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ABSTRACT

Let H be a Hilbert space of finite dimension d, such as the finite signals ℓ2(d) or a
space of multivariate orthogonal polynomials, and n ≥ d. There is a finite number of tight
frames of n vectors for H which can be obtained as the orbit of a single vector under the
unitary action of an abelian group G (of symmetries of the frame). Each of these so called
harmonic frames or geometrically uniform frames can be obtained from the character table
of G in a simple way. These frames are used in signal processing and information theory.

For a nonabelian group G there are in general uncountably many inequivalent tight
frames of n vectors for H which can be obtained as such a G–orbit. However, by adding
an additional natural symmetry condition (which automatically holds if G is abelian), we
obtain a finite class of such frames which can be constructed from the character table of
G in a similar fashion to the harmonic frames. This is done by identifying each G–orbit
with an element of the group algebra CG (via its Gramian), imposing the condition in the
group algebra, and then describing the corresponding class of tight frames.
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1. Introduction

A tight frame for a finite dimensional Hilbert space H which is the orbit of a single
vector under the unitary action of a finite group G will be called a tight G–frame. For G an
abelian group, these frames are known in the literature as harmonic frames or geometrically

uniform frames. They are used extensively in signal processing and information theory,
see, e.g., [CK07], [EF01] and [BE03].

It was proved in [VW05:Th.5.4] that ifG is abelian then each tightG–frame is unitarily
equivalent to a tight frame obtained by deleting rows of the character table of G. For
example, if G is the cyclic group of order 3, then its character table is





1 1 1
1 ω ω2

1 ω2 ω



 , ω := e
2πi

3 . (1.1)

By deleting the first row we obtain 3 vectors φ0, φ1, φ2 which form a tight frame for C2

φ0 =

[

1
1

]

, φ1 =

[

ω
ω2

]

, φ2 =

[

ω2

ω

]

, φj =

(

ω 0
0 ω2

)j

φ0.

This is unitarily equivalent to the tight frame of 3 equally spaced unit vectors in IR2.
The purpose of this paper is to generalise the above result to nonabelian groups. By

way of motivation, consider the smallest nonabelian group G = D3 ≈ S3, the dihedral
group of order 6, acting on IR2 as a group of unitary transformations generated by the
elements a of rotation through 2π/3, and b of reflection in the x–axis. The G–orbit of each
of the vectors

vθ :=

[

cos θ
sin θ

]

, 0 ≤ θ ≤ π

6
,

is a tight G–frame for IR2 (and C2). Since unitary maps preserve angles, none of these
tight G–frames is a unitary image of another.

Fig 1. The tight D3–frames obtained from vθ, for θ = π
12

, θ = π
6

and θ = 0.

This example shows that for a finite nonabelian group G the class of all inequivalent
tight G–frames Φ = (gv)g∈G may be uncountable, whereas for G abelian it is finite.
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To narrow down this class, we impose an additional symmetry condition, which can be
expressed as

〈gφ, hφ〉 = 〈gψ, hψ〉, ∀g, h ∈ G, ∀φ, ψ ∈ Φ. (1.2)

This yields a finite subset of the nicest such frames, which reduces to the harmonic frames
when G is abelian. It is hoped these frames will be useful in applications such as signal
processing, along the lines of [BK00] and [AMS05]. Indeed, these frames already appear
(for infinite groups G) as the Weyl–Heisenberg frames for subspaces of L2(IR) which have
a unique Weyl–Heisenberg dual in the given subspace [GH041], and the generators satisfy
the Balian–Low uncertainty principle [GH042].

The rest of the paper is set out as follows. Next we give the basic theory of frames for
an index set without structure that we require. We then consider the case when the frame
vectors are indexed by and can be obtained from the elements of a finite group G, the so
called G–frames. We then show that the (normalised) tight G–frames can be identified,
via their Gramian, with elements of the group algebra CG. Finally, we obtain our class of
nice tight G–frames, the so called central tight G–frames, by identifying them as elements
of the centre of CG. We give a complete structure theorem for these frames in terms of
the characters of G, and a number of illustrative examples.

2. The basics of frame theory

The following results are known (see [HL00] and [VW05]). Since their statement in
terms the Gramian given here is new, we provide proofs for completeness.

