉 48 〈48, 47〉, 〈48, 33〉 SIC

3 6 2 C 〈24, 12〉 72 〈72, 25〉 max MUBs
8 96 3 6 2 C 〈24, 12〉 24 〈24, 3〉, 〈24, 1〉 max MUBs
9 192 3 6 2 C 〈24, 12〉 48 〈48, 4〉, 〈48, 28〉, 〈48, 29〉 max MUBs

3 12 4 C 〈24, 12〉 96 〈96, 67〉, 〈96, 74〉
10 288 3 6 2 C 〈24, 12〉 72 〈72, 12〉, 〈72, 25〉 max MUBs

3 8 3 C 〈24, 12〉 96 〈96, 54〉, 〈96, 67〉
11 576 3 6 2 C 〈24, 12〉 144 〈144, 69〉, 〈144, 121〉, 〈144, 122〉 max MUBs

3 8 3 C 〈24, 12〉 192 〈192, 876〉, 〈192, 963〉
3 12 4 C 〈24, 12〉 288 〈288, 400〉, 〈288, 638〉

12 48 3 12 4 C 〈24, 12〉 24 〈24, 3〉
13 96 3 12 4 C 〈24, 12〉 48 〈48, 28〉, 〈48, 29〉

3 6 2 C 〈24, 12〉 48 〈48, 28〉, 〈48, 33〉 max MUBs
14 144 3 8 3 C 〈24, 12〉 48 〈48, 26〉, 〈48, 29〉

3 12 4 C 〈24, 12〉 72 〈72, 25〉
15 288 3 8 3 C 〈24, 12〉 96 〈96, 182〉, 〈96, 192〉

3 12 4 C 〈24, 12〉 144 〈144, 121〉, 〈144, 122〉
3 6 2 C 〈24, 12〉 144 〈144, 121〉, 〈144, 157〉 max MUBs

16 600 5 12 3 C 〈60, 5〉 120 〈120, 5〉, 〈120, 15〉 Example 4.2
17 1200 5 12 3 C 〈60, 5〉 240 〈240, 93〉, 〈240, 154〉 Example 4.2

5 30 8 C 〈60, 5〉 600 〈600, 54〉
18 1800 5 12 3 C 〈60, 5〉 360 〈360, 51〉, 〈360, 89〉 Example 4.2

5 20 5 C 〈60, 5〉 600 〈600, 54〉
19 3600 5 12 3 C 〈60, 5〉 720 〈720, 420〉, 〈720, 708〉 Example 4.2

5 20 5 C 〈60, 5〉 1200 〈1200, 483〉
5 30 8 C 〈60, 5〉 1800 〈1800, 328〉

20 360 5 20 5 C 〈60, 5〉 120 〈120, 5〉
21 720 5 20 5 C 〈60, 5〉 240 〈240, 93〉

5 30 8 C 〈60, 5〉 360 〈360, 51〉
22 240 5 30 8 C 〈60, 5〉 120 〈120, 5〉

reason for this is that the design is given by the lines in the orbit, which only depend on 
the matrices in the group up to a scalar multiple. One way to obtain a canonical group 
with this orbit, is to ensure that all the matrices have determinant 1, which leads to the 
notion of a canonical abstract error group [13]. For the Shephard-Todd groups of rank 
2, there are just three canonical abstract error groups that appear. These are the binary 
tetrahedral group T , the binary octahedral group O, and the binary icosahedral group I
(see [24]), where the correspondence is

ST 4-7: T /〈−I〉 = 〈12, 3〉 ∼= A4,

ST 8-15: O/〈−I〉 = 〈24, 12〉 ∼= S4,

ST 16-22: I/〈−I〉 = 〈60, 5〉 ∼= A5.
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Table 4
The spherical (t, t)-designs of n vectors for Fd given by the highly symmetric tight frames for the Shephard-
Todd listing of the primitive complex reflection groups. n = number of lines, m = orbit size (number of 
vectors), s = number of angles.

