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ABSTRACT

A sharp pointwise error estimate is given for multivariate positive linear operators
which reproduce the linear polynomials. This quantitative Korovkin type theorem gen-
eralises a known univariate result. It is applied to a number of operators including the
multivariate Bernstein operators, and the recently introduced Bernstein Schoenberg type
operators of Dahmen, Micchelli and Seidel.
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1. Introduction and the main result

If L: Cla,b] — Cla,b] is a positive linear operator which reproduces the linear poly-
nomials, then it is known (see, e.g., DeVore [D72:Th.2.5,p.39]) that there is the sharp error
estimate

F#) — LI < SL(— 2) @) 1D flloor ¥ € Cfab) (1.1)

In this paper we give the multivariate generalisation of (1.1). The author was suprised that
this straightforward generalisation gave sharp multivariate bounds. This perhaps explains
why it was not considered till now.

In the remainder of this section we present the main result. In Section 2, some
examples are considered. These include multivariate Bernstein operators (like linear in-
terpolation at the vertices of a simplex and bilinear interpolation at the vertices of a
rectangle), and the recently introduced Bernstein Schoenberg operators based on blos-
soming. In Section 3, we give a more general Korovkin type theorem which also covers
the case of multivariate positive linear interpolation operators which don’t reproduce the
linear polynomials.

For simplicity, we let K be a compact subset of IR” and consider maps L on C(K)
and C?(K). In the case of locally defined maps (for unbounded regions K), or other
function spaces (like Sobolev spaces) appropriate modifications of the results below can be
made. As usual, L is positive means Lf > 0 whenever f > 0, and L reproduces the linear
polynomials means that Lp = p whenever p belongs to IIy (the linear polynomials).

To determine the sign of one of the constants occuring in Theorem 1.4, we need the
following lemma, which is of independent interest.

Lemma 1.2. Suppose that Q is a convex subset of IR, and L : C(2) — C(2) a positive
linear operator which reprodices the linear polynomials. Then

fisconvex — < Lf. (1.3)

Proof: Suppose that f is convex and x € ). Since f is convex it is possible to
choose a linear polynomial p with p(z) = f(x) and p < f. When f is C'' at x this is simply
the tangent plane to f at 2. Since L is positive and reproduces p,

p<f = p=Lp<Lf,

and so

as supposed. O



This ‘shape property’ is given for the Bernstein Schoenberg operator in Goodman
[G95:Th.1,p.442], and it is presumably known for other operators also.
Now the main result. For f € C*(K) we define the seminorm

||D2f||007f( 1= sup sup |D1l,1D11,2.f(‘77)|7

rEK ni,ug€R”
[l =1

where D, f is the derivative of f in the direction y. This measures the maximum size of
the second derivative of f over K.

Theorem 1.4. Suppose that K is compact convex subset of R*, and L : C(K) — C(K) is
a positive linear operator which reprodiuces the linear polynomials. Then, for every © € K
there is the sharp pointwise error estimate

1 -
E(f.w) o= |f(2) = LE)] < 5S@)ID* floowr  Vf € CP(E), (1.5)
where the nonnegative function S := Sy, : K — IRY is defined by
S(x) = L(|| - —=|I*)(x) = E(|| - =[], 2) = BE(| - |*,2) = L(| - [°)(2) — [[=]I*. (1.6)
There is equality in (1.5) for f from the space of quadratics

Q := T, @ span{]| - |*} = span{]| - —¢|> : ¢ € R"}. (L.7)

Proof: Let Ty » f be the linear Taylor interpolant to f at z, i.e., the linear polyno-
mial which matches the value and first order derivatives of f at 2. From the (univariate)
integral error formula for Taylor interpolation

Rinf(y) = f(y) -~ Tomfly) = / (1 D fle+1ly 2)dt,  yeK,

it follows that .
Bucfl < Sl a0 i (18

Since L reproduces p =T, . f, applying it to T ,f — f = — Ry . f gives
Since L is positive, using (1.9) and (1.8) we obtain
1 1
Thnf = L < LBy o f) < LG - =2 P ID° Flloo, i) = SID° Flloo, s (I - —=[1%). - (1.10)

Evaluating (1.10) at = gives

1 1
[fa) = Lf(@) < LA =2 ) @) 1D flloo, i = 55 (@) 1D Flloo, i

which is (1.5). This is sharp for f := || - —z|*, and hence for any quadratic polynomial
from @ (since L reproduces I1;). Since ||z — z||* = 0 and L reproduces TI;, the first two
equalities in (1.6) follow immediately. The third, that

E(ll 17, x) o= [lll® = LA 1P) ) | = LA 17 ) = ),

follows from Lemma 1.2 and the fact that || - ||2 1S convex. O



It is an immediate consequence of (1.5) that there is the sharp error estimate

1 -
IF Ll < 5Co D e, 1 € CU(K), (1)
where
Cqr = ma,;}gS(m). (1.12)
rek
2. Examples of sharp estimates
In this section the function S := Sy, of Theorem 1.4 is computed for several operators

L, and hence the sharp error estimate (1.5) is obtained.

