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ABSTRACT

Let B, be the multivariate Bernstein operator of degree n for a simplex in IR®. In
this paper we show that B,, is diagonalisable with the same eigenvalues as the univariate
Bernstein operator, i.e.,

my _ nt 1. BN OO BN BN ()
A, = Rk E=1,...,n, T=A"7>A"> > A\, >0,

and we describe the corresponding eigenfuctions and their properties.
Since B,, reproduces only the linear polynomials, these are the eigenspace for ,\Y‘) =1.

For k > 1, the )\,(v")feigenspace consists of polynomials of exact degree k, which are uniquely
determined by their leading term. These are described in terms of the substitution of the
barycentric coordinates (for the underlying simplex) into elementary eigenfunctions. Tt
turns out that there are eigenfunctions of every degree k& which are common to each B,
n > k, for sufficiently large s. The limiting eigenfunctions and their connection with
orthogonal polynomials of several variables is also considered.
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1. Introduction

This paper is the multivariate counterpart of Cooper and Waldron [CWO00], which
gave the spectral decomposition of the univariate Bernstein operator and applications.
Here we show that the multivariate Bernstein operator B, for a simplex in IR® is also
diagonalisable, with the same eigenvalues, namely

(), __nt 1 YO BN (O I
A= (= B nE’ k=1,...,n, 1=XN">X"> > A >0, (1.1)

and give an explicit formula for the eigenfunctions. The paper is set out as follows.

In the second half of this section, we define B,,, establish notation and give some
technical results. The notation used is based on that of de Boor [B87], which indexes
the barycentric coordinates by the vertices they correspond to, rather than imposing some
ordering on them. This leads to a compact notation which simplifies the calculations and
reveals the underlying geometry.

In Section 2, we give the diagonalisation and describe its symmetries. Since B,
reproduces only the linear polynomials, these give the eigenspace for ,\g’”‘) =1. For k > 1,

the )\,(cn)feigenspace is no longer 1-dimensional, as it is in the univariate case. It consists
of polynomials of exact degree k which are uniquely determined by their leading term, and
for which an explicit formula is provided.

In Section 3, we show that B, f takes a simplified form when f is certain ridge-type
functions. This is used to describe the eigenfunctions of B,, in terms of the substitution of
the barycentric coordinates (for the underlying simplex) into elementary eigenfunctions.
It turns out that there are eigenfunctions of every degree k£ which are common to each B,,,
n > k, for sufficiently large s.

In Section 4, we show, as in the univariate case, that the eigenfunctions (with fixed
leading term) converge as n — oc. We describe these limiting eigenfunctions and their
connection with orthogonal polynomials of several variables.

In Section 5, we give an interesting result about B,, applied to certain shifted factorials,
and some consequences of it.

We conclude with some comments about those aspects of the univariate theory which
have not been extended to the multivariate setting. The appendix contains a list of the
elementary eigenfunctions.

We now give the definitions which will be used throughout.

Definitions

Let V be a set of s + 1 affinely independent points in IR®, i.e., the vertices of an
s-simplex which we denote by T'. Denote by & = (§,)yecv the corresponding barycentric
coordinates, i.e., the unique linear polynomials which satisfy

Y a@=1 Y &@v=r VeeR

veEV veEV



We will use standard multi-index notation with indices from ZK and 727, so, for example,

=[] ™, aezmy, pl=pB! B, BeZ.

veV

The Bernstein operator of degree n for the simplex T" with vertices V' is defined by

n
Buvfi= 3. (a>£“f(va), vf € C(T). (1-2)
o
where | (v)
n n! a(v
=— Vo 1= vel.
() = = 2T
For V = {vg, v1,...,vs}, this can be rewritten as
a n\ .o o e ajvr + -+ oasvs + (n—k)v
R D e
k=0 |a|=k
aEZi

If T is the standard simplex in IR, i.e.,
V={0,eq,...,es} (e; the standard basis vectors for IR?)
then (1.3) becomes (cf [L53:(13),p. 51])
- n - aq O
Bnf(z) = O g (] — gy — e — )R (——) 1.4
() ,EZ_@ RPN L] S B )

It is well known that B,, y maps onto II,,(IR*) the polynomials of degree n in IR®.

Let Sy be the symmetry group of the simplex T' with vertices V, i.e., the group of
affine transformations which map T onto T'. This is (isomorphic to) the symmetric group
on the s+ 1 vertices V since an affine map IR® — IR® is uniquely determined by its action
on s + 1 affinely independent points. It follows from (1.2) that

Bav(foA) = (Bavf)oA,  VfeC(T), VA€ Sy. (1.5)

We let Sy act on functions p € C(T) and linear functionals p defined on C(T') in the usual
way, i.e., for A € Sy

A-pi=poA™t,  (A-p)(f):=u(foA), VfeC(T).

