Metrics Associated to
Multivariate Polynomial Inequalities
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Abstract. We discuss the Carathéodory type distance due to Dubiner
for a compact set K C IR™ and introduce a Finsler type distance
based on Baran’s generalization of the van der Corput - Schaake poly-
nomial inequality. We then discuss the examples of K a sphere, ball,
cube and simplex.

§1. Introduction

As is well-known, there is a beautiful, and by now well understood, in-
terplay between univariate polynomial interpolation, classical orthogonal
polynomials and complex potential theory. A specific example of this is
the fact that all “good” sequences of interpolation points on the interval
I := [-1,1], along with the zeros of the classical orthogonal polynomi-
als on I, must have the asymptotic distribution of the so-called arcsin
measure:
duy := 11 dx
SV
By fortuitous circumstance, this also happens to be the equilibrium measure
of complex potential theory (see e.g. the monographs of Szégo [11] and
Saff and Totik [10]).
The Chebyshev polynomials T, (z) := cos(n cos™(x)), z € I, provide
a particularly good example of this phenomenom. On the one hand they
are orthogonal with respect to the equilibrium measure itself, and on the
other hand their zeros are the prototype of a good set of interpolation
points. Specifically, these zeros are

zr =cos(fk), k=0,1,---,n—1
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where 0y, := (2k + 1)7/n. Note that the zj are the projections on to I of
the points on the (upper) half-circle (cos(fx),sin(0)), k =0,1,---,n — 1.
Hence they are equally spaced with respect to arclength distance on the
circle. For points a = cos(f,) € I and b = cos(,) € I this distance is
given by

61(a,b) := |0y — 04| = | cos™(b) — cos™(a)|. (1)
A remarkable formula, due to Dubiner, gives a variational form for §; in
terms of real polynomials P(IR).

Theorem 1 (Dubiner [7]). Fora,b € I, set

d[(a, b)
- sup{@af(pm),p(b)) . deg(p) > 1, ||pllr < 1}
=wpg%@ﬂwf%mmwmm*@mm:mﬂmzLHMhsu.

(2)
Then, 67(a,b) = di(a,b).

Here, and throughout this note, we use the uniform norm, i.e.,
[lplz := max [p(z)].

This variational form is potentially very useful. Consider, for example, the
so-called Fekete points (of order n) for I, i.e., those points {zg,---,z,} C I
which maximize the Vandermonde determinant

det[z]Jo<i,j<n-
The associated Lagrange polynomials (of degree n) £;, 0 < i < n, are
easily seen to have the property that ||4;||; = 1,7 =0,---,n. Then, by the
formula (2), for i # j, taking p = £;,
1
dr(z, w5) 2 | cos ™+ (¢i(x;)) — cos™ (Li(;))]

1
= —|cos (1) — cos™(0)|
n

1 T
=-j0- 7

n 2
_ T
 2n

so that the Fekete points must have order 1/n spacing with respect to the
circle metric d7. (Of course, much more is known about the Fekete points
for the interval, but we include this example to show how such facts follow
easily from the Dubiner variational form). Moreover, it this variational
form that generalizes easily to higher dimensions. We will come back to
this spacing property in §2.

The proof of Theorem 1 is quite simple and depends on a strong form
of Bernstein’s polynomial inequality due to van der Corput and Schaake:
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Theorem 2 (van der Corput - Schaake Inequality [6]). For —1 <
xz < 1 and p a real polynomial such that ||p||; <1,

1
< deg(p)ﬁ.

1 —p?%(x) -

‘ p' ()

Equivalently, we may write

1
deg(p)

: (3)

d -1 d —1
- < | =
‘dm cos (p(a:))‘ < ‘da: cos™ ()
We note that the trigonometric form of (3) is expressed as
d -1
79 508 (T(0))] < deg(T)

where T' is now a trigonometric polynomial.
Proof of Theorem 1. Writing

b
cosH(p(b)) ~ o5 p(a)) = [ 5 {eos™ (p(a)}

we have by (3),

®d
/a e cos™(x)dx

= |cos™(b) — cos™'(a)]

[ cos™ ! (p(b)) — cos™ (p(a))| <

deg(p)

for all polynomials p such that ||p||r < 1. Hence, df(a,b) < d1(a,b). On
the other hand, taking the particular case of p(z) = x, we have

