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ABSTRACT

First we give a compact treatment of the Jacobi polynomials on a simplex in IRd which
exploits and emphasizes the symmetries that exist. This includes the various ways that they
can be defined: via orthogonality conditions, as a hypergeometric series, as eigenfunctions
of an elliptic pde, as eigenfunctions of a positive linear operator, and through conditions
on the Bernstein–Bézier form. We then consider all aspects of the limiting case when
the parameters µ = (µ0, . . . , µd) of the Jacobi polynomials approach −1, and the weight
becomes singular. We show that the orthogonal projection of a continuous function onto
the Jacobi polynomials of degree n has a limit as the µj → −1, and give an explicit formula
for the corresponding ‘orthogonal’ expansion. It turns out that this expansion is closely
related to the limit of the eigenfunction expansion of the Bernstein operator and a new
mean value interpolant.
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1. Introduction

The Jacobi polynomials for the weight function (1 − x)α(1 + x)β , α > −1, β > −1 on
the interval [−1, 1] are given explicitly by

P (α,β)
n (x) = 2−n

n∑

j=0

(
n + α

j

)(
n + β

n − j

)

(x − 1)n−k(x + 1)j . (1.1)

If either α or β is set to −1, then this formula makes sense (indeed it is an analytic function
of α and β), but the weight is no longer integrable, and the resulting polynomials are not
orthogonal polynomials (for some measure). There have been a number of attempts to
determine ‘orthogonality conditions’ for these polynomials: distributional weights [MK78],
complex weight functions [R84], [IMR91], Hadamard’s finite parts [K97], and orthogonality
on a Riemann surface [KMO05]. These works exclude the case α = β = −1, and have not
been extended to multivariate Jacobi polynomials.

In this paper we consider the case α = β = −1 by taking the limit as α, β → −1+ to
obtain the corresponding ‘orthogonality conditions’. Our results are given for multivariate
Jacobi polynomials. To obtain and understand them, we first give a compact development
of basic properties of Jacobi polynomials on a simplex which utilises the symmetry. This
includes the various ways they can be defined: via orthogonality conditions, as a hyper-
geometric series, as eigenfunctions of an elliptic pde, as eigenfunctions of a positive linear
operator, and through conditions on the Bernstein–Bézier form.

Next we consider all aspects of the limiting case when the parameters µ = (µ0, . . . , µd)
of the Jacobi polynomials approach −1, and the weight becomes singular. We show that
the orthogonal projection of a continuous function onto the Jacobi polynomials of degree n
has a limit as the µj → −1, and give an explicit formula for the corresponding ‘orthogonal’
expansion. This expansion gives rise to a new mean value type interpolation.

Finally, we show that this expansion is closely related to the limit of the eigenfunction
expansion of the Bernstein operator and the limiting form of the Bernstein–Durrmeyer
operator with Jacobi weights.

2. Jacobi polynomials on a simplex

2.1. Notation

Throughout let ξ = (ξv)v∈V be the barycentric coordinates of the d–simplex T ⊂ IRd

obtained by taking the convex hull of d + 1 affinely independent points V in IRd, e.g., for
V = {−1, 1} ⊂ IR1, T is the interval [−1, 1], and

ξ−1(x) =
1 − x

2
, ξ1(x) =

1 + x

2
.
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We use standard multiindex notation, e.g., the Jacobi weight is written ξµ =
∏

v∈V ξµv
v ,

where µ = (µv), µv > −1, ∀v ∈ V . For V = {−1, 1} and µ−1 = α, µ1 = β, this is

ξµ(x) =

(
1 − x

2

)α(
1 + x

2

)β

.

We find it convenient (for most formulas) to write the Jacobi parameters µ = ν − 1, where
ν > 0, and consider instead the limit ν → 0+ in place of the limit µ → −1+. The shorthand
notation 1 = (1) for the vector of 1’s, etc, is used, and causes no confusion as it is easily
inferred from the context. By default all multiindices α, β, etc, are in ZZV

+, and we write
the v–th coordinate of α as αv or α(v), whichever is the most convenient. The multiindex
which is zero in all coordinates but the v–th where it is 1 is denoted by ev.

