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1. Introduction

1.1. Motivation

Unitary operator bases were introduced by Schwinger [1] as quantum variables of a 
physical system. They were specialised to nice error bases by Knill [2,3] to construct 
quantum error correcting codes, and have been applied to quantum teleportation and 
dense coding schemes [4]. Our interest stems from their application to the construction 
of SICs (equiangular lines) [5,6].

Nice error bases are orthonormal bases for the d ×d matrices Md(C), which generalise 
the Pauli matrices, and the projective action of the Heisenberg group on Cd. Here we 
extend nice error bases to nice error frames. These are equal-norm tight frames for 
Md(C) consisting of d × d unitary matrices with a group indexing structure. There is 
growing evidence [7] that nice error frames play a similar role in the construction of 
complex (projective) spherical t-designs (quantum t-designs) with the minimal number 
of vectors, as do nice error bases in the special case of SICs.

We show that each nice error frame (irreducible faithful projective representation) is 
associated with a canonical abstract error group. In addition to giving a unique label 
for nice error frames, this allows us to exhaustively search through all possible groups 
in the small groups library. The specific structure of a canonical abstract error group 
makes this feasible, even in the case d = 8, where there are 10, 494, 213 possible groups 
to consider.

1.2. Outline

In Section 2, we define nice error frames, and show that their matrices can be scaled 
in such a way that they lie in a canonical (abstract error) group. In Section 3, we out-
line how all nice error frames (irreducible faithful projective representations) can be 
constructed from the ordinary representations of abstract groups. This leads to a paral-
lelisable algorithm for calculating nice error frames, which we apply in a number of cases. 
In Section 4, we give examples of nice error frames, which are not bases. In Section 5, we 
calculate the canonical abstract error groups for all nice error bases in dimension d < 14, 
and discuss how these relate to the Klappenecker and Rötteler Catalogue of Nice Error 
Bases, and the known SICs. Our classification allows nice error bases to be compared 
easily, and using it we show that the catalogue over counts. In particular, we show that 
the Hoggar lines appear for various nice error bases, some of which are subgroups of the 
Clifford group. Thus all known SICs appear as orbits of subgroups of the Clifford group. 
In Section 6, for d = 6 we give an explicit example of a SIC given by a nice error basis 
with a nonabelian index group.
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2. Nice error frames and canonical abstract error groups

The Pauli matrices

σ1 = σx :=
(

0 1
1 0

)
, σ2 = σy :=

(
0 −i
i 0

)
, σ3 = σz :=

(
1 0
0 −1

)
, (2.1)

were first used to study spin in quantum mechanics. Together with the identity, they 
form an orthonormal basis for the 2 ×2 matrices. More generally, in the field of quantum 
error correcting codes, an error operator basis is an orthonormal basis for the d × d

matrices Md(C) = Cd×d, with the (Hilbert–Schmidt/Frobenius) inner product

〈A,B〉 := trace(AB∗), A,B ∈ Md(C).

A special class of these was defined by Knill [2,3], as follows.

Definition 2.1. Let G be a group of order d2. Then unitary matrices (Eg)g∈G in Md(C)
are a nice (unitary) error basis if

1. E1 is a scalar multiple of the identity I,
2. EgEh = wg,hEgh, ∀g, h ∈ G, where wg,h ∈ C,
3. trace(Eg) = 0, g �= 1, g ∈ G (i.e., they are an error operator basis),

and G is referred to as the index group.

In the language of group theory (cf. [8,9]), this is equivalent to the map

ρ : g �→ Eg

being a unitary irreducible faithful projective representation of G of degree d. Condition 3 
ensures that a nice error basis gives the orthogonal expansion 

A = 1
d

∑
g∈G

〈A,Eg〉Eg, ∀A ∈ Md(C). (2.2)

A motivating example is the Pauli matrices indexed by Z2 × Z2 as follows

G = Z2 × Z2 �→ M2(C) : (j, k) �→ E(j,k) = SjΩk, S := σ1, Ω := σ3.

A finite sequence of vectors (fj)nj=1 in a Hilbert space H is a tight frame for H if there 
is a C > 0, such that 

C ‖f‖2 =
n∑

|〈f, fj〉|2, ∀f ∈ H. (2.3)

j=1
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Tight frames generalise orthonormal bases, since (2.3) is equivalent (by the polarisation 
identity) to the expansion

f = 1
C

n∑
j=1

〈f, fj〉fj , ∀f ∈ H,

where C dim(H) =
∑

j ‖fj‖2, which is their point of interest. Being a tight frame is 
equivalent to the variational characterisation (cf. [10]) 

n∑
j=1

n∑
k=1

|〈fj , fk〉|2 = 1
dim(H)

( n∑
j=1

‖fj‖2
)2

. (2.4)

Suppose that H = Md(C), and (Eg)g∈G are unitary matrices satisfying 1, 2 of Defini-
tion 2.1, where G is any finite group. These matrices have the equal norms

‖Eg‖2 = 〈Eg, Eg〉 = trace(EgE
∗
g ) = trace(I) = d.

Since wgh−1,hEgE
−1
h = Egh−1 , we have

〈Eg, Eh〉 = trace(EgE
∗
h) = trace(EgE

−1
h ) = 1

wgh−1,h
trace(Egh−1).

Hence the condition (2.4) for (Eg)g∈G to be a tight frame for Md(C) reduces to

∑
g∈G

∑
h∈G

|〈Eg, Eh〉|2 =
∑
g∈G

∑
h∈G

| trace(Egh−1)|2 = |G|
∑
g∈G

| trace(Eg)|2 = 1
d2

(
|G|d

)2
.

Thus we arrive at the following definition.