1
dI (Cl, b) > I(SI(aa b) = (SI(aa b)

and the result follows. O

We also point out that the fact that the Dubiner distance dj(a,b)
equals d7(a, b) not only follows from the van der Corput - Schaake inequal-
ity (3), but is equivalent to it. In fact, given that d;(a,b) = 07(a,b), sup-
pose that p € P(IR) is such that |[p||; < 1. Then, for any a =z € (—1,1)
and b=z + h € I (with h > 0 sufficiently small)

1 |cos7Y(p(xz+ h)) — cos™(p(x)) < di(z,z+h) 6r(z,z+h)

deg(p) h - h - h
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so that letting h — 0, we have

1 d . Or(z,z+h)
el < lim AP TR
deg(p) |dx o8 (p(a:))‘ = hoot h
i cos™1(z + h) — cos™1(x)
= lim
h—0+ h
=7 cos™(z)].

The purpose of this brief note is to discuss the generalization of such
metrics to compact subsets K C IR™. It should not come as a surprise
that multidimensional Markov-Bersnstein inequalities play an import role
in this development. Specifically, in §2 we discuss the Dubiner (pseudo)
distance dx. This turns out to be a distance of Carathéodory type. We
also introduce a Finsler type metric and distance, bg, associated to the
multivariate generalization of the van der Corput - Schaake inequality due
to Baran [2,3]. We refer to bx as the Baran distance. In §3 we consider
explict formulas for these distances on spheres, balls, cubes and simplices.

§2. The Dubiner and Baran Distances

Suppose then that K C IR™ is compact. For a,b € K we define the
Dubiner (pseudo) distance to be given in variational (Carathéodory) form
by

dK(CL, b)
= sup { s 0r(o(e).p(8) * deg(p) > 1. ol < 1}
= SuP{degl(p) |cos™ (p(b)) — cos™(p(a))| : deg(p) > 1, ||p||x < 1}.

(4)
It is also sometimes convenient to think of the definition of dx in terms
of mapping properties:

dic(a,b) = Sup{@(sj(p(a), p(®) : deg(p) > 1, p: K — I} (5)

Assuming for the moment that this is well-defined, there is an imme-
diate consequence, given by Dubiner, regarding the spacing of the Fekete
points for K, completely analogous to the univariate case. To see this we
first need to introduce some notation. The polynomials of degree n, when
restricted to K, form a vector space which we will denote by P, (K). It has
a dimension N, (K) := dim(P,(K)), and a basis {p; : 1 < j < N,(K)}.
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Given a set of Ny, (K) points X, := {z; : 1 < j < N,(K)} C K, the
Vandermonde matrix for this system is defined to be

VDM (X,) := det[p;(x;)].

Such an X,, C K is said to be a set of Fekete points of degree n for K
if they maximize VDM (as a function on K¥»(X))_ Note, however that
unlike for the interval case K = I, Fekete points need not be unique; for
example, for K a ball, a rotation of a set of Fekete points is also a set of
Fekete points. Nevertheless, for any set of Fekete points X,,, we may form
the Lagrange polynomials by

b@) = YOM(Kn\ai}) U{z})
L VDM (X,,)

, 1 <4< N,(K).

These ¢; € Pp(K) are such that ¢;(x;) = 6;; and also, by the maximizing
property, that ||4;||x =1, 1 <i < N,(K).

Now, just as for the univariate case, take a = z; € X,, and b = z; €
X, two Fekete points with ¢ # j and consider the formula (4) with the
specific choice of p = £;. Then,

1

di (wi,25) > —[cos™ (£i(25)) — cos™" (£i(z5))]

n
1

= —|cos (1) — cos~1(0)|
n
1

-

© 2n

Again, the spacing of the Fekete points, with respect to this Dubiner
metric, must be of order 1/n, for arbitrary compact K!

Now for the Baran metric. As indicated earlier, its definition de-
pends heavily on Baran’s generalization of the van der Corput - Schaake
inequlaity. We will first need to introduce some terms from Pluripotential
Theory (see Klimek[9] for an excellent introduction to this subject).

Definition 1 (Siciak-Zaharjuta Extremal Function). Suppose that
E c C™ is compact. Then for z € C™, the function

©p(2) = sup{|p(2)| /48P : p € Clz1, -+, 2al, deg(p) 2 1, |lpllp < 1}

is known as the Siciak-Zaharjuta Extremal Function.

If ®p(z) is finite, we may use it to bound polynomials p at points z
outside E in terms of the norm of p on F, ||p||g. Specifically,

d
p(2)] < OHEP (2)|Ip||&-
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This already makes it a useful object of study.