For B € Z‘_ﬁ with |3] = k and h > 0, define the multivariate shifted factorial by

€ = [Tl ey, [6]7Y) == €& — h) (€ — 2h) -+ (& — (B(v) — 1)h).

veEV



and the multivariate Stirling numbers of the first kind from the univariate ones by

= [[ 5(5(v).a).  a<p. (1.6)
veV
These are related by
=8B, gy, Ve ZY, Vh>0, (1.7)

aslp

which follows from the univariate result

B(v)
&= 3 S(BW), aw)h O, 7,
a(v)=0
by the calculation
B(v)
= S(p (v))RP @)= (v)[gv]z(v)
vE V a(v)=0
=> ( a(v)) =), ]zw))
a<p \veV
= > S(8,a)hP g
aslp

A special case of Theorem 5.2 of Section 5 is that

S|

nv (€0, =\, Bl=k<n,

where )\,(:) are the eigenvalues defined by (1.1).
For a € 7ZZY with a(vg) = 0 and h > 0, let Aj ,, be the multivariate difference
operator defined by

= X ()0 e n S s - (§) = gty 09

B<a veV
B(vg)=0

v
pezy

Let e, € ZK be the multi-index with

1, w=uw;
ey(w) 1= {0

otherwise.



Lemma 1.9. Let o € ZV with a(vg) = 0 and h > 0. Then Ay  satisfies

’U

Ay, f=FfC+h—v))—f AT F=AR (A) ), (1.10)
and 5 alre1f
a 1B PR ME T, a < B
o €l = {(()[,3 ) " otherwise. (1.11)

Proof: From the definition (1.8), we have

Aptye = F+ (v =w0)) = f.

Since the first order differences A,el”vo and AZ“JUO commute, to prove the second part of
(1.10) it is sufficient to show

« €v " €v

roo= 11 AR, AR (1.12)
veEV ~" -
v#ug a(v) times

by induction on |a|. For [a| = 0 we have Aj f = f. Now suppose a(w) > 0, for some
w € V, then by the inductive hypothesis

H Ah R Alelvvo f Ah UoAz U(?w

NS
veEV ~~
v#vg a(v) times

=i, 30 (") 0T S e - )

e veEV
B(vg)=0
semy
SN PN [CIECHER S CITE)
< w veEV
B(w)>0
U2 () w
i "
h , V0 f7

which completes the induction.
For distinct points vy, v, w € V, it can easily be shown that

5v('+h(v_'00)) =& +h, Sw(""h(v_vo)) = &w,

from which it follows that, for v # vy,

Blw)hlnly™ ™", w=;
A (6l ) = { FOHMELT 0= (113
Substituting (1.13) into (1.12) then gives (1.11). O



2. The diagonalisation

Our diagonalisation is based on the representation of B,, y f in terms of the basis

By, = {¢* 1 € ZY, a(vg) = 0,]a| <n}, v eV

(2.1)

for TI,,(IR*). For the standard simplex and vy = 0 this is the monomials. The matrix
representation of B,, yy with respect to B,, is block triangular. From this we obtain the

eigenvalues and a basis of eigenfunctions.

Lemma 2.2 (Block triangular form for B,, v). Fix vqg € V. Then

Bn,Vf - Z <Z>§QA%’UOJ[(UO): vf € C(T);

|| <n
a(vg)=0

zV
a € +

and, in particular,

Buv(e)=angr+ S BP0  ygemy g <n.

= (n—laf)!
a(vg)=0

Proof: In definition (1.2), split & = v 4+ a(vo)ey, to obtain

Buvf= Y @w |7|f<w+<z—fy>vo>.

[vI<n
v(vg)=0

zV
vezy

Since ), oy & = 1, the multinomial theorem gives

g —a- el <”_B'7>(_1)IB§B_

vevV [BI<n—l|v]|
v#vQ B(vg)=0
\%4
3€Z+

Hence we obtain

vi= Y % () (") (i)

[v[<n  [B|<n—]|v] v
v(vg)=0 B(vg)=0

- ¥ (1) et

a(leS:O

where

(2.3)

(2.4)

(Z) ¢l Z Z Z <:> (” —/B’Y> (—1)l8lf <|’Y|v7 + (Z - |7|)UO> _

+B8=a I7I<n [B]<n-— \"/\
7 v(vg)=0 B(vg)=



This gives (2.3), via the simplification

o (g oln ) Wby
L R DI T T ey

Y<a
v(vg)=0

< (10 2ol = i)

S <O‘>(_1)la—v|f <vo+%2'y(v)(v—v0)>

v<a v veV
v(vg)=0

= A%}vof(vo).

By (1.11) and (1.7)

K =05, OSBRI =Y S8R AL, (€7)

v<B v<B

— Iﬁ—v\’yi!
> SB)h =)

la|re1y—a
aly<p

Since

otherwise,

(€177 (vo) = { (1) v =q;

this implies

(A€ un) = { p15O T o 25)

0, otherwise.