Let H be a Hilbert space of finite dimension d. A finite sequence of n ≥ d vectors
(φj)j∈J in H is a frame for H if it spans H, and is a tight frame for H if there is a c > 0
with

f = c
∑

j∈J

〈f, φj〉φj , ∀f ∈ H. (2.1)

We consider tight frames (φj)j∈J and (ψj)j∈J to be equivalent if there exists a unitary
transformation U , and a c > 0 for which

φj = cUψj , ∀j ∈ J. (2.2)

Any two such frames will be said to be (unitarily) equivalent, and we will talk of
uniqueness of a frame up to this (unitary) equivalence.

We say a tight frame is normalised if it has been scaled so that c = 1 in (2.1), i.e.,

f =
∑

j∈J

〈f, φj〉φj , ∀f ∈ H. (2.3)

Such frames are also known as Parseval tight frames. If (φj)j∈J is a normalised tight frame
with vectors of equal length, then taking the trace of the linear maps defined by (2.3) gives

dim(H) =
∑

j∈J

‖φj‖2 =⇒ ‖φj‖ =

√

dim(H)

|J | , ∀j ∈ J.
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Definition. Let Φ = (φj)j∈J and Ψ = (ψj)j∈J be frames for finite dimensional Hilbert
spaces H1 and H2. Their direct sum is defined to be

Φ ⊕ Ψ := (φj + ψj)j∈J ⊂ H1 ⊕H2.

In general Φ ⊕ Ψ is not a frame for the direct sum H1 ⊕ H2. However, a simple
calculation shows that if Φ and Ψ are normalised tight frames, then Φ⊕Ψ is a normalised
tight frame for H1 ⊕H2 provided

∑

j∈J

〈f, φj〉ψj = 0, ∀f ∈ H1,
∑

j∈J

〈g, ψj〉φj = 0, ∀g ∈ H2. (2.4)

Definition. The Gramian of a frame Φ = (φj)j∈J with |J | = n is the n× n matrix

Gram(Φ) := [〈φi, φj〉]i,j∈J .

We now show that the possible Gramian matrices are precisely the orthogonal projections.

Theorem 2.5. An n×n matrix P = [pij ]i,j∈J is the Gramian of a normalised tight frame
(φj)j∈J for the space H = span{φj}j∈J if and only if it is an orthogonal projection matrix,
i.e., P = P ∗ = P 2. Moreover, the dimension of the Hilbert space H for this frame is

d = dim(H) = rank(P ) = trace(P ) =
∑

j∈J

‖φj‖2. (2.6)

Proof: Let Φ = (φj)j∈J be a normalised tight frame, and P = Gram(Φ). Take
f = φi in (2.3) to get φi =

∑

j∈J〈φi, φj〉φj , and take the inner product with φk to obtain

〈φi, φk〉 =
∑

j∈J

〈φi, φj〉〈φj , φk〉 ⇐⇒ Pik =
∑

j∈J

PijPjk ⇐⇒ P = P 2.

Further P is Hermitian since Pij = 〈φi, φj〉 = 〈φj , φi〉 = Pji, and hence is a projection.
Conversely, suppose that P is an n×nmatrix such that P = P ∗ = P 2. Let {e1, . . . , en}

be the standard basis of Cn, so that the columns of P are φj := Pej , j = 1, . . . n. Fix
f ∈ H := span{φj}n

j=1 ⊂ Cn. Then f = Pf , so that

f =

n
∑

j=1

〈Pf, ej〉ej =

n
∑

j=1

〈f, Pej〉ej = P

n
∑

j=1

〈f, Pej〉ej =

n
∑

j=1

〈f, Pej〉Pej =

n
∑

j=1

〈f, φj〉φj ,

i.e., (φj)
n
j=1 is a normalised tight frame for H.

Finally, taking the trace of P gives

d = dim(H) = rank(P ) = trace(P ) =
∑

j∈J

‖φj‖2.
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It follows from Theorem 2.5 that normalised tight frames are unitarily equivalent if
and only if their Gramians are equal (cf [VW05:Th.2.9]). In light of this, it should be
possible to determine all properties of a normalised tight frame from its Gramian. We
utilise this general principle in the remaining sections.