2.2. The inner product

The inner product for the Jacobi weight ξν−1, ν > 0 on T is given by

〈f, g〉ν :=
Γ(|ν|)

Γ(ν)

1

d! vold(T )

∫

T

fg ξν−1, f, g ∈ C(T ), (2.1)

where the integral is over T with respect to the Lebesgue measure on IRd, vold(T ) is
measure of T , and Γ(ν) is the multivariate Gamma function. The normalisation ensures

〈ξα, ξβ〉ν =
(ν)α+β

(|ν|)|α|+|β|
, α, β ∈ ZZV

+, (2.2)

where (ν)α is the multivariate version of the Pochhammer symbol

(x)n := x(x + 1) · · · (x + n − 1), x ∈ IR.

The associated Hilbert space will be denoted by L2(ν) = L2(T, ξν−1), or L2(T, ξµ).

2.3. The space of Jacobi polynomials

Let Πn = Πn(IRd) be the space of polynomials on IRd of degree ≤ n. The space Pn,ν

of Jacobi polynomials of degree n with respect to 〈·, ·〉ν consists of all f ∈ Πn which satisfy

〈f, p〉ν = 0, ∀p ∈ Πn−1.

This space has dimension
(
n+d−1

d−1

)
, and is spanned by the polynomials

pν
ξα :=

(−1)n(ν)α

(n + |ν| − 1)n

∑

β≤α

(n + |ν| − 1)|β|(−α)β

(ν)β

ξβ

β!
∈ ξα + Πn−1, α ∈ ZZV

+, |α| = n.

(2.3)
A simple computation verifies pν

ξα ∈ Pn,ν . The monomial basis of [DX01:p.47] is obtained
by taking those polynomials with indices satisfying αv0 = 0 for some fixed v0 ∈ V .
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2.4. Eigenfunctions of an elliptic pde

Let Dvf(x) denote the derivative of the function f at x ∈ IRd in the direction v ∈ IRd

Dvf(x) := lim
t→0

f(x + tv) − f(x)

t
.

Let µ = ν−1. The Jacobi polynomials Pk,ν are the eigenfunctions of the second order pde

Lµf := ξ−µ
∑

{v,w}⊂V

v 6=w

Dv−w(ξvξwξµDv−wf) =
1

2
ξ−µ

∑

v∈V

∑

w∈V

Dv−w(ξvξwξµDv−wf)

=
∑

{v,w}⊂V

v 6=w

ξvξwD2
v−wf +

∑

{v,w}⊂V

v 6=w

{(µv + 1)ξw − (µw + 1)ξv}Dv−wf
(2.4)

for the eigenvalue

λk = λk(Lµ) = −k(|µ| + k + d) = −k(k − 1 + |ν|).

This follows from the simple calculation

Lµ(ξβ) = λkξβ +
∑

v∈V

βv(βv + µv)
ξβ

ξv

, |β| = k ≥ 0.

This operator has been considered by several authors, see, e.g., [BS00], [BJS04], and the
remarks therein. It is elliptic on the interior of T , and is self adjoint with respect to 〈·, ·〉ν .

2.5. Eigenfunctions of positive linear operator

The Jacobi polynomials Pn,ν are the eigenfunctions of the Bernstein–Durrmeyer
operator of degree n

Mν
nf :=

∑

|α|=n

(
n

α

)

ξα 〈f, ξα〉ν
〈1, ξα〉ν

, ∀f ∈ L2(T, ξν−1), (2.5)

for the eigenvalues

λk = λk(Mν
n) :=

n!

(n − k)!

Γ(n + |ν|)

Γ(n + k + |ν|)
, k = 0, 1, . . . , n.