Definition 2.2. Let G be a group (of order ≥ d2). Then unitary matrices (Eg)g∈G in 
Md(C) are a nice (unitary) error frame if

1. E1 is a scalar multiple of the identity I, and no other Eg is,
2. EgEh = wg,hEgh, ∀g, h ∈ G, where wg,h ∈ C,
3.

∑
g∈G

| trace(Eg)|2 = |G|,

and G is referred to as the index group.

As we just observed, a nice error frame is an equal-norm tight frame for Md(C), i.e., 

A = d

|G|
∑

〈A,Eg〉Eg, ∀A ∈ Md(C). (2.5)

g∈G
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Moreover, nice error frames generalise nice error bases, since condition 3 can be written 
as

∑
g �=1
g∈G

| trace(Eg)|2 = |G| − d2,

which, for |G| = d2, gives

∑
g �=1
g∈G

| trace(Eg)|2 = 0 =⇒ trace(Eg) = 0, g �= 1.

The conditions 1 and 2 say that

g �→ Eg is a unitary faithful projective representation of G of degree d.

It is also irreducible, i.e., span{Egw}g∈G = Cd, ∀w �= 0. To see this, expand the matrix 
A = vw∗, v ∈ Cd, using (2.5) to obtain

vw∗ = d

|G|
∑
g∈G

〈vw∗, Eg〉Eg =⇒ v‖w‖2 = d

|G|
∑
g∈G

〈vw∗, Eg〉Egw.

These properties characterise nice error frames (Proposition 2.8).
In general, the matrices (Eg)g∈G of a nice error frame will not have finite order, and 

hence not generate a finite group. This can be rectified by scaling. Let ω be the d-th root 
of unity

ω := e
2πi
d .

Since det(cA) = cd det(A), c ∈ C, A ∈ Md(C), we have:

Key observation. There are exactly d scalings of a given Eg which have determinant 1, 
i.e.,

Êg = ωj

det(Eg)1/d
Eg, j = 0, 1, . . . , d− 1,

where det(Eg)1/d is any fixed d-th root of det(Eg).

Henceforth, let Êg denote any of these scalings, so that

det(Êg) = 1, ∀g ∈ G.

Then the d|G| matrices
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H := {ωjÊg : j = 0, . . . , d− 1, g ∈ G}

are distinct. Moreover, they form a group, since after scaling, the condition 2 becomes

ÊgÊh = ŵg,hÊgh, ∀g, h ∈ G,

and taking determinants of this gives

1 = ŵd
g,h =⇒ ŵg,h ∈ {1, ω, ω2, . . . ωd−1}, ∀g, h ∈ G.

Thus, we arrive at the following definition.

Definition 2.3. Let (Eg)g∈G be a nice error frame for Md(C). The associated canonical 
error group is

H := {ωjÊg : j = 0, . . . , d− 1, g ∈ G},

and the abstract version of this group is called the canonical abstract error group.

We observe that the centre of a canonical error group H is

Z(H) = 〈ωI〉 ∼= Zd,

since if a matrix commutes with the spanning set (Eg)g∈G for Md(C), then it commutes 
with all of Md(C), and is therefore a scalar matrix. Hence, a group can be a canonical 
(abstract) error group for at most one dimension d. Further, the index group G of a 
canonical (abstract) error group H is given by

G = H

Z(H) .

We will label (abstract) groups according to the “Small Groups Library”, which is 
used by the computer algebra package magma, e.g., the dihedral group of order 8 is

D4 = SmallGroup(8,3) = <8,3>.

Example 2.4. The Pauli matrices {σ1, σ2, σ3} have determinant −1. They generate the 
group <16,13> of order 16. The group generated by just the reflections σ1 and σ3 contains 
±iσ2, and has order 8. It is the dihedral group <8,3>. The canonical error group for the 
nice error basis {I, σ1, σ2, σ3} is

H = 〈iσ1, iσ2, iσ3〉,

which is the quaternion group <8,4>.
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In earlier work (cf. [3,8]), any of the groups <16,13>, <8,3>, <8,4> would have been 
referred to as an abstract error group or w-covering of the nice error basis {I, σ1, σ2, σ3}.

We now specify which nice error frames are considered to be “equivalent”.

Definition 2.5. Nice error frames (Eg)g∈G and (Fh)h∈H for Md(C) are equivalent if there 
is bijection σ : G → H between their index groups, scalars (cg)g∈G and an invertible 
T ∈ Md(C), such that 

Fσg = cgT
−1EgT, ∀g ∈ G. (2.6)

This is more general than projective equivalence (cf. [8]) where G = H, and reindexing 
of the elements of (Eg)g∈G is not allowed.

Proposition 2.6. Equivalent nice error frames have the same canonical abstract error 
group, and (in particular) the same index group.

Proof. Suppose that nice error frames (Eg)g∈G and (Fh)h∈H for Md(C) are equivalent. 
Then (2.6) scales to

F̂σg = T−1(ĉgEg)T, ∀g ∈ G,

where ĉg ∈ {1, ω, ω2, . . . , ωd−1} (by considering determinants). Thus the canonical error 
groups are conjugate via T , and so are isomorphic. Since the index group is the ab-
stract error group factored by its centre, the nice error frames also have the same index 
groups. �
Example 2.7 (Heisenberg nice error basis). A nice error basis (projective representation) 
is given by

G = Zd × Zd �→ Md(C) : (j, k) �→ E(j,k) = SjΩk,

where S is the cyclic shift matrix, and Ω is the modulation matrix, given by 

(S)jk := δj,k+1, (Ω)jk = ωjδj,k, ω := e
2πi
d . (2.7)

This is the only nice error basis (up to equivalence) for Md(C) with index group G =
Zd × Zd (cf. [11]).

