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Integral error formulæ for a certain scale of mean value interpolations
which includes Kergin and Hakopian interpolation

1. Introduction

In this paper we study the error in a certain scale of mean value interpolations which
includes Kergin and Hakopian interpolation. The literature divides into two different
approaches to this problem.

The first is concerned with the convergence of the interpolants as the number of
interpolation points increases. Here only Kergin interpolation has been studied. Certain
conditions on the position of the interpolation points and the growth of the entire function
to be interpolated are given which guarantee that the sequence of interpolants converges
uniformly on compact sets. See, e.g., Bloom [2].

We are interested in the second approach, which is to write the error in interpolation
as integration against derivatives of high order, much as is done for univariate Hermite
interpolation.

There have been several papers in this direction, including Lai and Wang [19] (Hakop-
ian interpolation), [20] (Kergin interpolation), and Gao [12] (mean value interpolation).
Each of these gives formulæ for the error, complicated by the spurious use of certain
multivariate divided differences, involving derivatives of various orders. There seems to be
very little correspondence between the degree of the interpolating polynomial space and
the order of the derivatives involved. This order can be as low as 0, and as high as twice
the degree of the interpolating polynomial space.

In this paper we give an integral error formula for the scale of mean value interpolations
that involves only derivatives of order one higher than the degree of the interpolating
polynomial space. From this we obtain sharp L∞-estimates. These estimates imply that
a numerical scheme based on mean value interpolation has the highest order that its
polynomial reproduction allows.

The paper is set out in the following way. To describe the scale of mean value inter-
polations, we use a certain linear functional f 7→

∫

Θ
f and the notion of ‘lifting’ univariate

maps. These two notions are studied in requisite detail in Sections 2 and 3 respectively.
In Section 4, we define the scale of mean value interpolations and give its Newton form.
In Section 5, we give two different integral error formulæ for the scale. In Section 6, from
these formulæ, we obtain L∞-estimates.

Some notation

The space of n-variate polynomials of total degree k will be denoted by Πk(IRn) and
the homogeneous polynomials of degree k by Π0

k(IRn). The differential operator induced
by g ∈ Πk(IRn) will be written g(D).

We find it convenient to make no distinction between the matrix [θ1, . . . , θk] and the k-
sequence θ1, . . . , θk of its columns. So, for example, with B a matrix, BΘ is interpreted as
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the product of matrices. Since [θ1, . . . , θk]f is a standard notation for the divided difference

of f at Θ = [θ1, . . . , θk], we use for the latter the nonstandard notation

δΘf = δ[θ1,...,θk]f.

Note the special case
δ[x]f = f(x).

The notation Θ̃ ⊂ Θ means that Θ̃ is a subsequence of Θ, Θ\Θ̃ denotes the comple-
mentary subsequence. The derivative of f in the directions Θ is denoted

DΘf := Dθ1
· · ·Dθk

f.

The subsequence consisting of the first j terms of Θ is denoted Θj , and

x − Θ := [x − θ1, . . . , x − θk].

Thus, with Θ := [θ1, . . . , θ7], we have, for example, that

D[x−Θ\Θ5,x−θ3]f = Dx−θ6
Dx−θ7

Dx−θ3
f.

The diameter and convex hull of a sequence Θ will be that of the corresponding set
and will be denoted by diam Θ and conv Θ respectively. Let ‖ · ‖ be the Euclidean norm.
To measure the size of the k-th derivative of f at x ∈ IRn, we use the seminorm

|Dkf |(x) := sup
u1,...,uk∈IRn

‖ui‖≤1

|Du1
· · ·Duk

f(x)|.

Notice that
|Du1

· · ·Duk
f(x)| ≤ |Dkf |(x) ‖u1‖ · · · ‖uk‖. (1.1)

To measure the size of the k-th derivative of f over K ⊂ IRn, we use

f k,∞,K := sup
x∈K

|Dkf |(x). (1.2)

Because of (1.1), the co-ordinate-independent seminorm · k,∞,K is more appropriate to
the analysis that follows than other equivalent seminorms, such as

f 7→ max
|α|=k

‖Dαf‖L∞(K).

2. The linear functional f 7→
∫

Θ
f

The construction of the maps of Kergin and Hakopian depends intimately on the
following linear functional called the divided difference functional on IRn by Micchelli
in [23], and analysed there and in [24].
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Definition 2.1. With Θ the sequence [θ0, . . . , θk] of k + 1 points in IRn,

f 7→

∫

Θ

f :=

∫ 1

0

∫ s1

0

...