See Derriennic [D85] for further details about this positive self adjoint operator.

2.6. Bernstein–Bézier form

Let f =
∑

|α|=n cαBα be the Bernstein–Bézier form of f ∈ Πn, where Bα :=
(
|α|
α

)
ξα.

Then f ∈ Pn,ν if and only if its Bernstein–Bézier coefficients c = (cα) satisfy

〈f, ξβ〉ν =
∑

|α|=n

cα

n!

α!

(ν)α+β

(|ν|)|α|+|β|
= 0, |β| < n. (2.6)
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This can be interpreted as saying that α 7→ cα is a Hahn polynomial of degree n (see
[W06:Th.2.3]), or rewritten (see [W06:Cor.2.5]) as

R∗
νc = 0, (R∗

νc)β :=
∑

w∈V

βw + νw

|β| + 1
cβ+ew

, |β| = n − 1. (2.7)

3. The limiting form

Now we consider the limiting form of the Jacobi polynomials Pn,ν as ν → 0+ (equiv-
alently as µ → −1+). Our techniques also apply if only some νw → 0+, but for simplicity,
we will not present this more general case. Since

〈1, 1〉ν = 1, 〈ξw, 1〉ν =
νw

|ν|
,

〈ξw, 1〉ν does not have a limit as ν → 0+, and so it is not possible to define a limiting
form of Pn,ν via a limit weight function. However, with Qn,νf denoting the orthogonal
projection of f ∈ C(T ) onto Pn,ν , we will show that Qn,νf has a limit as ν → 0+. To do
this, it is convenient to start with (2.3).

3.1. The limit of Pn,ν

Since
(ν)α

(ν)β

= (ν + β)α−β , β ≤ α,

we can take the limit as ν → 0+ in (2.3) for n ≥ 2, to obtain

p∗ξα := lim
ν→0+

pν
ξα =

(−1)n

(n − 1)n

∑

β≤α

(n−1)|β|(−α)β(β)α−β

ξβ

β!
∈ ξα+Πn−1, |α| = n, (3.1)

and we let

Pn,∗ = lim
ν→0+

Pn,ν := span{p∗ξα : |α| = n}, n ≥ 2.

We will call Pn,∗ Jacobi polynomials (of degree n) for the singular weight. For n = 0, 1,
we have

pν
1 = 1, pν

ξw
= ξw −

νw

|ν|
,

and so P1,ν does not have a limit as ν → 0+.
The space Pn,∗ was considered in [S94], where it was obtained by substituting ν = 0

into the Rodrigues’ formula.
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Example 1. For n = 2, v 6= w, we have

pν
ξ2

w
= ξ2

w − 2
1 + νw

2 + |ν|
ξw +

νw(νw + 1)

(1 + |ν|)(2 + |ν|)
, p∗ξ2

w
= ξw(ξw − 1),

pν
ξvξw

= ξvξw −
1

2 + |ν|
(νwξv + νvξw) +

νvνw

(1 + |ν|)(2 + |ν|)
, p∗ξvξw

= ξvξw.

The partial differential operator (2.4) has a limit as ν → 0+

∑

{v,w}⊂V

v 6=w

ξvξwD2
v−wf,

as does the Bernstein-Durrmeyer operator (2.5), see [W03]. For these, the eigenspace for
lim

ν→0+
λk is Pk,∗, k ≥ 2, whilst

lim
ν→0+

λk(Lν−1)) = 0, lim
ν→0+

λk(Mν
n) = 1, (n ≥ k) k = 0, 1,

i.e., the λ0 and λ1 eigenspaces coalesce to Π1. It is therefore natural to think of Π1 as the
limit of P0,ν ⊕ P1,ν = Π1 as ν → 0+. Observe that we have the algebraic direct sum

Πn =
n⊕

k=1

Pk,∗, P1,∗ := Π1 (n ≥ 1). (3.2)

The condition (2.6) on the Bernstein–Bézier coefficients (cα) of a polynomial f ∈ Πn

that are equivalent to f ∈ Pn,ν can be rewritten

(|ν|)n+|β|

(ν)β

〈f, ξβ〉ν =
∑

|α|=n

cα

n!