We are now in a position to show that the condition 3 of Definition 2.2 is indeed 
equivalent to the projective representation g �→ Eg being irreducible. This generalises 
Theorem 1 of [8] for nice error bases.
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Proposition 2.8 (Characterisation). Let G be a group and (Eg)g∈G be unitary matrices 
in Md(C). Then the following are equivalent:

1. (Eg)g∈G is a nice error frame for Md(C).
2. g �→ Eg is an irreducible unitary faithful projective representation of G of degree d.

In this case, the action of the canonical error group H on Cd is an irreducible special 
unitary faithful ordinary representation of the canonical abstract error group of dimen-
sion d.

Proof. If g �→ Eg is an irreducible unitary projective representation of G on Cd, then the 
canonical error group H can be defined, as above. Its action on Cd (via multiplication) 
gives an irreducible unitary ordinary representation of H. The corresponding character 
χ is irreducible, and so its Euclidean inner product with itself is |H| = d|G|, which gives

〈χ, χ〉 =
∑
h∈H

| trace(h)|2 =
d−1∑
j=0

∑
g∈G

| trace(ωjEg)|2 = d
∑
g∈G

| trace(Eg)|2 = d|G| = |H|,

which is the condition 3 of Definition 2.2. Combining this with the previous observations 
gives the equivalence of 1 and 2 above. �
Example 2.9. For d = 1, the only canonical abstract error group is H = 1.

Example 2.10. For d = 2, a canonical error group is given by the generalised quaternion
group or dicyclic group of order 4n (n > 1), which is generated by the matrices

(
ω2n 0
0 ω−1

2n

)
,

(
0 −1
1 0

)
, ω2n := e

2πi
2n .

A magma calculation (see Table 1 of the appendix) shows that the only other canonical 
abstract error groups H of order ≤ 200 (with d = 2) are

H = <24,3>, G = <12,3>, H = <48,28>, G = <24,12>.

These turn out to be the canonical abstract error groups obtained from the Shephard–
Todd reflection groups numbers 4 and 8, respectively. In view of Proposition 2.8, all 
canonical abstract error groups for d = 2 are given by the ADE classification of the 
finite subgroups of SL2(C) [12].

Example 2.11. Any irreducible group of d ×d matrices which has a finite quotient with its 
centre gives rise to a canonical abstract error group. In particular, by the N/C theorem, 
the normaliser of such a group in GLd(C) also does. As an example, take the Heisenberg 
group which is generated by the matrices S and Ω of Example 2.7, and its normaliser 
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(often called the Clifford group) which is generated by S, Ω and the matrices F and R, 
given by 

(F )jk := 1√
d
ω−jk, (R)jk := μj(j+d)δjk, ω := e

2πi
d , μ := e

2πi
2d . (2.8)

Then the canonical abstract error groups for the Heisenberg group and its normaliser 
are

<8,4>, <48,28> (d = 2) <27,3>, <648,532> (d = 3).

For a general d, the Clifford group gives a canonical abstract error group H, with order

|H| = d6
∏
p|d

(
1 − 1

p2

)
(p the prime factors of d).

For each d, the subgroups of the Clifford group which contain the Heisenberg group 
give a family of nice error frames. Another way that nice error frames can be constructed 
(and also deconstructed) is via tensor products.

Proposition 2.12. Let (Eg1)g1∈G1 , (Fg2)g2∈G2 be nice error frames for Md1(C), Md2(C). 
Then their tensor product

(Eg1 ⊗ Fg2)(g1,g2)∈G1×G2

is a nice error frame for Md1d2(C). In particular, a product of index groups is an index 
group. Moreover, the canonical error group is

H = {ωj(h1 ⊗ h2) : 0 ≤ j < d− 1, h1 ∈ H1, h2 ∈ H2}, ω := e
2πi
d , d := d1d2,

where H1, H2 are the canonical error groups of the nice error frames.

Proof. In view of Proposition 2.8, the first part follows from the theory of (projective) 
representations. Alternatively, it can be verified directly, e.g., the tensor product satisfies 
condition 3 of Definition 2.2 since∑
(g1,g2)∈G1×G2

| trace(Eg1 ⊗ Fg2)|2 =
∑
g1

∑
g2

| trace(Eg1) trace(Fg2)|2

=
(∑

g1

| trace(Eg1)|2
)(∑

g2

| trace(Fg2)|2
)

= |G| |H| = |G×H|.

The tensor product group H1 ⊗H2 consists of scalar multiples of each Eg1 ⊗ Eg2 , with 
determinant 1, but may not contain all d-roots of unity (if d1 and d2 are not coprime), 
and so we add these. �
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Corollary 2.13. A product of index groups is an index group, and in particular, a product 
of index groups for nice error bases is an index group for a nice error basis.

Example 2.14. Let K be a finite abelian group of order d. Since K is a product of 
cyclic groups, it follows by taking tensor products of the Heisenberg nice error basis 
(Example 2.7) that G = K ×K is the index group of a nice error basis for Md(C).

Example 2.15. Taking the tensor product of the two nonabelian index groups for d = 4, 
with the (abelian) index group for d = 2, gives two nonabelian index groups for d = 8, 
i.e.,

<16,3>× <4,2> = <64,193>, <16,11>× <4,2> = <64,261>.

Basic results from character theory imply the following.

Theorem 2.16 (Abelian index groups). A nice error frame can have an abelian index 
group only if it is a nice error basis.

Proof. Let H be the canonical abstract error group of a nice error frame, and χ : H → C

be the character of a faithful irreducible representation of degree χ(1) = d.
Recall the centre of a character χ : H → C is the subgroup

Z(χ) := {h ∈ H : |χ(h)| = χ(1)},

and that if χ is irreducible

Z(χ)
ker(χ) = Z

( H

ker(χ)

)
, ker(χ) := {h ∈ H : χ(h) = χ(1)}.