Hence, substituting f = £#, |8| < n, into (2.3), and using (2.5), gives

B = Y (Do, = ¥ oo eas@a (1)

la|<n a<p
a(vg)=0 a(vg)=0
which can be rewritten as (2.4). O

Let py denote the leading term of the polynomial p, i.e., the unique homogeneous
polynomial that satisfies

deg(p — pt) < deg(p).
Denote by TI{(IR®) the homogeneous polynomials of degree k.
Theorem 2.6 (Diagonalisation of B,, ). The multivariate Bernstein operator B, v is
diagonalisable, with the same eigenvalues as the univariate Bernstein operator, i.e.,
n! 1
(n— k) nk’

A = k=1,...,n, 1=2A">AM>...5amso



Let P,gn& denote the )\,(Cn)feigenspace. Then
P =1(R*),  Va. (2.7)

For k > 1, P,gn‘; consists of polynomials of exact degree k, which are uniquely determined
by their leading term, i.e., P,g’n‘; is isomorphic to TI(IR*) via P,g’n‘; — TIY(IR?) : p — py.
Let p&n), deg(f) = k < n, denote the )\,(qn)feigenfunction with leading term fy. Then (for
vg € V fixed) a basis for P,gn& is given by

(v : B e ZY, Bloo) = 0,18 =k}, ) =D cla. Bin)E”, (2.8)

asp

where the coefficients can be calculated using the recurrence formula
c(/87/87n) = 17

18]
clor, Bym) = -

[~ o]}~ — ni=a

> S(%a)c(v,ﬁ,n), a < f. (2.9)

n|'7|
a<y<p

Let M,gne, denote the dual space to P,g’n&, i.e., those p € span{f — f(v,) : || = n} for
which
w(PO) ={0},  Vi#k(i=1,...,n).

The spaces P,g") and /\/l,(cn) are Sy —invariant, i.e., they have the symmetry properties

Sy P =P, Sy MM = pm,

3

Proof: Since B, v maps onto I, (IR*), it follows from (2.3) that B,, of (2.1) is a
basis for IT, (IR*). We now show that the linear operator defined by 1 : p — py takes B,,
to another basis for II,, (IR?), i.e., the homogeneous polynomials

By, = |J{(€%)1: B € ZY, B(vo) = 0,|8| = k} (2.10)

are linearly independent. Suppose that

Y apePlr=0 = > aptf=p, TpeT_(R).

[Bl=k |18l=k
B(vg)=0 B(vg)=0

3

Then for § € ZK with |§] = &k and §(vg) = 0, (1.7) and (1.11) give

A(;L,’Uo (p) = A(;L,’Uo( Z ag Z S(Bv Of)hw_a'[f]g) = a5 = 07

|Bl=k a<p
B(vg)=0



which proves the asserted linear independence.
The linear eigenspace (2.7) is well known. For k > 1, we will use (2.3) to show that

B, v has )\,(Cn)feigenfunctions of the form
p = el Bn)e* =€ + 3" e, fon)e™ € €7 + Ty (RY) |l = k. B(vo) =
a<f a<pf

Since T maps these to a basis for II{(IR"), they are the basis of a subspace of P,gn& which
is isomorphic to I (IR®) (via p pT) The dimension count

dim(II; (IR*)) + Z dim(ITY (IR*)) = dim (T, (IR*)),
k=2
shows this subspace is all of P,gn&, and so B, v is diagonalisable.
We now show such eigenfunctions exist. Substituting

f = Z c(a,ﬁ,n)fo‘, ‘B| =k, B(UO) =0 (211)

a<p
into the eigenfunction equation B, v (f) = )\(n)f, and expanding using (2.4) gives

S ey, B.n)Bay(€) =Y ey, B,n) nm Z |a| =S e(a, Bon)g

v<B v<B a<p
Equating coefficients of the linearly 1ndependent functlons £“ in the above gives

|
APefo, gy = 3 22 S0 g )

_ |
e nhl (n — |a|)!

|a| (a Bv ) Z n—'MC(’Y,ﬂln)

—\
v (n — !

For o = f3, (2.12) is satisfied for any choice of ¢(3, 3,n). Suppose that ¢(8, 8,n) := 1. For
a < f3, (2.12) can be rewritten as

(2.12)

1 n! Sy, «a)
clonfom) = ——L 3 SO g
n n IVl (n — !
n/Al S(v, @)
= —a E 7‘6(7:6:”)'
[n—Jalf"* = nlimel Sy

This recursively defines ¢(«, 8,n), a < B from ¢(8, 3,n), and hence an eigenfunction of
the form (2.11) exists and is given by (2.9).

For p € PIE"& and A € Sy, (1.5) gives
Buy(poA) = (Bayp)o A= (M\"p)oAd=2"(poA),
so that po A € P,gn&, and P,gl‘; is Sy —invariant. Similarly, for u € ./\/l,(:‘), and A € Sy,
(A u)(P(")) u(P) o A) = p(PI) = {0}, j#k(j=1,...,n),

and hence ./\/l V is Sy —invariant. O



3. Elementary eigenfunctions

If p,(cn) is the )\,(cn)feigenfunction (k > 1) of the univariate Bernstein operator for the
standard simplex T' = [0, 1], then it can be shown that the s + 1 polynomials

pyl ot wev

are )\,(v")feigenfunctions of B, v (which are linearly independent for s > 1).