α!
(ν + β)α = 0, |β| < n.

We can take the limit of this as ν → 0+ to obtain

∑

|α|=n

cα

n!

α!
(β)α = 0, |β| < n, (3.3)

and also of (2.7) to obtain

R∗
0c = 0, (R∗

0c)β :=
∑

w∈V

βw

|β| + 1
cβ+ew

, |β| = n − 1. (3.4)

It can be shown that f ∈ Πn is in Pn,∗, n ≥ 2 if and only if its Bernstein-Bézier coefficients
satisfy either of (3.3) or (3.4). Note for n = 1 (β = 0) the conditions (3.3) and (3.4)
degenerate to 0 = 0.
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3.2. A tight frame for Pn,ν

Let Qn,ν : C(T ) → Pn,ν be the orthogonal projection onto Pn,ν . This can be written

Qn,νf = (|ν|)2n

∑

|α|=n

1

(ν)αα!
〈f, pν

ξα〉ν pν
ξα , ∀f ∈ C(T ), (3.5)

see, e.g., [W06:Th.3.5]. The polynomials {pν
ξα : |α| = n} above do not form a basis, and

(3.5) is what is termed a tight frame representation. Given that pν
ξα → p∗ξα as ν → 0+,

it is natural to try and find a limit of the coefficients in (3.5), and hence of Qn,νf . This
we do next. In principal, a similar calculation could be undertaken with either Appell’s
biorthogonal system, or Prorial’s orthogonal basis, but the formulas obtained are much
more complicated (cf the comments in [W06]).

3.3. The limit of Qn,νf

We need the following linear functional

f 7→

∫

[θ0,...,θk]

f :=
1

k! volk(S)

∫

S

f ◦ A, (3.6)

where S is any k–simplex in IRs with (k–dimensional) volume volk(S), and A : IRs → IRd

is any affine map taking the k + 1 vertices of S onto the points θ0, . . . , θk in IRd. The
change of variables formula shows that (3.6) does not depend on the choice of S and A.

If θ0, . . . , θk are the points of V = {v0, . . . , vd} taken with multiplicities α(vi) ≥ 0,
α 6= 0, then a change of variables gives the generalised beta integral

∫

[v0, . . . , v0
︸ ︷︷ ︸

α(v0)

,...,vd, . . . , vd
︸ ︷︷ ︸

α(vd)

]

f =
1

Γ(α|)

∫

[supp(α)]

f ξ
α|−1

| ,
ξ| := (ξv)v∈supp(α),
α| := α|supp(α)

(3.7)

where supp(α) ⊂ V denotes the support of α. We recall the following.

Lemma 3.8 ([W03:Lem.3.1]). Let β ∈ ZZV
+, V = {v0, . . . , vd} with |β| ≥ 1, then

lim
ν→0+

〈f, ξβ〉ν
〈1, ξβ〉ν

= (|β| − 1)!

∫

[v0, . . . , v0
︸ ︷︷ ︸

β(v0)

,...,vd, . . . , vd
︸ ︷︷ ︸

β(vd)

]

f. (3.9)

We can now compute the limit of Qn,νf as ν → 0+.

Theorem 3.10. Let Qn,ν : C(T ) → Πn be the L2(ν)–orthogonal projection onto Pn,ν .

Then

lim
ν→0+

(Q0,νf + Q1,νf) = LV f :=
∑

v∈V

f(v)ξv, ∀f ∈ C(T ),
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and, for n ≥ 2,

lim
ν→0+

Qn,νf = Qn,∗f :=
∑

|α|=n

λ∗
α(f) p∗ξα , ∀f ∈ C(T ), (3.11)

where

λ∗
α(f) := (2n − 1)!