∫ sk−1

0

f(θ0 + s1(θ1−θ0) + · · · + sk(θk−θk−1)) dsk · · · ds2 ds1,

with the convention that
∫

[ ]
f := 0.

Part of Micchelli’s motivation for defining
∫

Θ
f was the Hermite-Genocchi formula,

namely

δΘf =

∫

Θ

Dkf, ∀f ∈ Ck(conv Θ),

where Θ is a (k + 1)-sequence in IR.
In this section we outline those properties of f 7→

∫

Θ
f needed in the remaining

sections. Many of these properties are apparent from the following observation of the
author.

Observation 2.2. If S is any k-simplex in IRm and A : IRm → IRn is any affine map
taking the k + 1 vertices of S onto the k + 1 points in Θ, then

∫

Θ

f =
1

k! volk(S)

∫

S

f ◦ A,

with volk(S) the (k-dimensional) volume of S.

In Definition 2.1

A : IRk → IRn : (s1, . . . , sk) 7→ θ0 + s1(θ1−θ0) + . . . + sk(θk−θk−1),

S := {(s1, . . . , sk) ∈ IRk : 0 ≤ sk ≤ · · · ≤ s2 ≤ s1 ≤ 1}.

In [24], Micchelli uses a different choice of S and A, namely

A : IRk+1 → IRn : (v0, . . . , vk) 7→ v0θ0 + · · · + vkθk,

S := {(v0, . . . , vk) ∈ IRk+1 : vj ≥ 0,
k∑

j=0

vj = 1}.

Properties 2.3 (see, e.g., [24], [16]).
(a) The value of

∫

Θ
f does not depend on the ordering of the points in Θ.

(b) The distribution

MΘ : C∞
0 (IRn) → IR : f 7→ k!

∫

Θ

f

is the (normalised) simplex spline with knots Θ. It has support conv Θ, and can
be represented by the nonnegative bounded function

conv Θ → IR : t 7→ M(t|Θ) :=
volk−d(A

−1t ∩ S)

|det A| volk(S)
, d := dim conv Θ,
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in the sense that

MΘf =

∫

conv Θ

M(·|Θ)f.

Thus,
∫

Θ
f is defined iff M(·|Θ)f ∈ L1(conv Θ).

(c) If f ∈ C(conv Θ), then
∫

Θ
f is defined and, for some ξ ∈ conv Θ,

∫

Θ

f =
1

k!
f(ξ).

(d) If g : IRs → IR, and B : IRn → IRs is an affine map, then

∫

Θ

(g ◦ B) =

∫

BΘ

g.

(e) If f ∈ C(IRn), then the map

Θ 7→

∫

Θ

f

is continuous.

3. Liftable maps

In this section, we discuss univariate maps which may be lifted to multivariate ones.
These ‘liftable’ maps are crucial to both the construction and description of the error in
a family of linear projectors which includes the Kergin and Hakopian maps. The main
papers on ‘lifting’ are [5], [6], [7] and [17].

We denote the linear functional on IRn, induced by scalar product with λ ∈ IRn, by

λ∗ : IRn → IR : x 7→ λ∗x :=
n∑

i=1

λ(i)x(i).

A plane wave (or ridge function) is any map

g ◦ λ∗ : IRn → IR,

where g : IR → IR and λ ∈ IRn. If g ∈ C1(IR), then we can differentiate g ◦ λ∗, thereby
obtaining

Dy(g ◦ λ∗) = (λ∗y) (Dg) ◦ λ∗. (3.1)

This ‘lifts’ differentiation to IRn.
In [5] only the lifting of polynomial-valued maps is discussed. To ‘lift’ the error in

such maps, we need a more general definition. The only real difficulty involved in giving
such a definition is in choosing the function spaces so that the fundamentality of the plane
waves implies the uniqueness of the ‘lift’. We propose the following definition which takes
care of this.
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Definition 3.2. Let L : Ξ 7→ LΞ associate with each k-sequence Ξ in IR a continuous linear
map LΞ : Cs(IR) → C(IR). We say that a continuous linear map LΘ : Cs(IRn) → C(IRn)
is the lift of L to Θ in IRn if it satisfies

LΘ(g ◦ λ∗) = (Lλ∗Θg) ◦ λ∗, ∀λ ∈ IRn, ∀g ∈ Cs(IR). (3.3)

If there exists a lift LΘ of L to each k-sequence Θ in IRn, then we say that L is liftable
(to IRn), and call L : Θ 7→ LΘ the lift of L (to IRn).