ST Order d t n s F Symmetry 
group

m Group frame Comments

23 120 3 2 6 1 R 〈60, 5〉 12 〈12, 3〉 equiangular
2 10 2 R 〈60, 5〉 20 – two angles
2 15 4 R 〈60, 5〉 30 –

24 336 2 21 3 C 〈168, 42〉 42 〈42, 2〉
2 28 4 C 〈168, 42〉 56 –

25 648 2 9 1 C 〈216, 153〉 27 〈27, 3〉, 〈27, 4〉 SIC
2 12 2 C 〈216, 153〉 72 – max MUBS

26 1296 2 9 1 C 〈216, 153〉 54 〈54, 8〉, 〈54, 10〉, 〈54, 11〉 SIC
2 12 2 C 〈216, 153〉 72 – max MUBS
2 36 4 C 〈216, 153〉 216 〈216, 88〉

27 2160 3 36 4 C 〈360, 118〉 216 –
3 45 5 C 〈360, 118〉 270 –
3 60 8 C 〈360, 118〉 360 –

28 1152 4 2 12 2 R 〈576, 8654〉 24 〈24, 1〉〈24, 3〉, 〈24, 11〉 real MUBs
2 48 6 R 〈576, 8654〉 96 〈96, 67〉, 〈96, 201〉, 〈96, 204〉

29 7680 2 20 2 C 〈1920, ·〉 80 〈80, 30〉 max MUBs
2 40 3 C 160 –
2 80 5 C 320 〈320, 1581〉, 〈320, 1586〉
2 160 10 C 640 –

30 14400 5 60 4 R 〈7200, ·〉 120 〈120, 5〉, 〈120, 15〉
5 300 15 R 600 〈600, 54〉
5 360 18 R 720 –
5 600 32 R 1200 –

31 46080 3 60 3 C 〈11520, ·〉 240 –
3 480 9 C 1920 〈1920, ·〉
3 960 16 C 3840 –

32 155520 3 40 2 C 〈25920, ·〉 240 – MUB like
3 360 6 C 2160 –

33 51840 5 2 40 2 C 〈25920, ·〉 80 – two angles
2 45 2 C 270 – MUB like
2 216 5 C 432 –
2 540 7 C 1080 –

Example 5.3. (Maximal MUBs) We obtain a maximal set of MUBs in the dimensions

d = 2 (ST 6,7,8,9,10,11,13,15),

d = 3 (ST 25, 26),

d = 4 (ST 29).

These MUBs are unique [9] (Theorem 6.5), and they can be obtained from an orthogonal 
decomposition of the special linear Lie algebra sld(C).

Example 5.4. (Real MUBs) For the real Shephard-Todd group ST 28, we obtain a set of 
three MUBs for R4. This gives a 12-vector spherical (2, 2)-design for R4. This appears to 
be the maximal number of real MUBs possible [8]. Further, were such a design to come 
from a tight spherical 5-design, then it would have 10 points (there is no such design), 
and so we suspect that this spherical (2, 2)-design is optimal.
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Table 5
The spherical (t, t)-designs of n vectors for Fd given by the highly symmetric tight frames for the Shephard-
Todd listing of the primitive complex reflection groups.n = number of lines, m = orbit size (number of 
vectors), s = number of angles.

ST Order d t n s F Symmetry 
group

m Group frame Comments

34† 39191040 6 3 126 2 C 〈6531840, ·〉 756 – MUB like
4 672 4 C 4032 –
...

...
...

...
35 51840 2 27 2 R 〈51840, ·〉 27 〈27, 3〉, 〈27, 4〉 two angles

2 36 2 R 72 – MUB like
2 216 6 R 216 〈216, 86〉, 〈216, 88〉
2 360 6 R 720 –

36† 2903040 7 2 28 1 R 〈1451520, ·〉 56 〈56, 11〉 equiangular
2 63 2 R 126 – MUB like
2 288 3 R 576 –
2 378 4 R 756 –
2 1008 6 R 2016 –
2 2016 7 R 4032 –
...

...
...

...
37† 696729600 8 3 120 2 R 〈348364800, ·〉 240 〈240, 89〉 MUB like

3 1080 4 R 2160 –
3 3360 6 R 6720 –
...

...
...

...
† For the Shephard-Todd groups 34, 36 and 37, there are other maximal parabolic subgroups which 

generate highly symmetric tight frames (see Table 6), but the number of lines n is too high to determine 
any properties about them.