Since the representation is faithful, ker(χ) = 1, and so this becomes

Z(χ) = Z(H).

Thus the index group is G = H/Z(χ), by Theorem 2.13 of [13], if G is abelian, then

|G| = [H : Z(χ)] = χ(1)2 = d2. �
Remark 2.17. A canonical error group is an example of a central group frame, i.e.,

Φ =
(
ρ(g)

)
h∈H

, where ρ : H → SLd(C) is a representation

is a tight frame for Md(C) which satisfies the “symmetry condition”

〈hφ, gφ〉 = 〈hψ, gψ〉, ∀g, h ∈ ρ(H), ∀φ, ψ ∈ Φ.
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3. Calculations

Finding the centre of a group and its irreducible representations are fast calculations, 
and a representation can always be made unitary (by an appropriate conjugation). Thus 
the following characterisation of abstract error groups gives a practical algorithm for 
their calculation, and hence that of the nice error frames they correspond to.

Proposition 3.1 (Algorithm). A group H is a canonical abstract error group if and only 
if:

1. Its centre Z(H) is cyclic of order d.
2. It has a faithful irreducible ordinary representation ρ of degree d, which is special, 

i.e., det(h) = 1, ∀h ∈ H.

In particular, for d > 1 all canonical abstract error groups are nonabelian.

The nice error frame given by such a representation is (Eg)g∈G, where

G := H

Z(H) , Eg ∈ ρ(g).

It remains only to determine which of these are equivalent.

Proposition 3.2 (Equivalence condition). If ρ : H → Md(C) is a faithful irreducible 
special unitary ordinary representation of H, then so is

ρσ : h �→ ρ(σh), σ ∈ Aut(H),

where Aut(H) denotes the automorphisms of H. These give equivalent nice error frames, 
even though the representations may not be equivalent if σ is an outer automorphism.

Proof. Since an automorphism σ of H fixes the centre Z(H), it induces an automorphism 
σG ∈ Aut(G) on the index group G = H/Z(H). Thus a nice error frame (Fg)g∈G for ρσ
is reindexing of one for ρ, since

Fg := ρσ(g) = ρ(σg) = ρ(σG(g)), ∀g ∈ G.

If σ is an inner automorphism, i.e., σh = k−1hk, then ρ and ρσ are equivalent ordinary 
representations of H, since

ρσ(h) = ρ(k−1hk)) = ρ(k)−1ρ(h)ρ(k). �
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A monomial (or generalised permutation) matrix is a d × d matrix with exactly one 
nonzero entry in each row and column. A matrix group or representation is said to be
monomial if all of its matrices are.

In practice, the action groups of the ordinary representations of H calculated in magma
with the command

AbsolutelyIrreducibleModules(H,Rationals());

are often the same monomial group (cf. [14]). When they are not, it is easy to just work 
will the small number of representations which are not equivalent in this way, rather 
than try to apply the outer automorphisms to possibly reduce this set.

Next we give results of our calculations, as just outlined.

4. Examples of nice error frames

In Table 1 of the Appendix, we list the first few canonical abstract error groups and 
the index group for nice error frames (which are not bases) for 2 ≤ d ≤ 7. As suggested 
by this, Example 2.10 and Proposition 2.12, nice error frames are numerous.

Proposition 4.1. For each d ≥ 2, there are infinitely many canonical abstract error groups.

An infinite family of these can be constructed as monomial representations. Clearly, 
a set of monomial matrices with nonzero entries given by m-th roots of unity (m fixed) 
generates a finite group, and such a group could be enlarged to ensure its action on Cd

is irreducible.
From Table 1, we observe that index groups may be repeated in different dimensions.

Example 4.2 (Repeated index groups). A group G may be the index group for nice error 
frames in more than one dimension d, e.g., G = <12,3> is the index group for a nice 
error frame for M2(C) (H = <24,3>), and also one for M3(C) (H = <36,11>).

There is evidence (see [15–18,7] and the next section) that complex (projective) spher-
ical t-designs (quantum t-designs) with the minimal number of vectors often come as the 
orbit of a nice error frame.

5. Nice error bases and SICs

A tight frame Φ = (φj) for Cd consisting of d2 unit vectors is equiangular if 

|〈φj , φk〉|2 = 1
, j �= k. (5.9)
d + 1
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Such a tight frame (or more precisely the corresponding orthogonal projections Pj =
φjφ

∗
j ) is known in the quantum physics literature as a SIC or SIC-POVM (symmetric 

informationally complete positive operator valued measure).
All the known constructions of SICs (see [6,19]) are G-covariant, i.e., are an orbit

(Egv)g∈G, v ∈ Cd

of nice error basis (Eg)g∈G for Md(C), where G is an abelian group, and v ∈ Cd is called
a fiducial vector. With one exception, G = Zd×Zd with the Heisenberg nice error basis. 
The exception is for d = 8, where there is, in addition, Hoggar’s construction [20,21], 
which we will refer to as the Hoggar lines. For this, the nice error basis is a triple tensor 
product of the Heisenberg nice error basis for d = 2 (the Pauli matrices), and the index 
group is

G = K ×K, K := Z2 × Z2 × Z2.

Klappenecker and Rötteler [8] have computed all the possible nonabelian index groups, 
and some of the corresponding nice error bases (up to equivalence as projective repre-
sentations) for d ≤ 10, see the Catalogue of Nice Error Bases at

http://faculty.cs.tamu.edu/klappi/ueb/ueb.html.