Corollary 2.7. If Φ = (φj)j∈J and Ψ = (ψj)j∈J are normalised tight frames, then

Φ ⊕ Ψ := (φj + ψj)j∈J

is a normalised tight frame if and only if the product of the Gramians of Φ and Ψ is zero.
The Gramian of this frame is given by

Gram(Φ ⊕ Ψ) = Gram(Φ) + Gram(Ψ).

Proof: The Gramian of Φ ⊕ Ψ is the Hermitian matrix

Gram(Φ⊕Ψ) = [〈φi +ψi, φj +ψj〉]i,j∈J = [〈φi, φj〉+ 〈ψi, ψj〉]i,j∈J = Gram(Φ)+Gram(Ψ).

Since P := Gram(Φ) and Q := Gram(Ψ) are orthogonal projections, this is an orthogonal
projection if and only if

(P +Q)2 = P 2 + PQ+QP +Q2 = P + PQ+QP +Q = P +Q,

i.e., PQ+QP = 0. It is easy to check that PQ+QP = 0 if and only if PQ = 0.

Example. Suppose that Φ is a normalised tight frame of n vectors for a d–dimensional
space, and P = Gram(Φ). Then In − P is a projection of rank n − d, which is therefore
the Gramian of a normalised tight frame of n vectors for a space of n−d dimensions. This
frame is unique (up to unitary equivalence) and we call it the complementary frame
(cf [HL00] and [RW02]), and denote it by Φc. The direct sum Φ ⊕ Φc has Gramian the
identity, and hence is an orthonormal basis.

3. Representations and G–frames

Let G be an abstract finite group. A representation of G is a finite dimensional
complex vector space V together with a linear action of G on V , or equivalently a group
homomorphism ρV : G → GL(V ). Two representations (V, ρV ) and (W,ρW ) are said to
be equivalent if there is an invertible linear map T : V →W such that

ρW (g) = TρV (g)T−1, ∀g ∈ G.

Any representation of G is equivalent to a representation in which V is a Hilbert space and
all the ρV (g) are unitary matrices. Hence in this paper we define a representation to be
a finite dimensional Hilbert space H together with a group homomorphism ρ : G→ U(H).
We will often write the unitary group action induced by the representation as

gv := ρ(g)(v), g ∈ G, v ∈ H.

The following definition was also given independently by [H07].
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Definition. Let G be a finite group. We say that a frame (φg)g∈G for H is a G–frame if
there exists a representation ρ : G→ H such that

gφh := ρ(g)φh = φgh, ∀g, h ∈ G.

Remark. By this definition, the sequence Φ = (φg)g∈G = (gφ1)g∈G consists of the N
elements of the G–orbit of φ1 (or any φg) each repeated |G|/N times. This “repetition”
has certain technical advantages, e.g., for taking sums and complements of tight G–frames.
If one is interested only in the frame obtained by taking the set of vectors making up a
G–frame Φ, then this can often be obtained as an H–frame of distinct vectors, where H is
a suitable subgroup or quotient of G. For example, the set of three equally spaced vectors
in Figure 1, obtained by taking the S3–orbit of v0 is not a tight S3–frame, but it is a
C3–frame (for C3 the cyclic group of order three generated by the rotation a).

Example. Many results for frames indexed by a set J carry over in a natural way to
G–frames. For example, the complement of a G–frame is a G–frame, and the direct sum
of normalised tight G–frames is a normalised tight G–frame.

We will freely use a number of basic definitions and results from representation theory.
These can all be found in a standard textbook such as [L77], [JL93] or [I06].

4. The identification of G–frames with the group algebra

If Φ = (φg)g∈G is a G–frame, then the entries of its Gramian [〈φg, φh〉]g,h∈G have the
special form

〈φg, φh〉 = 〈gφ1, hφ1〉 = 〈φ1, g
−1hφ1〉. (4.1)

This is an example of what is called a group matrix or G–matrix.

Definition. Let G be a finite group. Then a matrix A = [agh]g,h∈G is called a G–matrix
if there exists a function ν : G→ C such that

agh = ν(g−1h), ∀g, h ∈ G.