Notice that (3.3) overdetermines the map LΘ, and so the use of the definite article
in the above definition is justified. Furthermore, by the fundamentality of the polynomial
plane waves (which span Π(IRn)) in Cs(IRn), if L can be lifted to LΘ, then LΘ is uniquely
determined by (3.3). To avoid confusion, we will use calligraphic letters to denote the lift
of a univariate map and, from now on, reserve k for the number of points such a map is
based on.

The geometric intent of lifting is that the ‘lift’ of a function which varies in one
direction, i.e., a plane wave, should be a plane wave (varying in the same direction) obtained
in a natural way from the univariate map to be lifted.

The basic tool for recognising liftable maps and presenting their lifts is to write them
as a sum of ‘elementary liftable maps’, which are defined as follows.

Definition 3.4. Let s,m ≥ 0. Fix aj ∈ IRk+1\0, j = 1, . . . , s and B ∈ IR(k+1)×(m+1). For
each k-sequence Θ in IR, let LΘ : Cs(IR) → C(IR) be the continuous linear map given by

LΘf(x) :=

( s∏

j=1

[x,Θ]aj

) ∫

[x,Θ]B

Dsf =

∫

[x,Θ]B

( s∏

j=1

D[x,Θ]aj

)

f. (3.5)

We call L : Θ 7→ LΘ an elementary (k-point) liftable map (of order s).

Here and below, in line with our earlier identification of vector sequences and matrices,
[x,Θ]B is the matrix whose j-th column is the vector

xB(1, j) + θ1B(2, j) + · · · + θkB(k + 1, j).

In other words, [x,Θ]B is an (m + 1)-sequence.

The equality in (3.5) expresses LΘf(x) in a form which has a natural multivariate
analogue. In this way, the definition is tailor-made to make it obvious that such a map is
liftable, as we prove next.

Theorem 3.6. Each elementary liftable map of order s, as in Definition 3.4, is liftable to
IRn. Its lift L : Θ 7→ LΘ, with LΘ : Cs(IRn) → C(IRn), is given by

LΘf(x) :=

∫

[x,Θ]B

( s∏

j=1

D[x,Θ]aj

)

f. (3.7)
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In the special case that B(1, ·) = 0, the range of LΘ is contained in Πs(IR
n).

Proof: The continuity of LΘ required in Definition 3.4 and the continuity of LΘ

asserted in Theorem 3.6, follow from the inequality

‖LΘf‖L∞(K) ≤
1

m!

(

max
x∈K

s∏

j=1

‖[x,Θ]aj‖

)

f s,∞,conv([x,Θ]B),

where K ⊂ IRn is compact. This is proved by applying, to (3.7), Property 2.3 (c) followed
by (1.1) and (1.2).

Given the continuity of the maps LΘ and LΘ, to show that L is the lift of L, it is
sufficient to prove that

LΘ(g ◦ λ∗) = (Lλ∗Θ g) ◦ λ∗, ∀λ ∈ IRn, ∀g ∈ Cs(IR), ∀Θ ∈ (IRn)k.

By applying (3.1) s times, it follows that

(LΘ(g ◦ λ∗))(x) =

∫

[x,Θ]B

( s∏

j=1

λ∗[x,Θ]aj

)

(Dsg) ◦ λ∗.

To the right-hand side of this, we apply Property 2.3 (d) (with λ∗ the affine map) and the
identity λ∗[x,Θ] = [λ∗x, λ∗Θ] to obtain that

∫

[λ∗x,λ∗Θ]B

( s∏

j=1

[λ∗x, λ∗Θ]aj

)

(Dsg) = (Lλ∗Θ g)(λ∗x).

The sum (equivalently linear combination) of elementary liftable maps can be lifted
to the corresponding sum of the lifts. This is the form in which we will use Theorem 3.6
when lifting (4.5), (5.5) and (5.9).

Example 3.8. In [17] it is shown that (sadly) the divided difference cannot be lifted;
however we may lift the following divided difference identity

δ[Θ,v,w]g =
δ[Θ,v]g − δ[Θ,w]g

v − w
, v 6= w. (3.9)

By the Hermite-Genocchi formula, (3.9) may be rewritten as

(v − w)

∫

[Θ,v,w]

Df =

∫

[Θ,v]

f −

∫

[Θ,w]

f,

where f := Dkg and k = #Θ. By Theorem 3.6, this lifts to
∫

[Θ,v,w]

Dv−wf =

∫

[Θ,v]

f −

∫

[Θ,w]

f, (3.10)

for all sufficiently smooth f , where Θ is any finite sequence in IRn and v, w ∈ IRn.

An elementary liftable map depends continuously on Θ, in the following sense.

6



Theorem 3.11. Let L be the lift to IRn of an elementary k-point liftable map of order s.
For all f ∈ Cs(IRn), the map

(IRn)k → C(IRn) : Θ 7→ LΘf

is continuous.