∑

0<β≤α

(n − 1)|β|

(n − 1)n

(−1)|α−β|

(α − β)!

1

β!

∫

[v0, . . . , v0
︸ ︷︷ ︸

β(v0)

,...,vd, . . . , vd
︸ ︷︷ ︸

β(vd)

]

f. (3.12)

The map Qn,∗ : C(T ) → Pn,∗ is a linear projector onto Pn,∗. With Q1,∗ := LV , we have

Qj,∗Qk,∗ = 0, j 6= k. (3.13)

Proof: We write (3.5) as

Qn,νf =
∑

|α|=n

λν
α(f) pν

ξα , ∀f ∈ C(T ),

where, by (2.3),

λν
α(f) := (|ν|)2n

〈f, pν
ξα〉ν

(ν)αα!
=

(|ν|)2n

α!

(−1)n

(n + |ν| − 1)n

∑

β≤α

(n + |ν| − 1)|β|(−α)β

(ν)β

〈f, ξβ〉ν
β!

.

First, observe that

Q0,νf = 〈f, 1〉ν1 =
∑

w∈V

〈f, 1〉ν
〈1, 1〉ν

νw

|ν|
,

and so in view of (3.9), Q0,νf does not have a limit as ν → 0+. Using 〈1, ξw〉ν = νw

|ν| ,∑

w ξw = 1 and
∑

w νw = |ν|, we have

Q1,νf = (|ν|)(|ν| + 1)
∑

w∈V

1

νw

〈f, ξw −
νw

|ν|
〉ν(ξw −

νw

|ν|
)

= (|ν| + 1)
∑

w∈V

(
〈f, ξw〉ν
〈1, ξw〉ν

− 〈f, 1〉ν

)

(ξw −
νw

|ν|
)

= (|ν| + 1)
∑

w∈V

〈f, ξw〉ν
〈1, ξw〉ν

(ξw −
νw

|ν|
)

=
∑

w∈V

〈f, ξw〉ν
〈1, ξw〉ν

(|ν|ξw − νw) +

(
∑

w∈V

〈f, ξw〉ν
〈1, ξw〉ν

ξw −
∑

w∈V

〈f, ξw〉ν

)

=
∑

w∈V

〈f, ξw〉ν
〈1, ξw〉ν

(|ν|ξw − νw) +
∑

w∈V

〈f, ξw〉ν
〈1, ξw〉ν

ξw − 〈f, 1〉ν1.

7



Hence, by (3.9),

Q0,νf + Q1,νf =
∑

w∈V

〈f, ξw〉ν
〈1, ξw〉ν

(|ν|ξw − νw) +
∑

w∈V

〈f, ξw〉ν
〈1, ξw〉ν

ξw →
∑

w∈V

f(w)ξw as ν → 0+.

Now suppose n ≥ 2. Using (2.2), we have

λν
α(f) =

(|ν|)2n

α!

(−1)n

(n + |ν| − 1)n

∑

β≤α

(n + |ν| − 1)|β|(−α)β

(ν)β

(ν)β

(|ν|)|β|

1

β!

〈f, ξβ〉ν
〈1, ξβ〉ν

=
1

α!

(−1)n

(n + |ν| − 1)n

∑

β≤α

(n + |ν| − 1)|β|(−α)β(|ν| + |β|)2n−|β|
1

β!

〈f, ξβ〉ν
〈1, ξβ〉ν

.

Since ∣
∣
∣
∣

〈f, ξβ〉ν
〈1, ξβ〉ν

∣
∣
∣
∣
≤ max

x∈T
|f(x)| =: ‖f‖∞,

the factor (|ν| + |β|)2n−|β| ensures the term for β = 0 converges to 0 as ν → 0+, and so
using (3.9), we obtain

lim
ν→0+

λν
α(f)

=
1

α!