Remark. In [VW05] we used the term G–circulant for a G–matrix, since for G a cyclic
group, a G–matrix is a circulant matrix. We have since learned that we are part of a revival
of interest in group matrices, see, e.g., [BR04], [J07] or [D79] (for G the cyclic group).

It is also natural to think of an n×n matrix A as a G–matrix for G of order n if there
is an indexing of its entries by the elements of G which yields a G–matrix (our orginal
definition of being G–circulant), but this is less convenient for describing the algebraic
properties of group matrices.

Example. Let G = D3 ≈ S3 be the dihedral group of order 6, i.e.,

G = D3 = 〈a, b : a3 = 1, b2 = 1, b−1ab = a−1〉, (4.2)
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and order its elements 1, a, a2, b, ab, a2b. Then each G–matrix has the form

1 a a2 b ab a2b

1
a
a2

b
ab
a2b















ν(1) ν(a) ν(a2) ν(b) ν(ab) ν(a2b)
ν(a2) ν(1) ν(a) ν(a2b) ν(b) ν(ab)
ν(a) ν(a2) ν(1) ν(ab) ν(a2b) ν(b)
ν(b) ν(a2b) ν(ab) ν(1) ν(a2) ν(a)
ν(ab) ν(b) ν(a2b) ν(a) ν(1) ν(a2)
ν(a2b) ν(ab) ν(b) ν(a2) ν(a) ν(1)















.
(4.3)

We now show that Φ is a G–frame if and only if its Gramian is a G–matrix.

Theorem 4.4. Let G be a finite group. Then Φ = (φg)g∈G is a G–frame (for its span) if
and only if its Gramian is a G–matrix.

Proof: If Φ is a G–frame, then (4.1) implies that its Gramian is a G–matrix.
Conversely, suppose that the Gramian of a frame Φ for H is a G–matrix. The frame

operator S : H → H is the positive definite operator given by

S(f) :=
∑

g∈G

〈f, φg〉φg, ∀f ∈ H.

With φ̃g := S−1φg, we have the corresponding frame decomposition

f =
∑

g∈G

〈f, φ̃g〉φg, ∀f ∈ H. (4.5)

For g ∈ G, define Ug : H → H by

Ug(f) :=
∑

h1∈G

〈f, φ̃h1
〉φgh1

, ∀f ∈ H.

Since the Gramian of Φ is a G–matrix, we have

〈φgh1
, φgh2

〉 = ν((gh1)
−1gh2) = ν(h−1

1 h2) = 〈φh1
, φh2

〉. (4.6)

It follows from (4.5) and (4.6) that Ug is unitary by the calculation

〈Ug(f1), Ug(f2)〉 = 〈
∑

h1∈G

〈f1, φ̃h1
〉φgh1

,
∑

h2∈G

〈f2, φ̃h2
〉φgh2

〉

=
∑

h1∈G

∑

h2∈G

〈f1, φ̃h1
〉〈f2, φ̃h2

〉〈φgh1
, φgh2

〉

=
∑

h1∈G

∑

h2∈G

〈f1, φ̃h1
〉〈f2, φ̃h2

〉〈φh1
, φh2

〉

= 〈
∑

h1∈G

〈f1, φ̃h1
〉φh1

,
∑

h2∈G

〈f2, φ̃h2
〉φh2

〉 = 〈f1, f2〉.
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Similarly, we have

Ugφh =
∑

h1∈G

〈φh, φ̃h1
〉φgh1

=
∑

h1∈G

〈φgh, φ̃gh1
〉φgh1

= φgh.

This implies ρ : g 7→ Ug is a group homomorphism since

Ug1g2
φh = φg1g2h = Ug1

φg2h = Ug1
Ug2

φh, H = span{φh}h∈G.

Thus ρ is a representation of G with ρ(g)φh = φgh, i.e., Φ is a G–frame for H.

Combining Theorems 2.5 and 4.4, we have that Φ is a normalised tight G–frame if and
only if its Gramian is a G–matrix which is a projection. To understand such projections,
we now consider the structure of the algebra of G–matrices.

Definition. Given a function ν : G→ C let M(ν) be the G–matrix

M(ν) := [ν(g−1h)]g,h∈G.