One of the main facts of Pluripotential Theory is that log(®g) is equal
to the pluricomplex generalization to several variables of the Green’s func-
tion with pole at infinity. To state this precisely requires some technical
definitions but it is not hard to see that these are exactly what are needed.
In fact, log(®g(z)) = sup{ﬁ(m log [p(2)|} (over suitable polynomials p).
In one variable the logarithm of the modulus of an analytic function is
generally harmonic, except there is the possibilty that the function has
a zero, at which point its logarithm would be —oo, so that we end up
with a subharmonic function. In several variables, the logarithm of the
modulus of an analytic function need not be subharmonic anymore, but
is in general plurisubharmonic.

Definition 2 (cf. Klimek [9, §2.9]). Suppose that Q C C™ is a connected
open set and that u :  — [—o0, 00) is upper semicontinuous and not iden-
tically —oo. Then u is said to be plurisubharmonic (written w € PSH()) if
u, when restricted to any complex line passing through €, is subharmonic,
or identically —oo.

Further, ﬁ(mlog Ip(z)| has growth of order log|z| at infinity and
thus it is natural to introduce:

Definition 3 (cf. Klimek [9, §5.1]). The psh functions of minimal growth,
or Lelong class, are

L:={ue PSH(C™) : u(z) <log(l+|z])+O(1)}.

Definition 4 (Pluricomplex Green’s Function). For E C C™, com-
pact and z € C™

Ve (2z) :==sup{u(z) : ue L, u<0on E}.
Theorem 2 (cf. Klimek [9, Thm. 5.1.7]). Suppose that E C C™ is
compact. Then Vg = log(®g).
One important special case of the pluricomplex Green’s function is
for E=1=[-1,1 c R c C'. Then
Vi(z) = log k()] (6)

where

h(z):=z+ V22 -1 (7)

is the so-called Joukovski function.

We are now almost ready to state Baran’s generalization of the van
der Corput - Schaake inequality. Suppose that Q C IR™ is open, connected
and bounded, so that E := Q is compact. We note that it is not difficult
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to see that for z € Q and y € R™, the function ¢ Vg (xz+iy) is Lipschitz
in y.
Then, given a purely complex direction iy with y € IR™, and z € ,

we set
Ve(x +itz) — Ve(z)

Veg(z;y) := limsup

t—0t, z2—y t (8)
) Ve(x + itz)
= limsup ——=
t—0t, 2>y t

(since Vg(z) = 0) to be the Clarke directional derivative of Vg in the

complex direction 7y. As shown in Clarke[5, Prop. 2.1.1], the mapping ¢
VE(z;y) (for fixed x) is finite, positively homogeneous and subadditive on
IR™. In case Vg(z;y) equals an ordinary directional derivative, D;, Vg(z),
then Vg is said to be Clarke regular. Bedford and Taylor [4, Thm. 3.2]
show that if E is convexr and symmetric then Vg is indeed Clarke regular
(and give an explicit formula for the true directional derivative).

Theorem 3 (Baran([2,3]). Suppose that Q2 and E are as above. Then
for all x € Q, directions y € R™ and polynomials p such that ||p||g <1,

1 [Dyp(z)|
deg(p) \/1 — p?(x)

< Vi(z;9). (9)

We note that when E = I C IR', we may use the explicit formula (6)
to calculate that

Vi (;y) = Ll

V1—2z2

so that Baran’s inequality (9) does indeed reduce to the van der Corput -
Schaake inequality (3).

We will use Baran’s inequality to construct a distance as follows. First
suppose that a,b € Q and that (t) is a smooth (C!) curve, lying entirely
in  such that v(0) = a and (1) = b. As usual, we consider a polynomial
p such that ||p||g < 1. Then,

cos™ (p(8)) = cos (p(a) = [ oo™ ()

so that

' Dy yp(y(1)]

o V1-p*(y(t))

SM@A%MWWWL

[ cos™ ! (p(b)) — cos™ (p(a))| < dt
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In particular, it follows that

dp(a,b) < / VR (v (£): 7/ (8))dt (10)

and it is hence natural to define the Baran distance by

bi(a,b) = it / VE( ()7 () de (11)

where the infimum is taken over all piecewise smooth paths v C €2 that
connect a to b. This is a Finsler type distance with V2(x;y) acting as the
associated Finsler metric. See [1] and also [8] for further details on such
matters.

Now, by (10), we automatically have that

dE(a,b) S bE(a,b). (12).

We will see that in some cases dg = bg but this is not true in general.

