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1. Introduction and the main resultIf L : C[a; b]! C[a; b] is a positive linear operator which reproduces the linear poly-nomials, then it is known (see, e.g., DeVore [D72:Th.2.5,p.39]) that there is the sharp errorestimate jf(x) �Lf(x)j � 12L�(� � x)2�(x) kD2fk1; 8f 2 C2[a; b]: (1:1)In this paper we give the multivariate generalisation of (1.1). The author was suprised thatthis straightforward generalisation gave sharp multivariate bounds. This perhaps explainswhy it was not considered till now.In the remainder of this section we present the main result. In Section 2, someexamples are considered. These include multivariate Bernstein operators (like linear in-terpolation at the vertices of a simplex and bilinear interpolation at the vertices of arectangle), and the recently introduced Bernstein{Schoenberg operators based on blos-soming. In Section 3, we give a more general Korovkin{type theorem which also coversthe case of multivariate positive linear interpolation operators which don't reproduce thelinear polynomials.For simplicity, we let K be a compact subset of IRs and consider maps L on C(K)and C2(K). In the case of locally de�ned maps (for unbounded regions K), or otherfunction spaces (like Sobolev spaces) appropriate modi�cations of the results below can bemade. As usual, L is positive means Lf � 0 whenever f � 0, and L reproduces the linearpolynomials means that Lp = p whenever p belongs to �1 (the linear polynomials).To determine the sign of one of the constants occuring in Theorem 1.4, we need thefollowing lemma, which is of independent interest.Lemma 1.2. Suppose that 
 is a convex subset of IRs, and L : C(
)! C(
) a positivelinear operator which reproduces the linear polynomials. Thenf is convex =) f � Lf: (1:3)Proof: Suppose that f is convex and x 2 
. Since f is convex it is possible tochoose a linear polynomial p with p(x) = f(x) and p � f . When f is C1 at x this is simplythe tangent plane to f at x. Since L is positive and reproduces p,p � f =) p = Lp � Lf;and so f(x) = p(x) � Lf(x);as supposed. 1



This `shape property' is given for the Bernstein{Schoenberg operator in Goodman[G95:Th.1,p.442], and it is presumably known for other operators also.Now the main result. For f 2 C2(K) we de�ne the seminormkD2fk1;K := supx2K supu1;u22IRnkuik=1 jDu1Du2f(x)j;where Dyf is the derivative of f in the direction y. This measures the maximum size ofthe second derivative of f over K.Theorem 1.4. Suppose that K is compact convex subset of IRs, and L : C(K)! C(K) isa positive linear operator which reproduces the linear polynomials. Then, for every x 2 Kthere is the sharp pointwise error estimateE(f; x) := jf(x) � Lf(x)j � 12S(x) kD2fk1;K ; 8f 2 C2(K); (1:5)where the nonnegative function S := SL : K ! IR+ is de�ned byS(x) := L(k � �xk2)(x) = E(k � �xk2; x) = E(k � k2; x) = L(k � k2)(x) � kxk2: (1:6)There is equality in (1.5) for f from the space of quadraticsQ := �1 � spanfk � k2g = spanfk � �ck2 : c 2 IRng: (1:7)Proof: Let T1;xf be the linear Taylor interpolant to f at x, i.e., the linear polyno-mial which matches the value and �rst order derivatives of f at x. From the (univariate)integral error formula for Taylor interpolationR1;xf(y) := f(y) � T1;xf(y) = Z 10 (1 � t)D2y�xf(x + t(y � x)) dt; y 2 K;it follows that jR1;xf j � 12k � �xk2kD2fk1;K : (1:8)Since L reproduces p = T1;xf , applying it to T1;xf � f = �R1;xf givesT1;xf �Lf = �L(R1;xf): (1:9)Since L is positive, using (1.9) and (1.8) we obtainjT1;xf � Lf j � L(jR1;xf j) � L(12k � �xk2kD2fk1;K ) = 12kD2fk1;KL(k � �xk2): (1:10)Evaluating (1.10) at x givesjf(x) � Lf(x)j � 12L(k � �xk2)(x) kD2fk1;K = 12S(x) kD2fk1;K ;which is (1.5). This is sharp for f := k � �xk2, and hence for any quadratic polynomialfrom Q (since L reproduces �1). Since kx � xk2 = 0 and L reproduces �1, the �rst twoequalities in (1.6) follow immediately. The third, thatE(k � k2; x) := �� kxk2 � L(k � k2)(x) �� = L(k � k2)(x) � kxk2;follows from Lemma 1.2 and the fact that k � k2 is convex.2



It is an immediate consequence of (1.5) that there is the sharp error estimatekf � LfkL1(K) � 12CL kD2fk1;K ; 8f 2 C2(K); (1:11)where CL := maxx2K S(x): (1:12)2. Examples of sharp estimatesIn this section the function S := SL of Theorem 1.4 is computed for several operatorsL, and hence the sharp error estimate (1.5) is obtained.Example 1. Let T be a (nondegenerate) simplex in IRs, with vertices V , and corre-sponding barycentric coordinate functions (�v)v2V . The multivariate Bernstein operatorof degree n on this simplex, Bn := Bn;T : C(T )! C(T ), n = 1; 2; : : :, is de�ned byBnf(x) := Xv12V Xv22V � � � Xvn2V f�v1 + � � �+ vnn ��v1(x) � � � �vn(x): (2:1)This operator is positive and reproduces the linear polynomials, and so Theorem 1.4 canbe applied . It can be shown (see comments below) thatS(x) := SBn(x) := Bn(k � �xk2)(x) = 1n (R2 � kx � ck2); (2:2)where c is the centre and R the radius of the (unique) sphere containing V . Hence Bnsatis�es the sharp error estimate, for x 2 T , thatjf(x) �Bnf(x)j � 12n (R2 � kx � ck2) kD2fk1;T ; 8f 2 C2(T ); (2:3)and in particular the sharp error estimate, of the form (1.11), thatkf �BnfkL1(T ) � 12n (R2 � d2) kD2fk1;T ; 8f 2 C2(T ); (2:4)where d := the distance of c from T = minx2T kx� ck:The operator B1 = B1;T is the map of linear interpolation at the vertices V of T(interpolation by linear polynomials). For it the estimates (2.3) and (2.4) were recentlyproved in Waldron [W97] by using an integral representation of the error. At the time,these were the only known sharp pointwise error estimates for a multivariate interpolationoperator, and the role of the positivity of B1 in obtaining them was not fully appreciated.3



By taking the result proved in [W97] that SB1(x) = R2 � kx � ck2, and the formulafor SBn(x), when T is a standard simplex, given in Altomare and Campiti [AC94:p.315],one can conclude (2.2). This formula for SBn(x), there denoted by �2n;x, is of the form 1=nmultiplying a quadratic polynomial (namely R2 �kx� ck2 for the standard simplex), andis obtained through a probablistic interpretation of SBn (see [AC94] for further details).Example 2. Let Bn, Bm be the univariate Bernstein operators of degrees n, m de�nedon the intervals [a; b], [c; d] respectively, i.e., cf (2.1),Bnf(x) := nXk=0 f(vk) pk(x); x 2 [a; b]; Bmf(y) := mXj=0 f(wj ) qj (y); y 2 [a; b];wherevk := ka+ (n� k)bn ; pk := �ka�n�kb ; wj := jc+ (m� j)dm ; qj := �jc�m�jd :Then the bivariate tensor product Bernstein operator of coordinate degree (n;m) on therectangle R := [a; b]� [c; d], Bn;m := Bn;m;R = Bn 