Proof: By Property 2.3 (e), the map

(x,Θ) 7→ LΘf(x)

is continuous.

The literature contains no discussion of the ‘continuous’ dependence of LΘ on Θ. In
[5] it is shown that a complex regular Birkhoff interpolation procedure is liftable by writing
it as a sum of what we have called here elementary liftable maps. Thus, we have the
following.

Corollary 3.12. Let B be the complex regular Birkhoff interpolation procedure and B
its lift to IRn. For each f ∈ Cs(IRn), the map

Θ 7→ BΘf

is continuous.

In the case n = 1, i.e., when BΘ = BΘ, this continuity result was proved in [11] by
using ‘de-coalescence’ of the interpolation matrix.

Another immediate consequence is the continuous dependence of the Hermite inter-
polant on its points of interpolation. However, that is a direct consequence of the well-
known continuity of Θ 7→ δΘf .

Related considerations

In [5], [17], there is a discussion about lifting the family of distributions

IRk+1 → S : (x,Θ) 7→ δ[x]LΘ,

where S is some suitable space of distributions, e.g., C∞
0 (IR), or, in our case, E

′s(IR) (the
space of compactly supported distributions of order s).

Lifting such a family is shown there to be equivalent to inverting its Radon transform.
Without going too far into details, we mention that, for an elementary liftable map of the
form (3.5), its Radon transform H is given by

H(f) :=

∫

B

( s∏

j=1

Daj

)

f,

and so LΘ may be expressed as

LΘf(x) = H(f ◦ [x,Θ]).
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One useful consequence of the Radon transform theory is the following compatibil-
ity condition: if L is liftable, then (x,Θ) 7→ LΘ((·)i) (x) is homogeneous of degree i.
Moreover, by Property 2.3 (d), if L is an elementary liftable map and f is a homogeneous
polynomial of degree i, then (x,Θ) 7→ LΘf(x) is homogeneous of degree i.

4. The scale of mean value interpolations

In this section we describe a family H(m), m < k, of liftable maps that were lifted
in [13] to obtain multivariate polynomial interpolation schemes. Special cases of these
multivariate schemes, referred to in [3:p203] as the scale of mean value interpolations, are
the well-known maps of Kergin and Hakopian.

We will need the following facts about linear interpolation.

Linear interpolation

Let F be a finite-dimensional space and Λ a finite-dimensional space of linear function-
als defined at least on F . We say that the corresponding linear interpolation problem,
LIP(F,Λ) for short, is correct if for every g upon which Λ is defined there is a unique
f ∈ F which agrees with g on Λ, i.e.,

λ(f) = λ(g), ∀λ ∈ Λ.

The linear map L : g 7→ f is called the associated (linear) projector with interpolants
F and interpolation conditions Λ. Each linear projector with finite-dimensional range
F is the solution of a LIP(F,Λ) for some unique choice of the interpolation conditions Λ.

Notice that the correctness of LIP(F,Λ) depends only on the action of Λ on F .

The map H(m)

Let D−mf be any function with Dm(D−mf) = f . If

P : Cs(IR) → Πn(IR)

is any linear projector, then for m ≤ n

f 7→ DmP (D−mf),

is a linear projector into Πn−m(IR) which is defined on Cs−m(IR).

We are interested in the case where P is HΘ, which is, by definition, the Hermite

interpolation operator at Θ, a k-sequence in IR.
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Definition 4.1. For 0 ≤ m < k = #Θ, the generalised Hermite map

H(m) : Θ 7→ H
(m)
Θ

is given by the linear projectors

H
(m)
Θ : Ck−m−1(IR) → Πk−m−1(IR) : f 7→ Dm(HΘD−mf).

For convenience, H(k) := 0.

Observe that H
(0)
Θ = HΘ, which in part justifies the term ‘generalised Hermite map’.

The generalised Hermite maps H
(m)
Θ occurred in the approximation theory literature before

they were lifted by Goodman in [13]; see e.g., de Boor [1] where they were used to bound
spline interpolation.

The interpolants for H
(m)
Θ are Πk−m−1(IR), and the interpolation conditions are

span{f 7→

∫

Θ̃

D#Θ̃−m−1f : Θ̃ ⊂ Θ, #Θ̃ ≥ m + 1}.

For Θ a finite sequence in IR, let

ωΘ(x) :=
∏

θ∈Θ

(x − θ).