The above is a special case of the main result of this section, which effectively says
that each eigenfunction of B, y is also an eigenfunction of all Bernstein operators for
higher dimensional simplices when interpreted appropriately. This we describe in terms of
the substitution of barycentric coordinates into so called ‘elementary’ eigenfunctions. The
result is based on the following generalisation of the affine change of variables (1.5).

Let B,],f{d denote the Bernstein operator for S, the standard simplex in R, i.e.,
Sqg:={(x1,....29) e R :zy,..., 29> 0,1 + -+ x4 < 1}.

Lemma 3.1 (B, v applied to multi-ridge functions). Let A:R* — IR? be an affine
map onto R?, with W := AV. Then

Bpv(goA) = (B,wg)o A, Vg € C(AT). (3.2)
In particular, for d < s distinct points vy,...,vq4 € V
d
Bn,V(go(fvw"'?gvd)) = (BFL{ g)o(£v17"'7§vd)7 VQEC(Sd)v (3'3)
where &, are the V—barycentric coordinates, and (&,,, ..., &,,) is the affine map

R* — R : z— (&, (x),...,&,(2)).
Proof: Since A is affine, W := AV is the set of vertices of a simplex in IR%, and

A maps {vy : a € ZY,|a| = n} onto {wg : B € ZY ,|B] = n}. Let £ = (£,) denote the
V-barycentric coordinates, and n = (1,,) the W-barycentric coordinates. Then

o) = ¥ (Destan = X5 (et

laj=n [Bl=n A\a\ n
+ + Va=w
€% BEZ, +B
aE%V

and



Hence to prove (3.2), it is sufficient to show that

> (Z)E‘” - (Z)nﬂ oA VBETZy, 1Bl =n. (3.4)

[o|=n

A'ua:wB
aGZ?;

We now expand the RHS of (3.4) in terms of the basis {¢® : a € 7Y, |a| = n} for IT,, (IR®).
Observe that n,, o A is the affine map IR®* — IR with

1, Av=w;
(nw % A) (U) - {07 otherwise, veV,
ie.,
nw O A — Z 5’07
veV
Av=w
so that

Pod=([[ il od= [ (od)™ =T (3 &)™.

weW weW weW wveVv

Av=w

By the multinomial theorem

(2 &)™ =0 > &= 3 (BQ;”))@,

vEV Av= [8]=B(w)
Av=w ’UE{’U v H)} supp 6 C{v:Av=w}

+
5EZV

and so we obtain

(Vo= Y (- T a6

weW \5\:{5(10) ) \&\:i
supp 6C{v:Av=w
s T QE%V
EZV

where the coefficients ¢, can be determined by expanding the product. It remains to show
that ¢, equals the coefficient of £€* in LHS of (3.4), i.e.,

n
Co = a/) » Ava = wp;
0, otherwise.

Since V' is the disjoint union Uyew {v : Av = w}, the coefficient ¢, is zero unless



which implies

:Z&

veEV weW vev weWw

Av=w

Av, =

In this case, suppa C {v: Av = w}, so

o= (3) I (a0 ) == (2):

and we conclude (3.4) holds.
Since each &, is affine, the map A := (&,,,...,&,,) is affine. From

Av:{ei’ - vev,
0, otherwise,
it follows that
W :={Av:veV}={0,eq,...,eq} = AT =S5y,
ie, B,w = B,]E{d, and (3.3) is proved. O

(n)

Definition. For k > 1, the d-variate elementary )\, ’—eigenfunction

pl(:? Lk IRd—>IR, Ei=ki+-+kg<mn, ki,....kg>1

is defined to be the )\,(v")feigenfunction of B,],lfd with leading term z¥' - . Zd.
These can be computed via
p) @)= Y e Bon)a,  Be= (k... ka), (3.6)
aexd

where the coefficients are determined by the recurrence (2.9). This notation is consistent

with that of [CW00:(2.6)], where the )\,(c")feigenfunction p,(cn) is precisely the univariate
elementary eigenfunction defined above. Observe that changing the ordering of k1, ..., kg
leads to essentially the same elementary eigenfunction (the coordinates are just reordered).

Theorem 3.7 (Elementary eigenfunctions). Let vy,...,vq bed < s+1 distinct points
in V. Then

p](!;? 7 (51)17"'76’1}(1) _pkl? 7 0(6’1}17"'76’1}(1)::[]-:{5_)]}{

is the )\,(cn)feigenfunction of By v with leading term (€5 .- ¢ka), e

pg;) _p](g) K (fvlz' ":fvd)v ﬁ = (klz' "7kd)-



This has a factor of &,,,...,&,,. Indeed, when ky,..., kp, > 1, kppy1 =---=kqg=1

D) oo o) = o E0u (o E0), g €T_g(R™),  (3.8)
where . R R
g(z) = gﬁffd(.r) = Z a(d, B, d,n)x?, B=((ki—1,....kn—1), (3.9)
5<B
JEZT