Example 1. Let T be a (nondegenerate) simplex in IR®, with vertices V., and corre-
sponding barycentric coordinate functions (\,)yev. The multivariate Bernstein operator

of degree n on this simplex, B, := B, 7: C(T) — C(T), n =1,2,..., is defined by
O L
v EV o€V v, €V ’

This operator is positive and reproduces the linear polynomials, and so Theorem 1.4 can
be applied . It can be shown (see comments below) that

S(@) o= S, (1) 2= Balll - #l")(r) = ~(B” — |}z — | (2.2)

where ¢ is the centre and R the radius of the (unique) sphere containing V. Hence B,
satisfies the sharp error estimate, for x € T, that

f(2) = Buf(a)l < o= (B — [l — e[ [ D*fllors  ¥F€CUT),  (2.3)

1
2n
and in particular the sharp error estimate, of the form (1.11), that

1
If = Baflliwim < 5 (B = @)D flocr, ¥ € CHT), (24)

where
d := the distance of ¢ from T = min ||z — ¢||.
reT

The operator By = B; r is the map of linear interpolation at the vertices V of T
(interpolation by linear polynomials). For it the estimates (2.3) and (2.4) were recently
proved in Waldron [W97] by using an integral representation of the error. At the time,
these were the only known sharp pointwise error estimates for a multivariate interpolation
operator, and the role of the positivity of By in obtaining them was not fully appreciated.
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By taking the result proved in [W97] that Sg, (z) = R* — ||z — ¢||?, and the formula
for Sp, (2), when T is a standard simplex, given in Altomare and Campiti [AC94:p.315],
is of the form 1/n
multiplying a quadratic polynomial (namely R* — ||z — ¢||* for the standard simplex), and
is obtained through a probablistic interpretation of Sp, (see [AC94] for further details).

one can conclude (2.2). This formula for Sg, (z), there denoted by o2

n,r?

Example 2. Let B,,, B,, be the univariate Bernstein operators of degrees n, m defined
on the intervals [a, b], [¢, d] respectively, i.e., ef (2.1),

SN fon) (). w el Bufl) =S fn)ai). v e [nbl,
k=0 7=0
where
ka , — k)b c , — 7)d 4 :
vp = Mj pr = ARAP TR w; = wj ;= M
- . m . ,

Then the bivariate tensor product Bernstein operator of coordinate degree (n,m) on the

rectangle R := [a,b] X [¢,d], Bym 1= Bn.m.r = By, @ By, : C(R) — C(R), is defined by
n mf T U Z Z f 7)]“11) pk )Q7 (U) (T,U) € R. (25)
k=0 5=0

This operator is positive, and it reproduces the bilinear polynomials (which contain the
linear polynomials). Using the fact that the univariate Bernstein operator reproduces
constants, we compute that

SBo o (7.9) = Bum (|| - —(2.9)I") (. )

Z (v —2)" + (w; —y) }pk )ai(y)

I
3 HM: E:J

= (v — )’ pr(x) + Z(“),j - y)ij(y) (2.6)
= Ba(|- —2*)(2) +Bn;(| ——y*)(y)

= Sgp,(x)+ Sn,, (v)

= %("r —a)(b— )+ %(U —e)(d —y).

From (2.6) sharp pointwise error estimates for B,, ,, can be obtained. For example, if
L is the map of bilinear interpolation at the vertices of the unit square, i.e., By with

R :=[0,1]?, then for (z,y) € [0,1]* we have the sharp estimate

Fooy) — LA < 5 10— ) 4yl o)} D fllagony 9 € CR)L (27)



Example 3. It is possible to define the tensor product of positive linear operators (see
[AC94:p.32]). This tensor product is a positive operator, and it reproduces the linear
polynomials if each of its factors does so. The construction, an abstract version of (2.5)
which relies on associated families of Radon measures, is technical. Hence we provide only
a brief outline of it and the corresponding general form of (2.6). The reader should consult
[AC94:p.32] for full details.

Let L; : C(K;) — C(K;), 1 = 1,...,p, where K; C IR* is compact and convex,
be a (finite) collection of positive linear operators which reproduce IIy (K;) (the linear
polynomials on ;). The tensor product

14 P
L:=®L:C(K)> C(K), K:=TK CR" x---xR>
= =1

1 1=

is a positive linear operator (K is a compact convex region). It reproduces Iy (K1) ®--- ®
Iy (K,) which contains IT; (K'). Using properties of the tensor product and the fact that
each L; reproduces constants one can argue, as in (2.6), that

Sr(er,.ooxp) =L - —(x1, ..,z || (@, oy 2p)
= Lo(ll- x| ) + o+ Lyl 2 |7) () (2.8)
= Sp(m) + -+ 5, (7p),

which is the general form of (2.6).
Here is a specific example. Suppose that L : C(K) — C(K) is the map of interpolation
from II, (IR,Q) @ I (IR) at

V :={(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1), (0,1,1)}

the vertices of the triangular prism K in IR*. With K =: T x I ¢ IR? x IR, this map is of
the form L = By 7 ® By 7, and hence it is positive (and reproduces the linear polynomials).
Thus, by (2.8) and (2.2), we obtain the sharp estimate