These were used by Renes et al. [22] to construct G-covariant SICs. They found these 
numerically (to within 10−15) for G = Zd × Zd and for one nonabelian group G in 
dimensions d = 6, 8, 9 (not all groups were tested). These SICs with nonabelian index 
groups are projectively unitarily equivalent to ones obtained from the Heisenberg nice 
error basis [19]. A proof that SICs do indeed exist for all d is generally referred to as 
Zauner’s conjecture (cf. [23]). As of [6], the conjecture has been proved for

d = 2, 3, 4, . . . , 15, 19, 24, 35, 48

by analytic constructions which were motivated by numerical results.
In Tables 2 and 3 of the Appendix, we give all the canonical abstract error groups for 

nice error bases in dimensions d < 14 as calculated using magma (which does not have 
the groups of order 143 = 2744 available). From these it is easy to find all canonical error 
groups (irreducible faithful special representations). Despite the fact there are 10, 494, 
213 groups of order 83 = 512 we were able to search all of them to find the canonical 
abstract error groups H for d = 8. This was possible because only a small number of 
these groups have a nontrivial cyclic centre.

Our tables are consistent with the Catalogue of Nice Error bases, having exactly the 
same index groups. The Catalogue over counts nice error bases, e.g., for the index group 
G = <16,11> generators for two nice error bases are given, but the generators for the 
first, together with the scalar matrix iI generate the second, and so they give the same 
nice error basis. The Catalogue does seem to be exhaustive.

http://faculty.cs.tamu.edu/klappi/ueb/ueb.html
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Our calculations show that there exist nice error bases with the same index group G
which are not equivalent.

Example 5.1 (Inequivalent nice error bases). For d = 8, there are 47 canonical abstract 
error groups, and only 42 index groups. In particular, there are three canonical abstract 
error groups for G = <64,67>, and hence at least three inequivalent nice error bases 
with this index group. Moreover, two of these give rise to SICs, one does not.

Using our calculated canonical abstract error groups, we undertook an extensive search 
for numerical SICs for d < 14 using the variational approach of [22]. These results are 
summarised in Tables 2 and 3. They are consistent with the calculations of [19] §10.5 for 
d ≤ 9 using the Catalogue of Nice Error bases, which were done independently.

In [19] it was shown that certain SICs obtained from the Heisenberg nice error basis 
are also G-covariant for nice error bases which occur as subgroups of the Clifford group. 
In a similar vein, we determined which nice error bases appear as subgroups of the 
Clifford group. In particular (see Table 3), we found that 13 nice error bases which give 
the Hoggar lines (there are 22 in total) appear as subgroups of the Clifford group. Thus 
all known SICs are obtained from nice error bases which appear as subgroups of the 
Clifford group.

We now give an explicit example of the Hoggar lines as the orbit of a subgroup of 
the Clifford group. Recall the Clifford group is generated by the matrices S, Ω, F , R
of (2.7) and (2.8), together with the unit scalar matrices. It contains the permutation 
matrices Pa, which are given by

(Pa)jk := δaj,k, a ∈ Z∗
d.

Example 5.2 (The Hoggar lines from a subgroup of the Clifford group). The canonical 
abstract error group H = <512,6278298>, with index group G = <64,195> has rank 5, 
and appears as the subgroup of the Clifford group generated by

R8, ωI, μR2S3P3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 μ
0 0 μ3 0 0 0 0 0
0 0 0 0 0 −μ 0 0
μ3 0 0 0 0 0 0 0
0 0 0 μ 0 0 0 0
0 0 0 0 0 0 μ3 0
0 −μ 0 0 0 0 0 0
0 0 0 0 μ3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ω7R6P5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 i 0 0
0 0 i 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 −i 0 0 0 0 0 0
0 0 0 0 0 0 −i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

0 0 0 −1 0 0 0 0
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Ω2S6P5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 i
0 0 0 0 −1 0 0 0
0 −i 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 i 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 −i 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A fiducial vector v which gives the Hoggar lines as an orbit under this nice error basis is

v := 1
12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
6 +

(
2
√

3 −
√

6
)
i

0
2
√

3(−1 + i)
2
√

6 − 3
√

2 i√
6 −

(
2
√

3 +
√

6
)
i

0
2
√

3(1 − i)
2
√

6 + 3
√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

6. A SIC with a nonabelian index group for d = 6

Here we give an analytic construction of a G-covariant SIC for d = 6, which is the 
orbit of a nice error basis with the nonabelian index group

G = Z3 ×A4 = SmallGroup(36,11),

and canonical abstract error group SmallGroup(216,42). Based on our extensive nu-
merical calculations, and those of [22,19], this appears to be the first such example. It 
was first found numerically (to within 10−15) by Renes et al. [22]. We were unaware that 
Grassl [24] gave an analytic form. Our presentation is simpler. It turns out [19] that this 
SIC is in fact generated by the Heisenberg group, and so is of less interest than initially 
thought.

We define matrices (with 2 × 2 blocks) by

B :=
(
iσ1

iσ2
iσ3

)
, S2 :=

(0 0 I
I 0 0
0 I 0

)
,

A :=
(
I

ωI
ω2I

)
, ω := e

2πi
3 , (6.10)

where the Pauli matrices σj of (2.1) are normalised to have determinant 1. These generate 
a nice error basis for M6(C), as follows.
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Proposition 6.1 (Nice error basis). The unitary matrices B, S2, A of (6.10) generate a 
group

H := 〈B,S2, A〉 ⊂ SL6(C), |H| = 216 = 63

which gives a unitary faithful irreducible representation of SmallGroup(216,42), and 
has centre

Z(H) = 〈−ωI〉, |Z(H)| = 6.

In particular, taking a matrix Eg from each coset of

G := H

Z(H) = SmallGroup(36, 11)

gives a nice error basis (Eg)g∈G for M6(C) with index group G.