Bm : C(R)! C(R), is de�ned byBn;mf(x; y) := nXk=0 mXj=0 f(vk; wj) pk(x)qj (y); (x; y) 2 R: (2:5)This operator is positive, and it reproduces the bilinear polynomials (which contain thelinear polynomials). Using the fact that the univariate Bernstein operator reproducesconstants, we compute thatSBn;m(x; y) := Bn;m(k � �(x; y)k2)(x; y)= nXk=0 mXj=0 �(vk � x)2 + (wj � y)2	 pk(x)qj (y)= nXk=0(vk � x)2pk(x) + mXj=0(wj � y)2qj(y)= Bn(j � �xj2)(x) +Bm(j � �yj2)(y)= SBn(x) + SBm(y)= 1n (x � a)(b � x) + 1m(y � c)(d� y): (2:6)From (2.6) sharp pointwise error estimates for Bn;m can be obtained. For example, ifL is the map of bilinear interpolation at the vertices of the unit square, i.e., B1;1 withR := [0; 1]2, then for (x; y) 2 [0; 1]2 we have the sharp estimatejf(x; y) �Lf(x; y)j � 12 fx(1 � x) + y(1 � y)g kD2fk1;[0;1]2 ; 8f 2 C2(R): (2:7)4



Example 3. It is possible to de�ne the tensor product of positive linear operators (see[AC94:p.32]). This tensor product is a positive operator, and it reproduces the linearpolynomials if each of its factors does so. The construction, an abstract version of (2.5)which relies on associated families of Radon measures, is technical. Hence we provide onlya brief outline of it and the corresponding general form of (2.6). The reader should consult[AC94:p.32] for full details.Let Li : C(Ki) ! C(Ki), i = 1; : : : ; p, where Ki � IRsi is compact and convex,be a (�nite) collection of positive linear operators which reproduce �1(Ki) (the linearpolynomials on Ki). The tensor productL := p
i=1Li : C(K)! C(K); K := p�i=1Ki � IRs1 � � � � � IRspis a positive linear operator (K is a compact convex region). It reproduces �1(K1)
 � � � 
�1(Kp) which contains �1(K). Using properties of the tensor product and the fact thateach Li reproduces constants one can argue, as in (2.6), thatSL(x1; : : : ; xp) := L(k � �(x1; : : : ; xp)k2)(x1; : : : ; xp)= L1(k � �x1k2)(x1) + � � �+ Lp(k � �xpk2)(xp)= SL1(x1) + � � �+ SLp (xp); (2:8)which is the general form of (2.6).Here is a speci�c example. Suppose that L : C(K)! C(K) is the map of interpolationfrom �1(IR2)
�1(IR) atV := f(0; 0; 0); (1; 0; 0); (0; 1; 0); (0; 0; 1); (1; 0; 1); (0; 1; 1)gthe vertices of the triangular prism K in IR3. With K =: T � I � IR2 � IR, this map is ofthe form L = B1;T 
B1;I, and hence it is positive (and reproduces the linear polynomials).Thus, by (2.8) and (2.2), we obtain the sharp estimatejf(x; y; z)�Lf(x; y; z)j � 12 fx(1 � x) + y(1 � y) + z(1 � z)g kD2fk1;K ; 8f 2 C2(K):(2:9)Example 4. Here we brie
y consider the Bernstein{Schoenberg operators recently in-troduced by Dahmen, Micchelli and Seidel [DMS92] (also see Goodman [G95]). Thesemultivariate operators, which are based on blossoming, are locally de�ned, positive, andreproduce the linear polynomials. Hence (with appropriate modi�cations) we can applyTheorem 1.4 to them. They generalise the Bernstein operators of Example 1, and certainvariation diminishing spline operators of Schoenberg. Following the notation of [G95:p.442]we de�ne the Bernstein{Schoenberg operatorSnf(x) :=XI2J X�2�n f(�I�)BI�(x); x 2 IRs:5