Recall that CG, the group algebra of G, is the algebra obtained from the complex
vector space with basis the elements of G, and the multiplication given by extending the
multiplication in G linearly.

Proposition 4.7. Let G be a finite group. The sum and product of G–matrices is a
G–matrix. The algebra of G–matrices is isomorphic to the group algebra CG via the map

π : M(ν) 7→
∑

g∈G

ν(g)g. (4.8)

Proof: Clearly, M is an injective linear map from CG onto the G–matrices, which
therefore form a vector space. Moreover, the product of G–matrices is a G–matrix since

M(ν)M(µ) = M(η), η(g) :=
∑

h∈G

ν(gh)µ(h−1),

so the G–matrices form an algebra.
Let eg : G → C, g ∈ G be the standard basis vectors for CG, given by eg(h) = δg,h.

In view of the natural vector space isomorphism between CG and CG, it follows that

g 7→M(eg), g ∈ G (4.9)

gives a vector space isomorphism between CG and the G–matrices. Further, this is an
isomorphism of algebras since M(eg1

)M(eg2
) = M(η) where

η(g) :=
∑

h∈G

eg1
(gh)eg2

(h−1) = eg1
(gg−1

2 ) = eg1g2
(g) =⇒ η = eg1g2

.

Finally, we observe that the inverse of this isomorphism given by (4.9) is (4.8).

7



Definition. Let ρ : G → U(H) be a representation of a finite group G. The character
of ρ is the map χ = χρ : G→ C defined by

χ(g) := trace(ρ(g)).

A character is said to be irreducible if the corresponding representation is irreducible,
i.e., H has no proper nonzero G–invariant subspaces. Every character may be uniquely
written as a sum of irreducible characters. The irreducible characters χ1, . . . , χr of G
satisfy the orthogonality condition

1

|G|
∑

g∈G

χi(g)χj(g) = δij . (4.10)

This leads to a basis of (orthogonal) idempotents z1, . . . , zr for the centre

Z(CG) := {z ∈ CG : az = za,∀a ∈ CG}
of CG.

Theorem 4.11. Let χ1, . . . , χr be the irreducible characters of a finite group G, and

zi :=
χi(1)

|G|
∑

g∈G

χi(g)g. (4.12)

Then {z1, . . . , zr} is basis for Z(CG), which satisfies

z2
i = zi, zizj = 0, i 6= j. (4.13)

Proof: This is a standard fact about the group algebra, see, e.g., [JL93:14.7–
14.10].

5. The classification of central tight G–frames

A function ν : G → C is a class function if it is constant on the conjugacy classes of G.
The irreducible characters form a basis for the space of class functions on G, and ν is a
class function if and only if

∑

g∈G

ν(g)g ∈ Z(CG). (5.1)

Definition. A G–frame Φ = (φg)g∈G is said to be central if ν : G→ C defined by

ν(g) := 〈φ1, φg〉 = 〈φ1, gφ1〉
is a class function.

For G abelian, all G–frames are central (since the conjugacy classes are singletons).
In view of Proposition 4.8 and (5.1), a G–frame Φ is central if and only if Gram(Φ) is
in the centre of the algebra of group matrices. It is easy to see that being central is also
equivalent to the ‘symmetry condition’

〈gφ, hφ〉 = 〈gψ, hψ〉, ∀g, h ∈ G, ∀φ, ψ ∈ Φ.

We now characterise all central (normalised) tight G–frames in terms of the Gramian.
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Theorem 5.2. Let G be a finite group with irreducible characters χ1, . . . , χr. Then
Φ = (φg)g∈G is a central normalised tight G–frame if and only if its Gramian is given by

Gram(Φ) = M
(

∑

i∈I

χi(1)

|G| χi

)

, (5.3)

for some I ⊂ {1, . . . , r}.
Proof: Suppose Φ is a central normalised tight G–frame. Since Φ is a G–frame,

by Theorem 4.4 its Gramian is a G–matrix

P := Gram(Φ) = M(ν), ν(g) := 〈φ1, gφ1〉.