Using the variational characterisation (2.4) it is easy to search numerically for fidu-
cial vectors for SICs. For our nice error basis this yielded 864 fiducial vectors, up to 
normalisation by a scalar, including

v =

⎛
⎜⎜⎜⎜⎜⎜⎝

αr0
r0τ

63

r1ξ1
αr1ξ1τ

63

r2ξ2
αr2ξ2τ

45

⎞
⎟⎟⎟⎟⎟⎟⎠

,

α ≈ 0.5176,
r0 ≈ 0.6774, r1 ≈ 0.3690, r2 ≈ 0.4400,

ξ1 ≈ −0.9170 − 0.3988i, |ξ1| = 1,
ξ2 ≈ 0.2044 + 0.9789i, |ξ2| = 1,

τ9 = 1+i√
2 .

(6.11)

6.1. The analytic form of the SIC

We observe (numerically) that all 864 solutions v have the ratio of successive pairs of 
entries given by 

v1

v2
,
v3

v4
,
v5

v6
∈
{
αj

(1 + i√
2

)1+2k
: j = ±1, k = 0, 1, 2, 3

}
. (6.12)

Moreover, the moduli of the entries are
{
{|v1|, |v2|}, {|v3|, |v4|}, {|v5|, |v6|}

}
=

{
{r0, αr0}, {r1, αr1}, {r2, αr2}

}
,

and the sign of the ratio of entries from different pairs is

{
ξ1, ξ2,

1
ξ1

,
1
ξ2

,
ξ1
ξ2

,
ξ2
ξ1

}
{τ j : 0 ≤ j < 72}, τ := e

2πi
72 .

In effect, all 864 solutions can be constructed from α, r0, r1, r2, ξ1, ξ2 and τ .
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We now give the main result of this section.

Theorem 6.2. Let (Eg)g∈G be the nice error basis of Proposition 6.1 with the nonabelian 
index group G := SmallGroup(36,11). Then the unit vector 

v :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

αr0
r0

1−i√
2

r1ξ1
αr1ξ1

1−i√
2

r2ξ2
αr2ξ2

−1−i√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.13)

where

α :=
√

2
1 +

√
3

=
√

3 −
√

3√
3 +

√
3
, r1 := 1√

14

√
7 −

√
21√

3 −
√

3
,

r0 := r+, r2 := r−, r± :=

√
7 +

√
21 ±

√
14
√√

21 − 3

2
√

7
√

3 −
√

3
,

ξ1 = τ50 3
√
β − i

√
1 − β2, ξ2 = τ31

4

(√
7 −

√
3 − i

√
6 + 2

√
21

)
, (6.14)

β := −1
8

√
46 − 6

√
21 + 6

√
6
√

21 − 18, τ := e
2πi
72

gives a G-covariant SIC (Egv)g∈G for C6.

Proof. Motivated by the numerical fiducial vector (6.11), let v have the form (6.13), 
where

α, r0, r1, r2 > 0, ξ1, ξ2 ∈ C, |ξ1| = |ξ2| = 1.

The condition that v have unit norm is 

(r2
0 + r2

1 + r2
2)(1 + α2) = 1. (6.15)

Since (Eg)g∈G is a nice error basis,

|〈Egv,Ehv〉| = |〈v,E∗
gEhv〉| = |〈v,E−1

g Ehv〉| = |〈v,Eg−1hv〉|,

and so the angle moduli conditions (5.9) for v to be a fiducial vector reduce to 

|〈v,Egv〉|2 = 1
, ∀g ∈ G, g �= 1. (6.16)
7
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Of the |G| − 1 = 35 angle moduli equations, 17 are independent of ξ1 and ξ2, which 
gives as system of eight equations. This system is symmetric in r0 and r2, and four of 
the equations factor, giving

r0r2(α2 + 1) = 1√
7
,

(1 − α2)r2
0 −

√
2αr2

1 +
√

2αr2
2 = 1√

7
,

√
2αr2

0 −
√

2αr2
1 + (1 − α2)r2

2 = 1√
7
,

√
2αr2

0 − (1 − α2)r2
1 +

√
2αr2

2 = 1√
7
. (6.17)

From (6.15) and (6.17), it is easy to solve for α, r0, r1, r2, and then verify that all eight 
equations and (6.15) hold. To this end, once α has been determined,

1 + α2 = 3 −
√

3, 1 − α2 =
√

2α = 1√
3
(3 −

√
3),

and so with Rj :=
√

3 −
√

3 rj , the equations (6.15), (6.17) simplify to

(R2
0 + R2

2) + R2
1 = 1, R0R2 = 1√

7
, (R2

0 + R2
2) −R2

1 =
√

3√
7
.

The remaining 18 angle moduli equations, reduce to three equations, each occurring 
six times. Using 1 + α2i = 2ατ3 and α(1 − i) =

√
2ατ−9, these can be written as

pj(ξ1, ξ2) :=
∣∣∣2αr1r2τ3ωj ξ1

ξ2
+ 2αr0r1ω−j 1

ξ1
+

√
2αr0r2τ−9ξ2

∣∣∣2 = 1
7 ,

j = 0, 1, 2. (6.18)

These equations can be solved with a computer algebra package (we used MAPLE). 
However, the formulas for ξ1 and ξ2 so obtained are very complicated, and it could not 
be verified that they satisfy the original equations (6.18). Thus we spent considerable 
effort finding simpler formulas that could be easily written down, and which could be 
verified to give a fiducial vector.

We now briefly outline how this was done, then give the fine details in the following 
subsections. The equations (6.18) cannot be symmetrised (to find a simpler equation), 
since

1
3(p0 + p1 + p2) = 1

7 .