§3. Some Explicit Examples
The Sphere.
Proposition 1 (Dubiner [7]). Suppose that K = S™~! Cc R™ is the
unit sphere. Then for a,b € S™ 1,
dgm-1(a,b) = cos '(a-b),

the geodesic distance on the sphere between a and b.

Proof: We show that dgm-1(a,b) > cos™(a-b) and that dgm-1(a,b) <
cos~(a-b). If a = b there is nothing to do, so we suppose that a # b.
For the lower bound, take p(z) := a - z, giving

1
dgm-1(a,b) > I\ cos *(a-b) —cos (a-a)|
= |cos™(a - b) — cos™H(1)|
=|cos™'(a-b) — 0

=cos '(a-b).
For the upper bound, for ||p||gm-1 <1, set

b— (a-b)

p(0) == p(acos(f) + NS L

sin(9)).
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Then p(0) is a trigonometric polynomial of degree deg(p) = deg(p) and it

is easy to verify that p(0) = p(a) and p(cos™!(a - b)) = p(b). Hence the
trigonometric form of the van der Corput - Schaake inequality,

d% cosH(6)((6)) | < deg(),

yields
oy 0 (00) o5 p(a)
= Gy s (Bleos™ (@ 1) = cos™ (5(0))
< G L & cos™(5(0))| | cos™ (a1) —
< degl(ﬁ) deg(5) cos(a - b)
= cos” (a-b).

Thus dgm-1(a,b) < cos™!(a-b) and we are done. O
We remark that since S™! is contained inside the algebraic variety
A={z2= (21, 2m) : Z2+ -+ 22, =1},
by Definition 4,
Vni(2) > sup{ log |23 + -+ 24+ : = 1,230}
so that Vgm-1 = 400 on C™\A. Thus the Baran distance is not well-
defined.

The Ball.

Proposition 2. Supppose that Q = {x € R™ : |z| < 1} so that E :=
Q = B™ is the closed unit ball in R™. Then for a,b € B™,

dgm(a,b) = bgm (a,b) = cos~ (@ - b)
where @ := (a,+/1 — |a|?), b := (b, \/1— [b]2) are a and b lifted to the
surrounding sphere, S™ C R™*1.

Proof: Again we may suppose that a # b. Recall that dg(a,b) < bg(a,b)
always. Hence it suffices to show that dpm(a,b) > cos™'(a - b) and that
bpn(a,b) < cos™(a-b).
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To see that dgm(a,b) > cos™'(a - b), consider the two dimensional
plane spanned by @, b and 0 € ]Rm"'l.~ If this plane is contained in IR™
(i.e. iff la| = [b] = 1 iff @ = (a,0) and b = (b,0)) then take p(z) :==a - z.
As in the spherical case, we obtain

dpm (a,b) > cos™(a - b)

=cos !(a-b),

in this case.
If this plane is not contained in IR™, it intersects IR™ in a line through
the origin. Let v be the unit direction vector of this line. Specifically,

v=Fk{—v1—|b%a++/1—|a|?b}

where k is a normalization constant. Then, taking p(z) := v - z yields

1
dpm(a,b) > I| cos  (v-b) —cos™H(v-a)l

= cos_l((’u -b)(v-a)+ \/1 —(v- b)Z\/l —(v-a)?)

(by the cosine sum formula)
=cos '((v-a,/1— (v-a)2)-(v-b,+/1— (v-b)2)).

But an elementary (but perhaps tedious) calculation, or else a moment’s
geometric reflection, shows that the angle between the vectors

(v-a,v/1—(v-a)?)and (v-b,\/1— (v-b)?)

is the same as that between @ and b and we are done.

Now to show that bgm (a,b) < cos™!(a-b) (we will actually show that
they are equal).

There is an explict formula for the extremal function for the real ball
B™ considered as a subset of C™,

1 G m
Vo (2) = 5 log(h(|2” +[ Y 25 — 1)), 2€C
j=1

where, as before, h is the Joukovski function (7) (cf. Klimek[9, Example
5.4.6]). Hence one may calculate (cf. Baran[3, Example 1.3]) that

V(= [zP)y? + (z-y)?

V1—|z?

Vim(21y) =

2
Ty
= 24| —= ] .
] (ﬁl—\ﬂ?)
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From this, it follows easily that

Il
&=
—~
2
—~
~
~
p—
I
2
—~
o~
~—
s
~

Vigm (7(£);7' (1))

ie.,

where
(@) = (v(t), V1= [7(@®)[?)

is the curve y(t) lifted from B™ to the surrounding sphere S™!
Hence

bom (0,) = it | Vg (0)3/ ()t}

1

—int [ (0)de
Y Jo

= inf {length of 4}
7

where 4 connects a to b, on the sphere S™.
But the geodesics on a sphere are known and so bpm (a,b) is just the
spherical geodesic distance between a and b, as claimed. O

The Cube.