Since Φ is central the above ν : G→ C is a class function. Further, since Φ is a normalised
tight frame, Theorem 2.5 implies that P is an orthogonal projection, in particular P is an
idempotent. By applying the isomorphism π of (4.8), we have that

u := π(P ) =
∑

g∈G

ν(g)g

is an idempotent of the group algebra CG, which is central since ν is a class function.
Since u is in Z(CG), by Theorem 4.11, we may write it

u =
∑

i

αizi, αi ∈ C.

Since u is an idempotent, (4.13) gives

u2 =
∑

i

∑

j

αiαjzizj =
∑

i

α2
i zi = u =

∑

i

αizi =⇒ α2
i = αi =⇒ αi ∈ {0, 1}.

Let I := {i : αi = 1}, so that u =
∑

i∈I zi, and

P = π−1(u) =
∑

i∈I

π−1(zi) =
∑

i∈I

χi(1)

|G|
∑

g∈G

χi(g)π
−1(g) =

∑

i∈I

χi(1)

|G|
∑

g∈G

χi(g)M(eg)

= M
(

∑

i∈I

χi(1)

|G|
∑

g∈G

χi(g)eg

)

= M
(

∑

i∈I

χi(1)

|G| χi

)

.

Conversely, suppose that P = Gram(Φ) has the form (5.3). Since P is a G–matrix,
Theorem 4.4 implies that Φ is a G–frame. Further, P is a projection matrix, since (4.13)
gives

(

π−1(P )
)2

=
(

∑

i∈I

zi

)2
=
∑

i∈I

zi = π−1(P ) =⇒ P 2 = P,
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and χi(1) ∈ IR and χi(g) = χi(g
−1) give

Pg,h =
∑

i∈I

χi(1)

|G| χi(g
−1h) =

∑

i∈I

χi(1)

|G| χi(h
−1g) = Ph,g.

Thus it follows from Theorem 2.5 that Φ is a normalised tight frame. Finally, Φ is central,
since χi(g) = χi(h

−1gh) implies

〈φ1, gφ1〉 = P1,g =
∑

i∈I

χi(1)

|G| χi(g) =
∑

i∈I

χi(1)

|G| χi(h
−1gh) = P1,h−1gh = 〈φ1, h

−1ghφ1〉.

Remark. The condition which ensures
∑

g∈G cgg ∈ CG corresponds to a self adjoint
G–matrix under the isomorphism (4.8) is that cg−1 = cg, ∀g ∈ G.

Independently, [H07:Th.10] has extended the classification of G–frames for G abelian
given in [VW05:Th.5.4] by using the decomposition of the right regular representation of
the group G into G–invariant subspaces. In that classification, for a fixed space H either:

(i) There exist no G–frames.
(ii) There exist finitely many G–frames.
(iii) There exists infinitely many G–frames.

The central normalised tight G–frames correspond to the case when there are only finitely
many G–frames up to equivalence, and give all such frames. The geometric characterisation
of such frames being central and their description in terms of characters which follows is
not given in [H07].

Corollary 5.4. Let G be a finite group with irreducible characters χ1, . . . , χr. Choose
normalised tight G–frames Φi for Hi, i = 1, . . . , r, with

Gram(Φi) =
χi(1)

|G| M(χi), dim(Hi) = χi(1)2, (5.5)

e.g., take the columns of Gram(Φi). Then the unique (up to unitary equivalence) central
normalised tight G–frame with Gramian (5.3) is given by the direct sum

⊕i∈IΦi ⊂ H := ⊕i∈IHi.

Further, if ρi : G→ U(Cdi) is a representation with character χi, then Φi can be given as

Φi :=

√

χi(1)

|G| (ρi(g))g∈G ⊂ U(Cdi) ⊂ Cdi×di ≈ Cd2

i , (5.6)

where the inner product on the space of di ×di matrices is given by 〈A,B〉 := trace(B∗A).

Proof: Applying the isomorphism π of Proposition 4.7 gives

π(Gram(Φi)) =
χi(1)

|G|
∑

g∈G

χi(g)g = zi,
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where zi is given by (4.12), and so by (4.13)

Gram(Φi) Gram(Φj) = π−1(zi)π
−1(zj) = π−1(zizj) = π−1(0) = 0, i 6= j.