(−1)n

(n − 1)n

∑

0<β≤α

(n − 1)|β|(−α)β(|β|)2n−|β|
(|β| − 1)!

β!

∫

[v0, . . . , v0
︸ ︷︷ ︸

β(v0)

,...,vd, . . . , vd
︸ ︷︷ ︸

β(vd)

]

f

Using

(|β|)2n−|β|(|β| − 1)! = (2n − 1)!,
(−α)β

α!
=

(−1)|β|

(α − β)!
, (−1)n(−1)|β| = (−1)|α−β|,

this can be rewritten

lim
ν→0+

λν
α(f) = (2n − 1)!

∑

0<β≤α

(n − 1)|β|

(n − 1)n

(−1)|α−β|

(α − β)!

1

β!

∫

[v0, . . . , v0
︸ ︷︷ ︸

β(v0)

,...,vs, . . . , vs
︸ ︷︷ ︸

β(vs)

]

f,

and so we obtain (3.11).
Since Πn is an algebraic direct sum of Π1 and Pk,∗, k = 2, . . . n, and

f =
n∑

k=0

Qk,νf, ∀f ∈ Πn =⇒ f = lim
ν→0+

(Q0,νf + Q1,νf) +
n∑

k=2

Qk,∗f, ∀f ∈ Πn

we conclude that Qn,∗ is onto Pn,∗, n ≥ 2. Replacing f by Qj,∗f in the above, and equating
the Pk,∗ components in the direct sum (3.2), we get

Qj,∗f =
n∑

k=1

Qk,∗Qj,∗f =⇒ Qk,∗Qj,∗f =

{
Qj,∗f, j = k;
0, k 6= j

and so Qn,∗ is a linear projector which satisifies (3.13).
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The map LV = Q1,∗ : C(T ) → Π1 above is Lagrange interpolation at the points in V .

Corollary 3.14. Let n ≥ 1. For each f ∈ C(T ) there is a unique p ∈ Πn matching the

data ∫

[v0, . . . , v0
︸ ︷︷ ︸

β(v0)

,...,vd, . . . , vd
︸ ︷︷ ︸

β(vd)

]

f, 0 < |β| ≤ n. (3.15)

The corresponding linear projector C(T ) → Πn : f 7→ p is given by Ln := LV +
n∑

k=2

Qk,∗.

Each of the operators Ln interpolates function values at the points in V . They are of
a similar type to the interpolation operator of Hakopian [H81]. For Θ a set of k ≥ d points
in general position in IRd, the Hakopian interpolant is the unique p ∈ Πk−d(IR

d) matching
the mean values ∫

[W ]

f, W ⊂ Θ, |W | = d.

The map Ln does not appear to be liftable (cf [W97]).

Example 2. Consider n = 2. For |α| = 2, (3.12) gives

λ∗
α(f) =

6

α!

∫

[v0, . . . , v0
︸ ︷︷ ︸

α(v0)

,...,vs, . . . , vs
︸ ︷︷ ︸

α(vs)

]

f − 3
∑

v∈V
ev≤α

f(v),

so that
Q2,∗f =

∑

v∈V

λ∗
2ev

(f) (ξ2
v − ξv) +

∑

{v,w}⊂V

v 6=w

λ∗
ev+ew

(f) ξvξw

=
∑

{v,w}⊂V

v 6=w

(

6

∫

[v,w]

f − 3f(v) − 3f(w)

)

ξvξw.

It is easily verified that the map L2 = LV + Q2,∗ interpolates the function values at the
vertices V of T and line integrals over the segments between vertices.

For d = 1 and V = {0, 1}, the interpolation conditions (3.15) are f(0), f(1),
∫ 1

0
f , and

L2f(x) = (1 − x)f(0) + xf(1) +

(

6

∫ 1

0

f(t) dt − 3f(0) − 3f(1)

)

x(1 − x).

Example 3. The limiting form of the Bernstein–Durrmeyer operator (cf [W03])

Unf := lim
ν→0+

Mµ
n f = (n − 1)!