However, by the variational characterisation (2.4) of tight frames they can be replaced 
by the single equation 
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1
3(p2

0 + p2
1 + p2

2) =
(1

7

)2
. (6.19)

Though this equation has twice the degree of the three original equations, it has a simple 
form (with many zero terms), i.e.,

64r2
0r

2
1r

2
2

(
√

3 + 1)4
{√

2r0r1
( ξ3

1
τ6 + τ6

ξ3
1

)
+

√
2r1r2

(τ15ξ3
1

ξ3
2

+ ξ3
2

τ15ξ3
1

)
+ r0r2

( ξ3
2

τ21 + τ21

ξ3
2

)}

+ 33 − 4
√

21
441 = 1

72 . (6.20)

Here, τ6, τ15, τ21 appear because

τ6 = 1
2
(√

3 + i
)
, τ15 = 1

2
√

2
(√

3 − 1 + (1 +
√

3)i
)
,

τ21 = 1
2
√

2
(
1 −

√
3 + (1 +

√
3)i

)
.

We split (6.20) into two parts:

√
2r0r1

( ξ3
1
τ6 + τ6

ξ3
1

)
+

√
2r1r2

(τ15ξ3
1

ξ3
2

+ ξ3
2

τ15ξ3
1

)
=

2
7
√

21 − 2
3 −

√
3

, (6.21)

r0r2

( ξ3
2

τ21 + τ21

ξ3
2

)
=

1
2 − 3

14
√

21
3 −

√
3

. (6.22)

It follows from the calculation

64r2
0r

2
1r

2
2

(
√

3 + 1)4(3 −
√

3)
= 14 − 2

√
21

441 ,

14 − 2
√

21
441

(2
7
√

21 − 2 + 1
2 − 3

14
√

21
)

= 4
√

21 − 24
441 ,

that a solution of (6.21) and (6.22) is a solution of (6.20). Thus, to complete the proof, it 
suffices to show that ξ1 and ξ2 defined by (6.14) satisfy the equations (6.21) and (6.22).

The determination of ξ2. The equation (6.22) can be written as 

2�
( ξ3

2
τ21

)
= ξ3

2
τ21 + τ21

ξ3
2

=
√

7 − 3
√

3
2 , (6.23)

from which we obtain

ξ3
2

τ21 =
√

7 − 3
√

3
4 + i

4

√
6
√

21 − 18.

To avoid taking a cube root, we observe that the minimal polynomial of z := ξ2
31 over Q
τ
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1 − x2 − 3x4 − x6 + x8

has a factor

x2 −
√

7 −
√

3
2 x + 1

with z as a root, which gives

ξ2
τ31 =

√
7 −

√
3

4 − i

4

√
6 + 2

√
21.

We use this to define ξ2. It follows that this choice satisfies (6.22), since

ξ3
2

τ21 =
( ξ2
τ31

)3
=

(√7 −
√

3
4 − i

4

√
6 + 2

√
21
)3

=
√

7 − 3
√

3
4 + i

4

√
6
√

21 − 18.

The determination of ξ1. The minimal polynomial of both ξ
3
1

τ6 + τ6

ξ3
1

and ξ
3
1τ

15

ξ3
2

+ ξ3
2

ξ3
1τ

15 is

16x8 − 184x6 + 780x4 − 1018x2 + 1,

and they are roots of the factor

4x4 + (3
√

21 − 23)x2 − 12
√

21 + 55,

which gives

ξ3
1
τ6 + τ6

ξ3
1

= −1
4

√
46 − 6

√
21 + 6

√
6
√

21 − 18, (6.24)

τ15ξ3
1

ξ3
2

+ ξ3
2

τ15ξ3
1

= −1
4

√
46 − 6

√
21 − 6

√
6
√

21 − 18. (6.25)

From (6.24), we obtain

ξ3
1
τ6 = β − i

√
1 − β2, ξ1 = τ50 3

√
β − i

√
1 − β2,

β := −1
8

√
46 − 6

√
21 + 6

√
6
√

21 − 18.

Since ξ1 and ξ2 are defined as solutions of (6.24) and (6.23), we need to check these 
definitions are consistent with (6.25). This follows by the calculations

τ15ξ3
1

ξ3
2

+ ξ3
2

τ15ξ3
1

= 2�
( ξ3

1
τ6

τ21

ξ3
2

)
= 2�

{(
β − i

√
1 − β2

)(√7 − 3
√

3
4 − i

4

√
6
√

21 − 18
)}

= β

√
7 − 3

√
3

2 −
√

1 − β2

2

√
6
√

21 − 18 < 0,
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(
β

√
7 − 3

√
3

2 −
√

1 − β2

2

√
6
√

21 − 18
)2

= 1
42

(
46 − 6

√
21 − 6

√
6
√

21 − 18
)
.

Finally, we verify that our ξ1 and ξ2 satisfy (6.21). Substituting

√
2r±r1 =

√
28 ±

√
14(7 −

√
21)

√√
21 − 3

14(3 −
√

3)

and (6.24), (6.25) into the LHS of (6.21) gives

−1
56(3 −

√
3)

{(
56 + 4

√
14
√√

21 − 3 − 8
√

21
)

+
(
56 − 4

√
14

√√
21 − 3 − 8

√
21

)}

=
2
7
√

21 − 2
3 −

√
3

,

as required.

Remark. There are other relations between ξ1 and ξ2, e.g., the minimal polynomial of 
ξ1/ξ

1/2
2 is

16x48 − 31x24 + 16,

which leads to

ξ1

ξ
1/2
2

= τ33 24

√
31 − 3

√
7i

32 .