can be calculated from a(B, B, d,n) =1, and for § < B the recurrence

R IE] S R
n y+(1,...,1),6+(1,...,1
a’(étﬂv d: n) = |B—5\ A Z ( ( )7 ( ))a(%ﬁ, d,n)
[n—l0|=d]y ™" = nlP=0l s < "
’YE%T
(3.10)
Moreover, all eigenfunctions of degree > 2 are zero at each of the vertices V, and
(n)
n b T
pl(c—)l (21, m2) = E ( 1)372- (3.11)
’ r1 — 1
Proof: By Lemma 3.1 and the definition of elementary eigenfunctions

n d (n
By (0 4,0 oo o)) = (BE D Y0 (€unsen e o)
- (Al(cn)pl(c??,kd) ° (51)17 ey fvd)
= )\I(vn)pl(c??,kd © (E’UN T é.’l)d)v

so that p,(g) gy (ors o or6uy) i @ )\,(qn)feigenfunction of B, v, and since

geeny

(n) _ .k ka
Dhy. ok (z) = 27" -+ 23" + lower order powers of z,

its leading term is (&5t - - - gk,
For @ < (1,...,1), i.e., a; = 0 for some 7, one has S(v,a) = 0, and so by (2.9) the
coefficients in (3.6) satisfy

c(a, B,n) =0, a<(1,...,1).
This allows us to divide (3.6) by (1~ to obtain (3.8), with

(n)
pk 7"'7k (:I:) a—
9(x) = ;:(1,.--71) - Z c(a, f,n)z )

— Z C(a,ﬁ,n)xa_(l"“’l)

a—(1,..., 1)<(3,0,..., 0)
aEZd

+
= Z a(6,,f3’,d,n)a75,
5<h
JEZT

12



> S (0.0, 04 1) o

Making the substitution 4 = (v,0,...,0) + (1,...,1) in the summation above gives

> S((%O""’1)+(1""T’le);(f’o’”"0)+(1"'"1))c((%0,---,0)+(1,---,1),B,n)

s<~v<B
Zm
VERT

S S(7+(17---71)75+(17---71))a(7,/3’,d,n),

s<~v<pB
%m
veZT

and so we obtain
nk—d
[—(6]=d]y™"™" — nhlol=d

5 SO D0 )

nw7

s<y<B
Zm
vexT

which is (3.10).
In [CWO00:(2.11)], it was shown that p,(cn)(l) = 0, k > 2. This together with the fact

1, w=uw;
§o(w) = {0, otherwise

implies all the eigenfunctions (3.8) of degree > 2 are zero at the vertices v € V.

13



Example 1. For pg’”‘fl we have 3 =1 € Z (d = k — 1), and g is the univariate

linear polynomial g(x) = z + a(0,1,k — 1,n), where
n! S((2,1,...,1),(1,...,1)) 1

a(0,1,k—1,n) := Y — ! :_(k—l)'

Thus

1
pg,ll),...,l(gmv R ka—l) aESTRE 'f’l}k—l <§v1 B m)
is a )\,(cn)feigenfunction of B,y whenever 2 <k < s+ 2.
Since this function is independent of n, it follows that there are eigenfuctions of degree
k which are shared by all B,,, k > n, for sufficiently large s.
Example 2. For pgnl)l we have 8 =2 (d = k—2), and g is the univariate quadratic
polynomial g(z) = 22 +a(1,2,k — 2,n)x + a(0,2,k — 2,n), where

n? S(3.2) 3
A2k =2n) = T T T e o D)
n 2.1 —
2k —2.n) = ’ ’
a(0, 2, ,1) [n_(k_g)]%_rﬂ{ n (k_l)‘l' n2 }
_ n’ = 1
Tk +3n+k2—3k+2 \n(k—1)  n2
B 3n—k+1
~ (2nk —3n—k2+3k—2)(k—1)
« s e 2_7 n_ _'_
61)1 ka,Q (&1}1 (k . 1)51)1 + (2nk — 3n — kz + Sk — 2)(l€ — 1))

is a )\,(cn)feigenfunction of By, v whenever 3 <k < s+ 3.

Example 3. For pg@ll we have 8 = (1,1) (d = k — 2), and ¢ is the bivariate
quadratic polynomial g(z) = x122 + ¢1(x1 + x2) + c2, where

¢ =a((1,0), 8,k —2,n) = a((0,1), 3,k — 2,n)

B n? S5(2,1) 1
m—k+1)—n n2  (k—1)
and
—— o o n) = n2 5(271) —1 S((272)7(171))
=00 k=20 = g ey ¢ SRR

2n—k+1
(2nk —3n —k2+3k—2)(k—1)

14



Thus, for k > 4,

(n) . _
p2,2,1,...,1(5’3)—ﬂ71 Tk—2 | T122

x1+x2+ 2n —k+1
(k—1) (2nk—3n—k24+3k—-2)(k—-1))

A list of the elementary eigenfunctions up to degree 5 is provided in the appendix.