Note that if j ≤ #Θ, then

DjωΘ = j!
∑

Θ̃⊂Θ

#Θ̃=j

ωΘ\Θ̃. (4.2)

If Θ = [θ1, . . . , θk], then we may write the ‘Newton form’ of H
(m)
Θ as

H
(m)
Θ f(x) =

k∑

j=m+1

δΘj
(D−mf) DmωΘj−1

(x), m < k. (4.3)

The term ‘Newton form’ used here is justified not only by the fact that (4.3) is obtained
by differentiating the Newton form of HΘ(D−mf), but by the observation that

H
(m)
Θk+1

f = H
(m)
Θk

f + δΘk+1
(D−mf) DmωΘk

, m < k + 1.

H(m) the lift of H(m)

We now show that H(m) is liftable to IRn. The lifts H(m), m < k, form what we call,
with [3], the scale of mean value interpolations.
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By using (4.2) and the Hermite-Genocchi formula, the ‘Newton form’ (4.3) may be
written as the following sum of elementary liftable maps:

H
(m)
Θ f(x) = m!

k∑

j=m+1

∑

Θ̃⊂Θj−1

#Θ̃=m

( ∏

θ∈Θj−1\Θ̃

(x − θ)
)∫

Θj

Dj−m−1f. (4.4)

We refer to this as the Newton form of H
(m)
Θ .

Thus, by Theorem (3.6), the map H(m) can be lifted to H(m), where

H
(m)
Θ : Ck−m−1(IRn) → Πk−m−1(IR

n),

with its Newton form given by

H
(m)
Θ f(x) = m!

k∑

j=m+1

∑

Θ̃⊂Θj−1

#Θ̃=m

∫

Θj

Dx−Θj−1\Θ̃
f. (4.5)

This formula (4.5) is due to Goodman [13]. He shows that each H
(m)
Θ is a linear

projector with range Πk−m−1(IR
n) and (lifted) interpolation conditions

span{f 7→

∫

Θ̃

g(D)f : Θ̃ ⊂ Θ, #Θ̃ ≥ m + 1, g ∈ Π0
#Θ̃−m−1

(IRn)}. (4.6)

Special cases

The map H
(0)
Θ is the Kergin map, see [18] and [24]. The Newton form of Kergin’s

map,

H
(0)
Θ f(x) = f(θ1) +

∫

[θ1,θ2]

Dx−θ1
f + · · · +

∫

[θ1,...,θk]

Dx−θ1
· · ·Dx−θk−1

f,

is given in [24] and [22]. Notice that the interpolation conditions of this map include
evaluation at the points Θ. Thus Kergin’s map is a multivariate generalisation of Lagrange
interpolation.

The map H
(1)
Θ was introduced in [6] where it was referred to as the area matching

map. Presumably the term ‘area matching’ came from the fact that if the points in

Θ := [θ1, . . . , θk] in IR are distinct, then the interpolation conditions of H
(1)
Θ are

span{f 7→

∫ θi+1

θi

f : i = 1, . . . , k − 1}.

If the k ≥ n points in Θ are in general position in IRn, then H
(n−1)
Θ is the Hakopian

map, see [14] and [15]. For this map, the interpolation conditions may be written as

span{f 7→

∫

Θ̃

f : Θ̃ ⊂ Θ, #Θ̃ = n}.
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Thus, H
(n−1)
Θ has an extension (the map originally given by Hakopian) to C(IRn) and

interpolants Πk−n(IRn). Though not immediately apparent from (4.6), the interpolation
conditions for Hakopian’s map include evaluation at the points Θ. Thus it, like Kergin’s
map, provides a multivariate generalisation of Lagrange interpolation.

For additional discussion on expressing the interpolation conditions for H
(m)
Θ in terms

of derivatives of lower orders than given in (4.6), see [8].

5. Integral error formulæ

Observe that
f − H

(m)
Θ f = Dm

(
D−mf − HΘ(D−mf)

)
. (5.1)

Thus, to obtain an error formula for H(m), one might hope to lift the error formula for
Hermite interpolation. In this section, this is done in two ways. The first and more
natural way introduces derivatives of higher order than one might like. In the second, this
deficiency is remedied by taking advantage of a little-known formula for the derivative of
the error in Hermite interpolation.