However, it is not possible to verify that ξ1, ξ2 developed from this satisfy the angle 
equations. �

The property (6.12) of the fiducial vectors v ∈ C6 we obtained ensures that the 
subvectors (

v1
v2

)
,

(
v3
v4

)
,

(
v5
v6

)

are fiducial vectors for the nice error basis E = {I, σ1, σ2, σ3} given by the Pauli matrices. 
In this way, the our SICs for C6 are built by “splicing together” those for C2.
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Appendix

Table 1
The canonical abstract error groups and index groups for the first few nice error frames, which are not 
bases, for 2 ≤ d ≤ 7.
d = 2 d = 3 d = 4
<12,1> <6,1> <36,11> <12,3> <80,28> <20,3>
<16,9> <8,3> <54,8> <18,4> <96,157> <24,8>
<20,1> <10,1> <63,3> <21,1> <96,215> <24,14>
<24,3> <12,3> <72,42> <24,12> <128,523> <32,27>
<24,4> <12,4> <81,9> <27,3> <128,545> <32,24>
<28,1> <14,1> <108,15> <36,9> <128,749> <32,34>
<32,20> <16,7> <108,22> <36,11> <128,782> <32,31>
<36,1> <18,1> <117,3> <39,1> <128,864> <32,6>
<40,4> <20,4> <144,68> <48,3> <128,880> <32,9>
<44,1> <22,1> <162,14> <54,5> <128,1750> <32,27>
<48,8> <24,6> <171,4> <57,1> <128,1799> <32,28>
<48,28> <24,12> <189,8> <63,3> <128,2146> <32,39>
d = 5 d = 6 d = 7
<250,8> <50,4> <252,16> <42,1> <392,39> <56,11>
<275,3> <55,1> <288,230> <48,3> <686,8> <98,4>
<375,2> <75,2> <288,896> <48,48> <1029,12> <147,5>
<400,213> <80,49> <288,982> <48,49> <1176,219> <168,43>
<500,25> <100,12> <288,986> <48,50> <1372,14> <196,8>
<625,7> <125,3> <324,20> <54,7>
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Table 2
Nice error bases for d < 14, d �= 8. Here H is the canonical abstract 
error group, G is the index group, and sic indicates that a SIC exists 
numerically.
d H G

1 <1,1> <1,1> = Z1 sic
2 <8,4> <4,2> = Z

2
2 sic

3 <27,3> <9,2> = Z
2
3 sic

4 <64,19> <16,2> = Z
2
4 sic

<64,94> <16,3>
<64,256> <16,11>
<64,266> <16,14> = (Z2 × Z2)2

5 <125,3> <25,2> = Z
2
5 sic

6 <216,42> <36,11> = Z3 × A4 sic
<216,66> <36,13>
<216,80> <36,14> = Z

2
6 sic

7 <343,3> <49,2> = Z
2
7 sic

9 <729,24> <81,2> = Z
2
9 sic

<729,30> <81,4>
<729,405> <81,9> sic
<729,489> <81,12>
<729,503> <81,15> = (Z3 × Z3)2

10 <1000,70> <100,15>
<1000,84> <100,16> = Z

2
10 sic

11 <1331,3> <121,2> = Z
2
11 sic

12 <1728,1294> <144,68> sic
<1728,2011> <144,92>
<1728,2079> <144,101> = Z

2
12 sic

<1728,2983> <144,132>
<1728,10718> <144,95>
<1728,10926> <144,100>
<1728,11061> <144,102>
<1728,13457> <144,136>
<1728,20393> <144,170>
<1728,20436> <144,172>
<1728,20556> <144,177>
<1728,20771> <144,179>
<1728,30353> <144,184>
<1728,30562> <144,189>
<1728,30928> <144,193>
<1728,30953> <144,194>
<1728,31061> <144,196>
<1728,31093> <144,197> = (Z2 × Z6)2

13 <2197,3> <169,2> = Z
2
13 sic
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Table 3
The nice error bases for d = 8. Those which are sub-
groups of the Clifford group are labelled with an *. All 
SICs are the Hoggar lines, except for H = <512,451>, 
G = Z

2
8.

H G

<512,451> <64,2> = Z
2
8 sic*

<512,452> <64,3> sic*
<512,35969> <64,8> sic*
<512,36083> <64,10>
<512,59117> <64,34> *
<512,59133> <64,35> *
<512,260804> <64,58> *
<512,261506> <64,67> sic*
<512,261511> <64,67> sic*
<512,261518> <64,67> *
<512,262018> <64,60> sic*
<512,262052> <64,62> sic*
<512,265618> <64,69> sic*
<512,265839> <64,68> sic*
<512,265911> <64,71> sic*
<512,266014> <64,72>*
<512,266267> <64,73>
<512,266357> <64,75> sic
<512,266373> <64,74> sic
<512,266477> <64,78> sic
<512,266583> <64,77> sic
<512,266616> <64,82>
<512,400195> <64,90> sic*
<512,400223> <64,90> sic
<512,400443> <64,123> *
<512,401215> <64,91> sic*
<512,402896> <64,128> *
<512,402951> <64,138> sic
<512,402963> <64,138>
<512,403139> <64,162> *
<512,406850> <64,174> *
<512,406879> <64,167> *
<512,406902> <64,179> *
<512,6276980> <64,192> = (Z2 × Z4)2 *
<512,6277027> <64,193> sic*
<512,6278298> <64,195> sic*
<512,6279917> <64,202> sic
<512,6279938> <64,202> sic
<512,6280116> <64,203>
<512,6291080> <64,226>
<512,6339777> <64,211>
<512,6339869> <64,207>
<512,6375318> <64,236>
<512,6376278> <64,216>
<512,7421157> <64,242>
<512,10481364> <64,261>
<512,10494180> <64,267> = (Z3

2)
2 sic
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