Proposition 3. Suppose now that Q@ = (—1,1)™ so that E := =
[—1,1]™ = I"™ is the closed unit cube. Then for a,b € I"™,

d_[m (a,b) = b_[m (a, b) = 1I<I_lya<l)5n |d1(aj,bj)\

P— _1 . _ _1 .
—lrsr;agnkos (bj) —cos™ (aj)|-

Proof: We may suppose that a # b. As before, it suffices to show that

drm(a,b) > 12&;” |dr(aj,b;)| and brm (a,b) < 1%35);1 |dr(aj,b;)l.

To see that dym(a,b) > maxi<j<m |dr(a;,b;)| follows easily by con-
sidering p;(z) :=2z;, 1 < j < m.

Now to show that b= (a,b) < maxi<j<m |dr(aj,b;)|-

There is again an explict formula for

Vin(2) = max {log|h(z)[}, =z€C™
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(cf. Klimek[9, Cor. 5.4.5]). Hence we may compute

|y;]

[ . — J

Vim (z3y) T et
J

Consider the curve
y(t) := cos(t cos 1 (b) + (1 — t) cos *(a))

so that the jth component is ;(t) = cos(tcos™(b;) + (1 — t) cos™*(a;)).
Then

brm (a,b) < / Ve (v(t); 7' (8))dt

:/1 max 4 GO L
0 1=Ism 1= 22()

But an easy calculation reveals that

!/
(¢
@l | cos™(b;) — cos™ ' (ay))|
1—y3(t)
so that 1
brm(a,d) < | max |cos™(b) — cos™(ay)] dt

— _1 . _ _1 .
= max |cos™(b;) — cos}(a)

as claimed. O

The Simplex.
Proposition 4. Suppose that

Q={zecR™ : z; >0, ij<1}
i=1

so that E := Q is the standard unit simplex. For a € E let @ denote the
point on the unit sphere S™ C IR™ given by

a:= (\/aa\/@"'a\/a_’n%\/l_al_”'_am)-
Then, for a,b € F,

be(a,b) = 2dgm (a,b) = 2cos™(a- b).
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Proof: There is again an explict formula for the extremal function of a
simplex:

Ve(z) =log(h(Jz1| + -+ |zm| + |21+ -+ 2, — 1])), z€C™

(cf. Klimek[9, Example 5.4.7]). Using this we may calculate

ST,

Ve(xz;y) = —_— .

j=1

Now, given a curve y(t) connecting a and b in E, let 4(t) deonte the
“lifting” of v to 8™ under the same mapping as a. Specifically, we set

@) == | V7(t), Vrelt

Then,

_ L[ n®) %@ Tt X (@)

TO= 2\ Vw Vam V@ NS ST

and it is easy then to see that, remarkably,

Va(v(®);7'(1) = 217 ().
Hence,
1
bl t) = inf{ | VG0 (0)ae
1nf 2 / 15 (t)|dt
= lI}f {twice the length of 4}.
7

We again appeal to the known geodesics on a sphere. O

We point out that for the simplex, a non-symmetric convex set, it is
not the case that dg(a,b) = bg(a,b) for all pairs of points a and b (it is
true for certain pairs). Here is an example. Consider the simplex in R?
and take a := (0,1/2) and b := (1/2,1/2).
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We claim that dg(a,b) = m/2. To see this, note that for p(z1,x9) :=
2xz1 — 1, we have ||p||g = 1 and so with this particular p,

dg(a,b) > %l cos™ ' (p(1/2,1/2)) — cos ™ (p(0,1/2))]
= |cos™1(0) — cos™1(—1)|
=5 -

2

Further, if deg(p) > 2, then

[ cos™ (p(b)) — cos™ (p(a))| <

N R

deg(p)

and so we need only further analyze polynomials of degree one. This is
a finite dimensional problem that can be easily completely worked out to
verify our claim. We suppress the details of this calculation.

On the other hand, @ = (0,1/v/2,1/v/2) and b = (1/4/(2),1/v/2,0)

so that

be(a,b) =2cos 1 (a-b) = 2cos™1(1/2) = 27/3 > 7/2 = dg(a, b).
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