Thus it follows from Corollary 2.7 that the direct sum ⊕i∈IΦi is well defined, and its
Gramian is given by the formula (5.3). The dimension of Hi = span Φi can be calculated
from (2.6)

dim(Hi) = trace(Gram(Φi)) =
χi(1)

|G|
∑

g∈G

χi(1) = χi(1)2.

Finally, if Φi is given by (5.6), then we verify

Gram(Φi)g,h =
χi(1)

|G| 〈ρi(g), ρi(h)〉 =
χi(1)

|G| trace(ρi(h)
∗ρi(g)) =

χi(1)

|G| trace(ρi(h
−1g))

=
χi(1)

|G| χi(h
−1g) =

χi(1)

|G| χi(g
−1h) =

χi(1)

|G| M(χi)g,h,

so that Φi is indeed a normalised tight G–frame with Gramian given by (5.5).

Example 1. Let χ1, . . . , χs be the 1–dimensional irreducible characters of G, so χi(1) = 1.
Then Corollary 5.4 gives central tight normalised G–frames

⊕i∈IΦi = ⊕i∈I
1√
|G|

(χi(g))g∈G ≈ 1
√

|G|
(χi(g))i∈I,g∈G, I ⊂ {1, . . . , s}.

These can be thought of as being given by (up to a scalar multiplier) the columns of the
matrix obtained from the character table (χi(g))1≤i≤r,g∈G of G by deleting all rows with
indices not in the set I. In particular, for G abelian, all characters are 1–dimensional,
and this gives the result of [VW05:Th.5.4] that in this case all tight G–frames (which are
central since G is abelian) can be obtained from the character table of G in this way.

Example 2. Let G = D3 ≈ S3 be the dihedral group (symmetric group) of order 6
as given by (4.2), and write class functions and G–matrices with respect to the order
1, a, a2, b, ab, a2b. The conjugacy classes of G are {1}, {a, a2}, {b, ab, a2b}, and there are
three irreducible characters

χ1 =















1
1
1
1
1
1















, χ2 =















1
1
1
−1
−1
−1















, χ3 =















2
−1
−1
0
0
0















. (5.7)

Corresponding to each of these, there is a central normalised tight G–frame Φi for a space
of dimension χi(1)2, with its Gramian matrix Pi given by (5.5). These are

P1 =
1

6















1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1















, P2 =
1

6















1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1















,
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and

P3 =
1

3















2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2















.

The Φi can be obtained by taking the columns of the Pi, with the action of a and b given
by the G–matrices

M(ea) =















0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0















, M(eb) =















0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0















.

However, we get simpler formulas from (5.6). Since χ1 and χ2 are 1–dimensional this gives

Φ1 =
1√
6
(1, 1, 1, 1, 1, 1), Φ2 =

1√
6
(1, 1, 1,−1,−1,−1).

A representation ρ : D3 → U(C2) ⊂ C2×2 ≈ C4 with trace(ρ) = χ3 is given by

ρ(1) =

(

1 0
0 1

)

≈







1
0
0
1






, ρ(a) =

(

ω 0
0 ω2

)

≈







ω
0
0
ω2






, ρ(a2) =

(

ω2 0
0 ω

)

≈







ω2

0
0
ω






,

ρ(b) =

(

0 1
1 0

)

≈







0
1
1
0






, ρ(ab) =

(

0 ω
ω2 0

)

≈







0
ω
ω2

0






, ρ(a2b) =

(

0 ω2

ω 0

)

≈







0
ω2

ω
0






,

and so we obtain from (5.6)

Φ3 =
1√
3

(







1
0
0
1






,







ω
0
0
ω2






,







ω2

0
0
ω






,







0
1
1
0






,







0
ω
ω2

0






,







0
ω2

ω
0







)

.

Thus there are seven central normalised tight D3–frames, namely

Φ1,Φ2 ⊂ C, Φ1 ⊕Φ2 ⊂ C2, Φ3 ⊂ C4, Φ1 ⊕Φ3,Φ2 ⊕Φ3 ⊂ C5, Φ1 ⊕Φ2 ⊕Φ3 ⊂ C6.
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The last of these, Φ1 ⊕Φ2 ⊕Φ3, is an orthonormal basis (which corresponds to the regular
representation of G). We always have such a central normalised tight G–frame since the
irreducible characters of a finite group G satisfy

|G| =
r
∑

i=1

χi(1)2.