4. Limiting eigenfunctions

Here we show that the )\,(Cn)feigenfunctions '™ converge as n — oo to a limit P}
Moreover, the limit of the factor (3.9) of an elementary eigenfunction is a multivariate
Jacobi polynomial. This extends Theorems 4.1 and 4.5 of [CWO00] to the multivariate
setting. Let e; be the i—th unit vector in R™, and (), the multivariate shifted factorial

(/B)Oc = (/81)061 e (/Bd)ad7 (/Bi)ai = 62(62 + 1) e (ﬁz + a; — 1)7 6 € IRd7 oS Z(—il—a
with (2)5 = (2)51 <. (2)5m.
Theorem 4.1 (Limiting eigenfunctions). Express 7, 3 € ZK, Bl =k in the form
B _ ¢kt kq — _ _ _
é. _gyl"'é.vdv k_k1++kd7 klv"':km>17 km-l-l_"'—kd_l:
where vy, ...,vq are d < s + 1 distinct points in V. Then the coefficients of (3.9) satisfy

~ A

lim a(8, B,d,n) = a*(0, B, d) i= (—1)k—d_F1t " Km!

n—00 Y (k-I—d— l)k—d

(k+d— 1)w%%. (4.2)

(n)

Thus, pgz converges uniformly on T to pzﬁ =&, &9, ..., &, ), where

3

9(@) = g5 (@)= Y a*(8,8,d)2°,  Bi=(k1—1,... kn—1). (4.3)

5<B
semm
€ry

Proof: First we prove by strong induction on \B — 4| that a(&B, d,n) converges
to a limit a*(0, 3, d) as n — oo, which satisfies the recurrence

m

- -1

a* (0,8, d)

A

1B 5Z 62 *6 i7A7d7 ) .
N dT D o Gt DO DG e fd) <3

8;+1<k;—1

(4.4)
Clearly lim,, oo a(B, B.d, n) = 1, which begins the induction. Suppose § < A. Since

A_ N 1 N ~
[n—\é\—d]'lﬁ o _ plA—ol = §|5 —6/(1 =k —d—|8])n"=%= 4 lower order powers of n,
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all the coefficients

n—8|—d)f =" — ni#=o

S(y+(1,...,1),64(1,...,1)),

of a(%B, d,n) in (3.10) converge to 0 as n — 0o, except those for vy = 0 + ¢; < 3 which
converge to

SG+ei+(1,...,1),6+(1,...,1) (6 + 1) (8 +2)

LB —68|(1—k—d—|[5) CB-0l(k+d+1s|—1)

Using this and the inductive hypothesis, we can take the limit of (3.10) to obtain

A A

lim a(d,8,d,n) = a*(0,3,d),
n— o0
which satisfies (4.4).
The limits a*((S,B, d) are uniquely determined by a*(B,B, d) =1 and (4.4). We now
show that the a* defined in (4.2) satisfies these, and so gives the desired limits. The case
0 = [ is trivial, and so it suffices to show

N

A N (=B)s 1
b(6,B,d) := (k+d— 1) @), 0
satisfies the recurrence (4.4). For § < B, we compute
> (6 10 +2)b(0 + e, B.d)
biti<hi—1
. (_B)é-i-el 1
= 0, + 16 +2)(k+d—-1 e —= :
S,4+1<k;—1
“A)s 1 moo.
= a0 L a1 Y A
(2)5 0! i=1

= —b(5.B,d) (k+d+ 16| — 1)|3 — 4],

as required. Since the sequence péz) is contained in the finite dimensional space Ilg, it

converges to pZB € II; in any norm, and in particular uniformly. O
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Let Py, denote the space of limiting eigenfunctions, i.e.,
Pfy =11 (IR?), Py = span{ng B e ZK,B(UO) =0,|8 =k}, k>1,

which is Sy—invariant. It follows immediately that each sequence of eigenfunctions p(n),
fr € M(IR?) converges as n — 00 to some p} € Py y,.
The Lauricella function F' = Fy (see, e.g., [E76:Chap. 2]) with arguments ¢ a

scalar, and 3,7, z vectors from IR? (or RY) is defined by

(B)a z*
(’Y)oz al’

Fle,Bivizm) = Y (0)al ceR, B,y,z€R™

aEZi
Theorem 4.5 (Identification of pf;). The function g of (4.3) can be expressed as

Fal- B!

Fk+d—1.—A;Q;
(k—i—d—l)k_d ( ’ 5 ZE)

3

g} () = (— 1)

Proof: From (4.2), (4.3) and the definition of F', we have

ggjd(x) — (_l)k—d kil k! Z (k-i—d— 1) (_B)éx_(s

(k"—d—l)k_d o 0] (2)5 6!
ae’zf
k' k! IR
= (—1)k—d m Fk+d—1,-8;2;2).