Table 6
Addendum to Table 2 of [10]. The highly symmetric tight frames of n vectors in Cd

given by the reflection groups with Shephard-Todd numbers 34, 36, 37.
ST d Order m† b s Group frame
34 6 39191040 756 756 2 –

4032 95256 4 –
20412
54432
30240
272160
163296

36 7 2903040 56 98 1 〈56, 11〉
126 392 2 –
576 14112 3 –
756 88200 4 –
2016 1707552 6 –
4032 5889312 7 –
10080

37 8 696729600 240 576 2 〈240, 89〉
2160 217800 4 –
6720 5889312 6 –
17280
60480
69120
241920
483840

† In Table 2 of [10] m is labelled as n.
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Example 5.5. (MUB like configurations) We will say that a (t, t)-design is MUB like if it 
has two angles, one of which is zero, but it is not a set of MUBs. We have the following 
MUB like spherical (t, t)-designs

40 vector (3, 3)-design for C4 (ST 32, angles 1√
3
, 0),

45 vector (2, 2)-design for C5 (ST 33, angles 1
2 , 0),

126 vector (3, 3)-design for C6 (ST 34, angles 1
2 , 0),

36 vector (2, 2)-design for R6 (ST 35, angles 1
2 , 0),

63 vector (2, 2)-design for R7 (ST 36, angles 1
2 , 0),

120 vector (2, 2)-design for R8 (ST 37, angles 1
2 , 0).

We also have the following two angle (t, t)-designs

10 vector (2, 2)-design for R3 (ST 23, angles
√

5
3 ,

1
3),

40 vector (2, 2)-design for C5 (ST 33, angles 1
3 ,

1√
3
),

27 vector (2, 2)-design for R6 (ST 35, angles 1
4 ,

1
2).

6. Conclusion

We have shown how numerical techniques can be used to find putatively optimal 
spherical (t, t)-designs, from which explicit spherical designs can then be found. This 
process led to many known “tight” spherical designs, SICs and MUBs, as well as some 
new spherical (t, t)-designs with a high degree of symmetry, which we believe to be 
optimal. Some further insights into the geometry of the algebraic variety of optimal 
(t, t)-designs were obtained, e.g., the optimal spherical (5, 5)-designs in C2 seem to be 
a lower dimensional subvariety of the optimal (4, 4)-designs. We also investigated the 
spherical (t, t)-designs given by the class of highly symmetric tight frames for a complex 
reflection group. This gave unified description of many of the putatively optimal spherical 
(t, t)-designs, as well several MUB like designs with a small number of vectors.
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Appendix A

Here we calculate the Hessian of the function f : Fd×n → R of (2.10) whose critical 
points with value zero are the spherical (t, t)-designs.

We write each entry of V = [v1, . . . , vn] = [vjk] ∈ Fd×n in the Cartesian form

vjk =
{
xjk + iyjk, F = C;
xjk, F = R,

and let

X = {xαβ} ∪ {yαβ} for F = C, X = {xαβ} for F = R.

We will refer to X as the real variables of a function f : Fd×n → R : V �→ f(V ), and 
define Hf the Hessian of f to be the Hessian of X �→ f(V ). Thus the Hessian of f at V
is the X ×X real symmetric matrix with (r, s)–entry given by

Hf (V )rs = ∂2f

∂r∂s
(V ), r, s ∈ X.

Proposition A.1. Let f : Fd×n → R be the polynomial f := p − ct(Fd)g2, where p and g
are given by (2.9). Then the (r, s)-entry of the Hessian matrix of f is given by

∂2f

∂r∂s
= ∂2p

∂r∂s
+ 2ct(Fd)

{
g
∂2g

∂r∂s
+ ∂g

∂r

∂g

∂s

}
, r, s ∈ X,

where

∂g

∂xαβ
(V ) + i

∂g

∂yαβ
(V ) = 2t‖vβ‖2(t−1)vαβ ,

∂2g

∂xab∂xαβ
(V ) + i

∂2g

∂yab∂xαβ
(V ) = t‖vβ‖2(t−1)δaαδbβ + 2t(t− 1)‖vβ‖2(t−2)�(vαβ)δbβvaβ ,

∂2g

∂xab∂yαβ
(V ) + i

∂2g

∂yab∂yαβ
(V )

= it‖vβ‖2(t−1)δaαδbβ + 2t(t− 1)‖vβ‖2(t−2) Im(vαβ)δbβvaβ ,
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∂2p

∂xab∂xαβ
(V ) + i

∂2p

∂yab∂xαβ
(V )

= 2t
∑
j

|〈vj , vβ〉|2(t−1)(δbjvaβvαj + 〈vj , vβ〉δaαδbj + δbβvajvαj
)

+ 4t(t− 1)
∑
j

�
(
〈vβ , vj〉vαj

)
|〈vj , vβ〉|2(t−2)(〈vj , vβ〉δbjvaβ + δbβvaj〈vβ , vj〉

)
,

∂2p

∂xab∂yαβ
(V ) + i

∂2p

∂yab∂yαβ
(V )

= 2it
∑
j

|〈vj , vβ〉|2(t−1)(〈vj , vβ〉δaαδbj + δbβvajvαj − δbjvaβvαj
)

+ 4t(t− 1)
∑
j

Im
(
〈vβ , vj〉vαj

)
|〈vj , vβ〉|2(t−2)(〈vj , vβ〉δbjvaβ + δbβvaj〈vβ , vj〉

)
.