The first error formula

Using the differentiation rule for divided differences

di

dxi
δ[x,Θ]f = i! δ[x,...,x

︸ ︷︷ ︸

i+1

,Θ]f, (5.2)

the Hermite error formula

D−mf(x) − HΘ(D−mf) (x) = ωΘ(x) δ[x,Θ](D
−mf) (5.3)

can be differentiated (m times) to obtain, by (5.1), that

f(x) − H
(m)
Θ f(x) =

m∑

j=0

(
m
j

)

DjωΘ(x) (m − j)! δ[x,...,x
︸ ︷︷ ︸

m−j+1

,Θ](D
−mf). (5.4)

Using (4.2) and the Hermite-Genocchi formula, we may write (5.4) as

f(x) − H
(m)
Θ f(x) = m!

m∑

j=0

∑

Θ̃⊂Θ

#Θ̃=j

ωΘ\Θ̃(x)

∫

[x,...,x
︸ ︷︷ ︸

m−j+1

,Θ]

(Dk−jf), ∀f ∈ Ck(IR). (5.5)

The formula (5.5) expresses the error, f 7→ f − H
(m)
Θ f , as a sum of elementary liftable

maps of orders k − m, . . . , k. Thus, using Theorem 3.6, this can be lifted, thereby giving
the following.
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First error formula. If m < k and f ∈ Ck(IRn), then

f(x) −H
(m)
Θ f(x) = m!

m∑

j=0

∑

Θ̃⊂Θ

#Θ̃=j

∫

[x,...,x
︸ ︷︷ ︸

m−j+1

,Θ]

Dx−Θ\Θ̃f. (5.6)

For Kergin interpolation, i.e., when m = 0, this formula reduces to

f(x) −H
(0)
Θ =

∫

[x,Θ]

Dx−Θf, (5.7)

which was given in Micchelli [24].
The only other mention of this formula in the literature is for Hakopian interpolation,

i.e., when m = n − 1, and occurs in the book [3:p200]. There (5.6) is stated incorrectly,
and without proof, as

f(x) −H
(n−1)
Θ f(x) =

n−1∑

j=0

∑

Θ̃⊂Θ

#Θ̃=j

(
n − 1

j

) ∫

[x,...,x
︸ ︷︷ ︸

m−j+1

,Θ]

Dx−Θ\Θ̃f.

In other words, the constant

(
n − 1

j

)

there should be replaced by (n − 1)!.

The interpolants for H
(m)
Θ are Πk−m−1(IR

n). The error formula (5.6) involves deriva-
tives of orders k − m, . . . , k. For m > 0, it would be desirable to not have the higher
derivatives k − m + 1, . . . , k occurring. We now give such a formula.

The second error formula

The higher derivatives in (5.6) are introduced when (5.2) is used to differentiate
x 7→ δ[x,Θ](D

−mf) in (5.3). To avoid this problem, we use the following formula for
the derivative in Hermite interpolation. It was given independently by Dokken and Lyche
[9], [10] and by Wang [26], [27].

Theorem 5.8 ([9],[26]). If Θ = [θ1, . . . , θk], 0 ≤ j < k and f ∈ Ck(IR), then

Dj(f − HΘf) (x) = j!
k∑

i=k−j

(x − θi)

(j + i − k)!
Dj+i−kωΘi−1

(x) δ[x,...,x
︸ ︷︷ ︸

k+1−i

,Θi]f.

Applying to (5.1), Theorem 5.8 followed by the Hermite-Genocchi formula, we obtain
that, for f ∈ Ck−m(IR),

f(x) − H
(m)
Θ f(x) = m!

k∑

i=k−m

(x − θi)

(m + i − k)!
Dm+i−kωΘi−1

(x)

∫

[x,...,x
︸ ︷︷ ︸

k+1−i

,Θi]

Dk−mf. (5.9)

This formula (5.9) is a sum of elementary liftable maps, each of order k−m. Its lift, using

Theorem 3.6, gives the following error formula for H
(m)
Θ .
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Second error formula. If m < k and f ∈ Ck−m(IRn), then

f(x) −H
(m)
Θ f(x) = m!

k∑

i=k−m

∑

Θ̃⊂Θi−1

#Θ̃=m+i−k

∫

[x,...,x
︸ ︷︷ ︸

k+1−i

,Θi]

D[x−Θi−1\Θ̃,x−θi]
f. (5.10)

This formula involves only derivatives of f of order k − m.

Those worried that the formula (5.10) is not symmetric in the points of Θ could, if
desired, take the average over all possible orderings for Θ to obtain such a symmetric
formula. More to the point, it would be desirable to find the ‘simplest’ symmetric form of
Theorem 5.8.

Derivatives of the error

The univariate identity

Dj(H
(m)
Θ f) = H

(m+j)
Θ (Djf)

can be ‘lifted’ to the following; see, e.g., [3:p205].

Proposition 5.11. If m < k, j < k − m, g ∈ Π0
j (IR

n) and f ∈ Ck−m−1(IRn), then

g(D)(H
(m)
Θ f) = H

(m+j)
Θ (g(D)f).