A

Define d-vectors  := (3,0,...,0), |f| =k—d, k= (1,...,1) and £ = (&,,---,&,). Then

F(k+d_17_3;3(&)1:-'-751}”1)) :F(|ﬂ‘+|ﬁ‘+(d_1)7_6,"3+1;§)

O

In [WO01] it is shown that the factor g(&,, - - - &, ), d > 2 of pf, is the (multivariate)

Jacobi polynomial of degree k — d for the simplex with vertices {v1,...,v4} and weight
&, -+ - €, Which has leading term (&b —1... ¢hm=1),

U,
Example 1. Consider the univariate case T = Sy := [0, 1]. Here the barycentric coordi-
nates are &y(z) = 1 — x and & (2) = 2. For é#(z) = 2F we have d =m =1, B =k — 1,
giving

k!

(@) = x(=1)*! o F(k,1—k;2;2)
= x(—l)k_l%glﬂ(l — k,k; 2;x).

17



Similarly, the leading term of z*~1(1 — z) is —z*. So taking ky =k — 1, ks = 1, m = 1,
d=2,3=Fk— 2 gives

* _ -2 (k B 1)'
pi(x) = —2(1 — 2)(-1)* it s

Kk —1)!
2k — 2)!

F(k+1,2—k;2;x)

= oz~ 1)(-1) JFL(2 — e+ 15250),

and so we have the result of [CWO00:Th. 4.5], that

k(% — 2)!

pr(r) = mx(ﬂﬁ - 1)P151_’;)(233 - 1), k>2, (4.6)

where Pj(l’l) are the (univariate) Jacobi polynomials which are orthogonal with respect to
the weight (1 —¢)(1 +¢) on the interval ¢ € [—1,1].

Example 2. For each py, . 1,, d > 2,

Pk, k (T1,...,2g_1, 1 — 2y — - —Tq_1)
(1, g) oy ormha 1
.rl"'.’lfd_l(l—xl_..._xd_l)
is a Jacobi polynomial of degree k —d for S;_; with weight 21 -+ z4_1(1—21 —---—24-1).

5. B, v applied to shifted factorials

The following result is of independent interest. In particular, it shows that

Buyv(€,) =A€7 1Bl=k<n, (5.1)

which can be used to give an alternative proof of the diagonalisation of B,, v .

Theorem 5.2 (B, v applied to shifted factorials). Recall for § € ZK with |8| =k <

B S | O (O (N B AU R P

veV

Then
Buv([€)])9) = N Bu_iv (g (252 - —Lug)),  WgeO(T), (5.3)

where the Bernstein polynomials in (5.3) depend only on the values
{9(va) r v € ZY , |a| = n,a > B}. (5.4)

18



In particular, taking g =1 in (5.3) gives (5.1). It can also be shown that

Bnokv(g (%5 —5vp)) = (Ba-rwg) o (U35 - —Rvp), W= 2EV—Dvg. (5.5)

n

Proof: Since v, is an affine combination of the points in V'

Ev(Va) = Z oz(nw) (w) = #, a € ZK, al =n,

weV

and we have

(€12, (va) = TT 2 (CY(”;— 1) <a<”7>1— 2) (a(w — (B(v) - 1>>

veV (56)
_ 1 Jal/(a=B) a>p;
~nk |0, otherwise.

This implies Bnyv([ﬁ]f/ng) depends only on (5.4). For a« > 3, |a| =n

vazza(z)vzn;kz(oé(v)—_kv Lk ZB n_kva_ﬁ-i-%vﬁ,

veV veV UEV

and hence by (5.6) we obtain

B (€)= s 2 (1)er ™ g0ten)

O<>B
__nt 1 n a—p _k
- (n—k)!nkf a;nk (a—ﬁ)f ( o B UB)
a—B2>0

= MV By (g (25E - —Eyg)).

Applying (3.2) with A := "T_k : —%vg, gives (5.5). O

Let Vi, :={vy : @ € ZK, \a| = n}, then Theorem 5.2 relates the support of the mesh
function fl|y, to factors of B,(f).

Corollary 5.7. Choose 3 € Z‘_ﬁ with |3 = k < n, and define
Vg i={vq €V, : > B},
Then the following are equivalent
supp(flv,) C Vs = [§ ]1/n (flv,) <= €| B,v(f), VfeC(T).

19



When this holds
Bu(f) = M Buonw (F/1€]])) 0 (252 - —Eug) . W= 22ky — By,
Proof: From (5.6), we have
Vs = {va € Vo : [€]],,(va) # 0},
and so
€17

By Theorem 5.2,

(flv.) = fva) =0, Vs € Vy\ Vg <= supp(fly,) C V.

(flv.) <= f|Vn:([f]f/n)\vn(f/[f]f/nﬂvn
= Buy(f) = Bav (€, (1/€F,)
= Buv() = NP Burw (F/IE7,) 0 (252 - —Lup).

€17,

Now suppose that &7 ‘ B v(f), then

Buv(f)/&F = (Z)f"“ﬁf(va) €, 1(R*) = f(va) =0, Ya—LB %0

|a|=n

= supp flv, C V3.

6. Concluding remarks

We conclude with some comments about those parts of [CW00] which have not been
generalised here.