Proof. The first equation follows from the product rule, i.e.,

∂2

∂r∂s
(g2) = ∂

∂r

(
2g ∂g

∂s

)
= 2g ∂2g

∂r∂s
+ 2∂g

∂r

∂g

∂s
.

To find the entries of the Hessians of p and g, we use the Wirtinger calculus:

∂

∂z
:= 1

2

( ∂

∂x
+ i

∂

∂y

)
,

∂

∂z
(z) = 0, ∂

∂z
(z) = 1,

∂h

∂x
= 2�

(∂h
∂z

)
,

∂h

∂y
= 2 Im

(∂h
∂z

)
(for h real-valued).

We have

∂g

∂vαβ
(V ) = ∂

∂vαβ

(∑
�

(
‖v�‖2)t) =

∑
�

t‖v�‖2(t−1) ∂

∂vαβ

∑
j

vj�vj� = t‖vβ‖2(t−1)vαβ .

Since

∂

∂vαβ
〈vj , vk〉 = ∂

∂vαβ

∑
s

vsjvsk = δkβvαj ,

we have

∂p

∂vαβ
(V ) =

∑
j

∑
k

t|〈vj , vk〉|2(t−1) ∂

∂vαβ

(
〈vj , vk〉〈vk, vj〉

)

=
∑
j

∑
k

t|〈vj , vk〉|2(t−1)
(
δkβvαj〈vk, vj〉 + 〈vj , vk〉δjβvαk

)

=
∑

t|〈vj , vβ〉|2(t−1)vαj〈vβ , vj〉 +
∑

t|〈vβ , vk〉|2(t−1)〈vβ , vk〉vαk

j k
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= 2t
∑
j

|〈vj , vβ〉|2(t−1)〈vβ , vj〉vαj .

We now consider the second partials. Since

∂g

∂xαβ
(V ) = t‖vβ‖2(t−1)(vαβ + vαβ), ∂g

∂yαβ
(V ) = t‖vβ‖2(t−1)i(vαβ − vαβ),

we have

∂2g

∂vab∂xαβ
(V ) = t‖vβ‖2(t−1)δaαδbβ + t(t− 1)‖vβ‖2(t−2)(vαβ + vαβ)δbβvaβ ,

∂2g

∂vab∂yαβ
(V ) = it‖vβ‖2(t−1)δaαδbβ + t(t− 1)‖vβ‖2(t−2)i(vαβ − vαβ)δbβvaβ .

Since

∂p

∂xαβ
(V ) = 2t

∑
j

|〈vj , vβ〉|2(t−1)(〈vβ , vj〉vαj + 〈vβ , vj〉vαj),

we have

∂2p

∂vab∂xαβ
(V ) = 2t

∑
j

|〈vj , vβ〉|2(t−1) ∂

∂vab

(
〈vβ , vj〉vαj + 〈vj , vβ〉vαj

)

+ 2t
∑
j

2�
(
〈vβ , vj〉vαj

)
(t− 1)|〈vj , vβ〉|2(t−2) ∂

∂vab

(
〈vj , vβ〉〈vβ , vj〉

)

= 2t
∑
j

|〈vj , vβ〉|2(t−1)(δbjvaβvαj + 〈vj , vβ〉δaαδbj + δbβvajvαj
)

+ 4t(t− 1)
∑
j

�
(
〈vβ , vj〉vαj

)
|〈vj , vβ〉|2(t−2)(〈vj , vβ〉δbjvaβ + δbβvaj〈vβ , vj〉

)
.

Similarly, since

∂p

∂yαβ
(V ) = 2t

∑
j

|〈vj , vβ〉|2(t−1)i(〈vβ , vj〉vαj − 〈vβ , vj〉vαj),

we have

∂2p

∂vab∂yαβ
(V ) = 2it

∑
j

|〈vj , vβ〉|2(t−1)(〈vj , vβ〉δaαδbj + δbβvajvαj − δbjvaβvαj
)

+ 4t(t− 1)
∑

Im
(
vαj〈vβ , vj〉

)
|〈vj , vβ〉|2(t−2)(〈vj , vβ〉δbjvaβ + δbβvaj〈vβ , vj〉

)
. �
j
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