P2 - LGy )| < 5 (r(1—2) byl y) 4 2(1 - 2} 1D fllwic,  ¥F € C2(E).
(2.9)

Example 4. Here we briefly consider the Bernstein Schoenberg operators recently in-
troduced by Dahmen, Micchelli and Seidel [DMS92] (also see Goodman [G95]). These
multivariate operators, which are based on blossoming, are locally defined, positive, and
reproduce the linear polynomials. Hence (with appropriate modifications) we can apply
Theorem 1.4 to them. They generalise the Bernstein operators of Example 1, and certain
variation diminishing spline operators of Schoenberg. Following the notation of [(G95:p.442]
we define the Bernstein Schoenberg operator

Suf(x):=>_ Y f(C)Bl(x), wzeR"

reJacel,



The proof of Theorem 3 of [G95] shows that

S(a) = Ss, (x) = Salll - ") ()

=3 % ¢l - P Bl

reJacel,
e (2.10)
=D ID IS DD SELEEE D HE
reJaer, j=0 I=0

=0(1/n), n — 0o,

where the ‘constant’ in the big O depends on the geometry of the triangulation and clouds
defining &,, near the point x, and it is possible to choose a constant which works for all
x from a given compact subset of IR”. From (2.10) and (1.5) the convergence results of
[GI5] can be obtained. In light of the special case (2.2), finer estimates of (2.10) might be
possible.

Example 5. The sharpness of (1.5) implies certain saturation results. For example, if B,
is the multivariate Bernstein operator of Example 1, then (2.4) implies that

||f - anHLm(T) = 0(1/77)7 n — 00, \V/f S CQ(T)v

while for f € Q (see (1.7)),

1
£(r) = Buf(r)| = -Cuye w€T.

where

1
Cog 1= 5B~ [lr = el D fll

with Cp ¢ > 0 when f € Q \II; and « € T\ V. In other words, B,, has saturation order
1/n (at every point 2 € T'\ V). Similarly, by (2.6), the bivariate tensor product Bernstein
operator B, ,, of Example 2 has saturation order 1/n + 1/m.

The general result is that a family (L) of multivariate positive linear operators that
reproduces the linear polynomials has saturation order Sy, (#) at the point x.

3. A Korovkin—type theorem

For positive linear operators which possibly don’t reproduce the linear polynomials,
the proof of Theorem 1.4 can be adapted to obtain the following quantitative Korovkin
type theorem for C'? functions. Let e; denote the linear polynomial y — ;.
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Theorem 3.1. Suppose that K is a compact convex subset of R", and L : C(K) — C(K)
is a positive linear operator. Then, for every x € K, there is the pointwise error estimate

E(f.x) = |f(x) — Lf(x)] < |f(@)| B(1,2) + |L(D.—s f(2)) ()|

1 ) o (3.2)
+ 5B —2|I>.2) | D* flloo, s Vf € C*(K),

where the second term on the right can be estimated by either of

LD f(2)) ()] S IVF@ S Bles — r2)? (3.3)

or

L(D. () ()] < IV FG B ] ). (3.4)
Proof: Apply Lto f =T o f + B1»f = f(x) + D._, f(x) + Ry »f to obtain that

(after rearrangement)

F(r)— Lf = F){1 — L)} — LD f(2)) — L(Ry 1), (3.5)
Evaluating (3.5) at 2, then using the triangle inequality and (1.10) gives
£(#) — LA < AL ) + LD @) @) + 5Bl 2) [D Fll
which is (3.2). Fina,uy, with D, denoting the derivative in the i th coordinate direction,
[L(D- o () ()] = [L(Zi(ei — 20) D f(2)) ()| = |, Dif () Lei — 3) ()]
< IV f() \/Z,:IL i — m><m>|2 — IV )/ Bl — i),

and

(D () ()] < LAV F@I -]y = V@) B all,2).

O

If, in addition, L reproduces the linear polynomials, then (3.2) reduces to the sharp
estimate of Theorem 1.4. Similar estimates to (3.2) involving moduli of continuity can be

found in [AC94:85.1,p.265].

References

[AC94] F. Altomare and M. Campiti, “Korovkin type approximation theory and its applica-

tions”, Walter de Gruyter & Co., Berlin, 1994.

[DMS92] Wolfgang Dahmen, Charles A. Micchelli, and Hans-Peter Seidel, Blossoming begets

B-spline bases built better by B-patches, Math. Comp. 59(199) (1992), 97 115.
[D72] R. A. DeVore, “The Approximation of Continuous Functions by Positive Linear Op-
erators”, Springer Verlag, Berlin, 1972.

[G95] T. N. T. Goodman, Asymptotic formulas for multivariate Bernstein-Schoenberg op-
erators, Constr. Approz. 11(4) (1995), 439 454.

[W97] S. Waldron, The error in linear interpolation at vertices of a simplex, STAM J. Numer.
Anal. xx (199x), XXX XXX.