The proof of Theorem 3 of [G95] shows thatS(x) := SSn(x) := Sn(k � �xk2)(x)=XI2J X�2�n k�I� � xk2BI�(x)=XI2J X�2�n k 1n sXj=0 �j�1Xl=0 xij ;l � xk2BI�(x)= O(1=n); n!1; (2:10)where the `constant' in the big O depends on the geometry of the triangulation and cloudsde�ning Sn near the point x, and it is possible to choose a constant which works for allx from a given compact subset of IRs. From (2.10) and (1.5) the convergence results of[G95] can be obtained. In light of the special case (2.2), �ner estimates of (2.10) might bepossible.Example 5. The sharpness of (1.5) implies certain saturation results. For example, if Bnis the multivariate Bernstein operator of Example 1, then (2.4) implies thatkf �BnfkL1(T ) = O(1=n); n!1; 8f 2 C2(T );while for f 2 Q (see (1.7)),jf(x) �Bnf(x)j = 1nCx;f ; x 2 T;where Cx;f := 12(R2 � kx� ck2)kD2fk1;T ;with Cx;f > 0 when f 2 Q n �1 and x 2 T n V . In other words, Bn has saturation order1=n (at every point x 2 T n V ). Similarly, by (2.6), the bivariate tensor product Bernsteinoperator Bn;m of Example 2 has saturation order 1=n+ 1=m.The general result is that a family (Lk) of multivariate positive linear operators thatreproduces the linear polynomials has saturation order SLk(x) at the point x.3. A Korovkin{type theoremFor positive linear operators which possibly don't reproduce the linear polynomials,the proof of Theorem 1.4 can be adapted to obtain the following quantitative Korovkin{type theorem for C2{functions. Let ei denote the linear polynomial y 7! yi.6



Theorem 3.1. Suppose thatK is a compact convex subset of IRn, and L : C(K)! C(K)is a positive linear operator. Then, for every x 2 K, there is the pointwise error estimateE(f; x) := jf(x) � Lf(x)j � jf (x)jE(1; x) + ��L�D��xf(x)�(x)��+ 12E(k � �xk2; x) kD2fk1;K ; 8f 2 C2(K); (3:2)where the second term on the right can be estimated by either of��L�D��xf(x)�(x)�� � krf(x)kqPni=1E(ei � xi; x)2 (3:3)or ��L�D��xf(x)�(x)�� � krf(x)kE(k � �xk; x): (3:4)Proof: Apply L to f = T1;xf +R1;xf = f(x) +D��xf(x) +R1;xf to obtain that(after rearrangement)f(x) � Lf = f(x)f1 �L(1)g � L�D��xf(x)� �L(R1;xf): (3:5)Evaluating (3.5) at x, then using the triangle inequality and (1.10) givesjf(x) � Lf(x)j � jf(x)jE(1; x) + ��L�D��xf(x)�(x)�� + 12E(k � �xk2; x) kD2fk1;K ;which is (3.2). Finally, with Di denoting the derivative in the i{th coordinate direction,��L�D��xf(x)�(x)�� = ��L�Pi(ei � xi)Dif(x)�(x)�� = ��PiDif(x)L�ei � xi�(x)��� krf(x)kqPijL�ei � xi�(x)j2 = krf(x)kqPiE(ei � xi; x)2;and ��L�D��xf(x)�(x)�� � L(krf(x)k k � �xk) = krf(x)kE(k � �xk; x):If, in addition, L reproduces the linear polynomials, then (3.2) reduces to the sharpestimate of Theorem 1.4. Similar estimates to (3.2) involving moduli of continuity can befound in [AC94:x5.1,p.265]. References[AC94] F. Altomare and M. Campiti, \Korovkin{type approximation theory and its applica-tions", Walter de Gruyter & Co., Berlin, 1994.[DMS92] Wolfgang Dahmen, Charles A. Micchelli, and Hans-Peter Seidel, Blossoming begetsB-spline bases built better by B-patches,Math. Comp. 59(199) (1992), 97{115.[D72] R. A. DeVore, \The Approximation of Continuous Functions by Positive Linear Op-erators", Springer{Verlag, Berlin, 1972.[G95] T. N. T. Goodman, Asymptotic formulas for multivariate Bernstein-Schoenberg op-erators, Constr. Approx. 11(4) (1995), 439{454.[W97] S. Waldron, The error in linear interpolation at vertices of a simplex, SIAM J. Numer.Anal. xx (199x), xxx{xxx. 7