Example 3. Consider the D3–frames Φ = (φg)g∈D3
discussed in the introduction, where

φ1 :=

[

cos θ
sin θ

]

, 0 ≤ θ ≤ π

6
, ρ(a) =

(

−1
2

√
3

2

−
√

3
2

−1
2

)

, ρ(b) =

(

1 0
0 −1

)

.

For these Gram(Φ) = M(ν), where

ν =

















1
−1

2

−1
2

2c2 − 1
−
√

3cs− c2 + 1
2√

3cs− c2 + 1
2

















1
a
a2

b
ab
a2b

, c := cos θ, s := sin θ.

This cannot be a class function, since by Example 2, the only central tight D3–frame
for C2 consists of just two vectors (each repeated three times). Since the conjugacy classes
of D3 are {1}, {a, a2}, {b, ab, a2b}, it follows that ν is a class function if and only if its last
three entries are equal. We can try and make ν close to being a class function by choosing
two of these three entries to be equal, e.g.,

ν(b) = ν(a2b) =⇒ 2c2 − 1 =
√

3cs− c2 +
1

2
=⇒ θ =

π

6
,

ν(ab) = ν(a2b) =⇒ −
√

3cs− c2 +
1

2
=

√
3cs− c2 +

1

2
=⇒ θ = 0,

which gives the second and third D3–frames of Figure 1. One might argue that these are
the most symmetric. An alternative way to try and capture this distance from being a
central tight G–frame is to consider the length of the error in the projection of ν onto the
class functions span{χi}r

i=1. In this case, with the characters given by (5.7), we have

E := ν − 1

|G|

r
∑

i=1

〈ν, χi〉χi = ν − 1

2
χ3 =

















0
0
0

2c2 − 1
−
√

3cs− c2 + 1
2√

3cs− c2 + 1
2

















, ‖E‖2 =
3

2
,
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so all the D3–frames would be considered equally close to being central. Thus it seems
that trying to introduce as many zeros to E as possible rather than minimising its norm
may be the best strategy for constructing “nice” frames.

Example 4. Given a central (normalised) tight G–frame Φ, one might want to know what
are the characters {χi}i∈I that it corresponds to. Since Gram(Φ) = M(ν) where

ν =
∑

j∈I

χj(1)

|G| χj = 1–row of Gram(Φ) = (〈φ1, φg〉)g∈G,

we have
∑

g∈G

〈φ1, φg〉χi(g) =
∑

g∈G

∑

j∈I

χj(1)

|G| χj(g)χi(g) =
∑

j∈I

χj(1)

|G| 〈χi, χj〉.

Hence from the orthogonality (4.10) of the irreducible characters it follows that

I = {i :
∑

g∈G

〈φ1, φg〉χi(g) 6= 0}.

For example, let C3 = 〈a〉 be the cyclic group of order 3 with a acting as rotation by
2π
3

, and v be a unit vector in IR2. Then Φ = (φ1, φa, φa2) = (v, av, a2v) is central tight
C3–frame. Let χ1 = (1, 1, 1), χ2 = (1, ω, ω2), χ3 = (1, ω2, ω) be the characters of C3 given
by the character table (1.1). We calculate

∑

g∈C3

〈φ1, φg〉χ1(g) = 1− 1

2
− 1

2
= 0,

∑

g∈C3

〈φ1, φg〉χi(g) = 1− 1

2
ω− 1

2
ω2 =

3

2
, i = 2, 3,

and hence Φ is obtained by deleting the first row of the character table.

Conclusion

We have shown that tight frames which occur as the orbit of a single vector under
a unitary action of a finite group G (normalised tight G–frames) can be identified with
elements p of the group algebra CG which satisfy

p2 = p, p = p,

where
p :=

∑

g∈G

cgg
−1 =

∑

g∈G

cg−1g, p =
∑

g∈G

cgg ∈ CG.

We then singled out a finite subset of the so called central normalised tight G–frames for
which p belongs to the centre of CG, and gave a complete decription of these in terms of
the irreducible characters of G. We hope that this new technique of describing G–frames
in terms of the group algebra of G will be used to analyse and construct optimal G–frames
for various applications.
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