This allows us, in a very natural way, to use an error formula for H
(m)
Θ to describe the

derivatives of the error in H
(m)
Θ . In particular, with the second error formula (5.10), we

obtain the following.

Theorem 5.12. If m < k, j < k − m, g ∈ Π0
j and f ∈ Ck−m(IRn), then

g(D)
(
f −H

(m)
Θ f

)
(x) = (m + j)!

k∑

i=k−m−j

∑

Θ̃⊂Θi−1

#Θ̃=m+j+i−k

∫

[x,...,x
︸ ︷︷ ︸

k+1−i

,Θi]

D[x−Θi−1\Θ̃,x−θi]
g(D)f.

This formula involves only derivatives of f of order k − m.

Proof: By Proposition 5.11,

g(D)
(
f −H

(m)
Θ f

)
= (g(D)f) −H

(m+j)
Θ (g(D)f).

Since g(D)f ∈ Ck−(m+j)(IRn), we may apply the second error formula (5.10) to the error

in H
(m+j)
Θ at g(D)f , thereby obtaining the given formula.

13



This theorem is the major result of this paper. It generalises such results as the second

error formula (5.10) and Theorem 5.8. It expresses the error in H
(m)
Θ f , and its derivatives,

in terms of integration against the derivative of order one higher than the degree of the
interpolating polynomial space. This is precisely the estimate that numerical analysts

want, to guarantee that their scheme, e.g., a H
(m)
Θ finite element (see, e.g., [21:p164]), has

the maximum possible order.
From this Theorem, L∞-estimates for the error can easily be obtained. This is done

in Section 6.

Comparison with the results of Lai-Wang and Gao

The results of [19], [20] and [12] are written in terms of the multivariate divided
differences

[θ1, . . . , θ|α|]
αf :=

∫

[θ1,...,θ|α|]

Dαf, ∀α ∈ ZZs
+. (5.13)

The simplest of these results to state is the following error formula for Kergin interpolation.

Theorem 5.14 ([20:Th.3.1]). If α ∈ ZZs
+ with |α| ≤ j < k − 1, then

Dα(f −H
(0)
Θ f)(x)

=

|α|
∑

r=0

∑

γ≤α

|γ|=r

∑

β≥α−γ

|β|=j−r

r!

(
α
γ

)

Dα−γωβ(x)
n∑

i=1

(x − θj−r+1)i [x, . . . , x
︸ ︷︷ ︸

r+1

, θ1, . . . , θj−r+1]
β+γ+ei

f

−

k−1∑

r=j+1

∑

γ≥α

|γ|=r

Dαωγ(x) [θ1, . . . , θr+1]
γf,

(5.15)
where (

α
β

)

:=

(
α1

β1

)

· · ·

(
αn

βn

)

,

and

ωγ(x) :=
∑

ei1+···+e
i|γ|=γ

(x − θ1)i1 · · · (x − θ|γ|)i|γ|
.

The above uses standard multi-index notation. The i-th component of x ∈ IRn is xi,
and ei is the i-th unit vector in IRn.

Formula (5.15) of Theorem 5.14 involves derivatives of f of orders j + 1, . . . , k − 1;
whereas the formula (5.10) involves only derivatives of order k.

Also, in the case of greatest interest for this formula, namely when j + 1 = k − 1 and
α = 0, formula (5.15) reduces, in the univariate case, to

f(x) − HΘf(x) = ωΘk−1
(x)

∫

[x,θ1,...,θk−1]

Dk−1f − ωΘk−1
(x)

∫

[θ1,...,θk]

Dk−1f. (5.16)
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Since formula (5.16) is a sum of elementary liftable maps, and follows from one application
of (3.10) to the Hermite error formula

f(x) − HΘf(x) = (x − θ1) · · · (x − θk)

∫

[x−θ1,···,x−θk]

Dkf,

we obtain at once the case j + 1 = k − 1 and α = 0 of Theorem 5.14 by lifting (5.16), and
in the following form:

f(x)−H
(0)
Θ f(x) =

∫

[x,θ1,...θk−1]

Dx−θ1
· · ·Dx−θk−1

f −

∫

[θ1,...θk]

Dx−θ1
· · ·Dx−θk−1

f. (5.17)

If one now expands (5.17) in multivariate divided differences, then one obtains (5.15)
for this case. However, it is not clear what has been gained in the process.

Similar considerations, can, and should, be given to other formulas in [19], [20] and
[12].