The common zeroes of the eigenspaces P,gn& do not have the rich structure of the
univariate situation (k real zeros in [0, 1] with estimates on their location). Indeed, by
considering the factored form of elementary eigenfunction pl(cn—)s—l,l,...,l it follows that the
common zeros are just the vertices V.

By choosing a basis of eigenfunctions for B, v, say that of (2.8) with i = pg;), one
can write down a diagonal form

Bovf=Y M"Y pMu(f),  vfec(m), (6.1)
k=0

|o|=Fk
a(vg)=0
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where the dual functionals p((x") € M,(Cn‘), can be found explicitly by solving the linear
system obtained from

pM(pS)) = bap. Vo B

None of the formula so obtained are nice enough to be worth recording. Recent results of
[WXO01] using (tight) frames to represent Jacobi polynomials on a simplex indicate that it
might be more profitable to consider a redundant, but more symmetric, representation of
the form

Bovf =Y X" 3" pMu().  vieom)
k=0

|a|=k

where the inner sum involves all of the Sy —invariant spanning set {p&n) to € ZK, la| = k}.

In [CWO00] it was shown that dual functionals such as pi in (6.1) have a limit as
n — oo (as functionals on the polynomials). The argument given relied on the fact that
dividing pl(vn), k > 2 by the product of the barycentric coordinates (for the interval) gave a
sequence of Jacobi polynomials for which an orthogonal expansion could be used. In the
multivariate case this is no longer possible (not all eigenfunctions are divisable by each
barycentric coordinate). It is believed that such limits do exist, and that they might be
found by an appropriate orthogonal expansion (possibly involving Sobolev orthogonality).

There has been some work on iterates of the bivariate Bernstein operator by [LiP87]
and [CF93] generalising the methods of [KR67] (see the comments in [CW00:Sect. 5]).
By setting the eigenvalues in (6.1) to 1 we obtain, similarly to the univariate case, the
operator

n
Ln,Vf = Z Z ((ln) z(xn)(f): Vfe C(T)
k=0 lal=k
a(vg)=0
of Lagrange interpolation from II,, at the ‘simplex points’ {v, : |@| = n}. The classes
of Bernstein quasi-interpolant operators proposed in [CW00] can then be defined in the
obvious way. The eigenstructure of the multivariate Kantorovich operator can be deduced
in the same was as in the univariate case, see, e.g., [LiS96] (and references therein) for a
discussion of the properties of this operator.
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7. Appendix

List of the elementary eigenfunctions for £ =2,...,5
. () n!
degree 2, i.e., A" = (n—2)n2
pg")(.r) = .T1($1 - 1)
") (z) = 2122
. n n!
degree 3, ic., A" = (n—3)In3

pén)(-r) =z1(ry —1/2)(21 — 1)
pg,ll) () = x122(21 — 1/2)
(n)

p1,1,1(~T) = T122T3

. (n) _ n!
degree 47 L.€., )‘4 - (n _ 4)ln4
. —1
pfl )(:17) =xz1(x1 — 1) (ﬁ — Tt 57711 _ 6>

n n—1
péf(-r) = T1%2 <:Erf —x1+ — 6)

(n)(a:)—a:a: T1T —lx —lgc +M
P32 = T1T2 1T2 3 1 3 2 3(5n—6)
pgfl)’l(.r) = zr12923(x1 — 1/3)

p§n1)11($) = T122T3%4

: n n!
degree 5, i.c., )\g ) — CEEE
(n) 9 n—1
= —-1/2 -1 _
py (x) = z1(x1 — 1/2) (71 )<g;1 r + 7n_12>
n—1
pA(L L(x) = z132(21 — 1/2) <x% —z + - 12)
1 3 3(n—2)
pg 2)('75) = L1722 (331332 - Z'ﬁ — 7 %1% + 207n = 12).761
3n—4 n—2
Tro —
4(7n — 12) 4(7n — 12)

(n) (z) = 21227 :r:2—3x . 3n —4
P3ia = 1Ty | Ty — LT 1(7n = 12)

(n) (x) = x120% .’L'.’L'—l,r—l{[; +n7—2
D221 = T1¥2¥s | M1z — A1 T L2 207 = 12)

pgn1)11(f”) = r1292324(z1 — 1/4)

(n)

p1,1,1,1,1(~T) = T1X2X3T4T5
22



[B87]
[CWO0]
[E76]
[M75]
[KR67]
[LiP87]
[LiS96]

[L53]
[CF93]

[WO1]

[WXO01]

Formula for the elementary eigenfunctions of degree &

P, ..,1(55) =Ty Tk
. 1
pgl)l(x) =T Tg—1 <5’31 - (k — 1))
(n) (.I‘)_.I‘-’L' x2_ 3 xr1 + 3n_k+1
D3t a8 =8 =2 \ 0 = Ty T T 30 k2 1 3k — 2)(k — 1)
P22.1,..,1\7) = T1 P2\ T (k=1 " (2nk —3n— k2 + 3k — 2)(k — 1)
(n)
n Py (71)
pl(c—)l,l('r) = ;1 -1 T2
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