Additional comments

The only justification for the term ‘multivariate divided difference’ for (5.13) that the
author can see, is the identity (3.10), which is due to Micchelli (see [24:Th.6]), and (in its
many guises) pervades the multivariate spline literature. With that justification, the term
might as well be applied to any linear combination of functionals

f 7→

∫

Θ

g(D)f, Θ ∈ (IRn)k, g ∈ Πj(IR
n),

that can be expressed as a linear combination of other such functionals involving lower
order derivatives of f .

6. L∞-estimates

In this final section, we obtain L∞-estimates from the formulæ of Section 5. Our
choice of the seminorm · k,∞,K defined in (1.2) makes this a straight-forward task. Let

hx,Θ := max
θ∈Θ

‖x − θ‖ ≤ diam[x,Θ].

From the first error formula (5.6), we obtain the following L∞-estimate.

Proposition 6.1. If m < k and f ∈ Ck(IRn), then

|f(x) −H
(m)
Θ f(x)| ≤

m∑

j=0

constj,k,m(hx,Θ)k−j f k−j,∞,conv[x,Θ],
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where

constj,k,m :=
m!

(k + m − j)!

(
k
j

)

.

Proof: To the first error formula (5.6), apply Property 2.3 (c), then use (1.1) and
(1.2) to obtain

|f(x) −H
(m)
Θ f(x)| ≤ m!

m∑

j=0

∑

Θ̃⊂Θ

#Θ̃=j

1

(k + m − j)!
(hx,Θ)k−j f k−j,∞,conv[x,Θ].

Lastly, observe that

#{Θ̃ ⊂ Θ : #Θ̃ = j} =

(
k
j

)

.

From Theorem 5.12, we obtain the main result of this section.

Theorem 6.2. If m < k, j < k − m and f ∈ Ck−m(IRn), then

|Dj(f −H
(m)
Θ f)|(x) ≤

1

(k − m − j)!
(hx,Θ)k−m−j f k−m,∞,conv[x,Θ]. (6.3)

The constant is the best possible in the sense that if Θ = [θ, . . . , θ], then it cannot be
improved.

Proof: To prove the inequality, begin as in the proof of Proposition 6.1, then use
the identity:

(m + j)!

k!

k∑

i=k−m−j

(
i − 1

m + j + i − k

)

=
1

(k − m − j)!
.

Suppose Θ = [θ, . . . , θ]. By (4.6) we have that H
(m)
Θ f is the Taylor interpolant from

Πk−m−1(IR
n) to f at θ. Let u := (x− θ)/‖x− θ‖. Note that hx,Θ = ‖x− θ‖. Then for the

plane wave

f := (· − u∗θ)k−m ◦ u∗ ∈ Πk−m(IRn),

H
(m)
Θ f = 0, and we have, by (3.1), that

|Dj(f −H
(m)
Θ f)|(x)

f k−m,∞,conv[x,Θ]
≥

|Dj
uf(x)|

(k − m)!
=

(k − m) · · · (k − m − j + 1)

(k − m)!
(· − u∗θ)k−m−j ◦ (u∗x)

=
1

(k − m − j)!
(hx,Θ)k−m−j .

Thus, in the case Θ = [θ, . . . , θ], the constant is the best possible.
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When m = 0, Proposition 6.1 and Theorem 6.2 (with j = 0) reduce to

|f(x) −H
(0)
Θ f(x)| ≤

1

k!
(hx,Θ)k f k,∞,conv[x,Θ],

which was given in [24]. For m > 0, none of the above L∞-estimates are in the literature.

Remark 6.4. In [4:Th.2.5] Bos gives the following estimate for Kergin interpolation on the
disc. Let Θ consist of k points equally spaced on the disc {x ∈ IR2 : ‖x‖ = h}, where
h > 0. Then for f ∈ Ck(IR2)

max
‖x‖≤h

|f(x) −H
(0)
Θ f(x)| ≤

1

k!

4

2k
hk f k,∞,{x:‖x‖≤h}.

This indicates that it may be possible to reduce the size of the constant in (6.3)
for restricted values of hx,Θ. However, in view of the sharpness for the case of Taylor

interpolation (when Θ = [θ, . . . , θ]) and the continuity of Θ 7→ H
(m)
Θ f (by Theorem 3.11),

for unrestricted values of hx,Θ the constant is the best possible in all cases.

It is not possible to apply Properties 2.3 (c) to the integral error formulæ of this paper
to obtain Lp-estimates for 1 ≤ p < ∞. A partial solution to this impasse, which uses a
multivariate form of Hardy’s inequality, is given by the author in [25].
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[16] Höllig, K.(1986): Multivariate splines. In: C. de Boor, ed, Approximation Theory,
Proc. Symp. Appl. Math. 36, 103–127. Amer.Math.Soc., Providence
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