∑

|α|=n

(
n

α

)

ξα

∫

[v0, . . . , v0
︸ ︷︷ ︸

α(v0)

,...,vs, . . . , vs
︸ ︷︷ ︸

α(vs)

]

f, f ∈ C(T ),
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which is the operator of [GS91] and [S94], has the diagonal form

Un =

n∑

k=1

λk(Un)Qk,∗, λk(Un) =
n!

(n − k)!

(n − 1)!

(n + k − 1)!
.

We now consider the ‘orthogonality conditions’ defining Pn,∗. Let Πn(F ) denote Πn

restricted to some subset F ⊂ IRd.

Theorem 3.16 (Orthogonality condition). Let f ∈ Πn, n ≥ 2. Then f is a Jacobi

polynomial for the singular weight, i.e., f ∈ Pn,∗, if and only if

∫

[v0, . . . , v0
︸ ︷︷ ︸

α(v0)

,...,vd, . . . , vd
︸ ︷︷ ︸

α(vd)

]

f = 0. ∀|α| < n. (3.17)

This is equivalent to f being orthogonal to all polynomials of degree less than n− |W | on

the convex hull of every nonempty subset W ⊂ V , i.e.,
∫

conv(W )

f p = 0, ∀p ∈ Πn−|W |−1(conv(W )). (3.18)

Proof: In view of Theorem 3.10, f ∈ Pn,∗ if and only if

f =

n∑

j=1

Qj,∗f = Qn,∗f ⇐⇒ Qj,∗f = 0, 1 ≤ j < n.

Since Qj,∗f matches the data (3.15), we can have Qj,∗f = 0 if and only if
∫

[v0, . . . , v0
︸ ︷︷ ︸

β(v0)

,...,vd, . . . , vd
︸ ︷︷ ︸

β(vd)

]

f = 0, 0 < |β| ≤ j.

Thus f ∈ Pn,∗ is equivalent to (3.17).
Fix W ⊂ V , W 6= φ, and let α| := α|W , ξ| := ξ|W . Using (3.7), the conditions in

(3.17) for α with supp(α) = W can be written
∫

[v0, . . . , v0
︸ ︷︷ ︸

α(v0)

,...,vd, . . . , vd
︸ ︷︷ ︸

α(vd)

]

f =
1

(α| − 1)!

∫

[W ]

f ξ
α|−1

| = 0,

which is equivalent to
∫

conv(W )

f ξβ

| = 0, ∀β ∈ ZZW
+ , |β| < n − |W |.

Since {ξβ

| : β ∈ ZZW
+ , |β| < n − |W |} spans Πn−|W |−1(conv(W )), we therefore obtain the

equivalence with (3.18).
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Example 4. The condition (3.17) for α = ev implies that each function in Pn,∗ (n ≥ 2)
vanishes at all the points v ∈ V . This can also be seen by evaluating (3.1) at v ∈ V . Here
the only terms which are possibly nonzero are those with β = jev, but these are all zero
due to the factor (β)α−β , unless α = nev. For α = nev, these terms sum to

(−1)n

(n − 1)n

n∑

j=1

(n − 1)j(−n)j(j)n−j

1

j!
= 0.

Example 5. For d = 1, V = {0, 1}, the first three polynomials f = pξ2
1
, g = pξ3

1
and

h = pξ4
1

given by (3.1) are

f(x) = x(x − 1), g(x) = x(x −
1

2
)(x − 1), h(x) = x(x − 1)(x2 − x +

1

5
).

It is easily verified that these satisfy the conditions given by (3.18), i.e.,

f(0) = f(1) = 0, g(0) = g(1) =

∫ 1

0

g = 0, h(0) = h(1) =

∫ 1

0

h(t) dt =

∫ 1

0

th(t)dt = 0.

Example 6. For n = 3, the space P3,∗ is spanned by the polynomials

ξv(ξv −
1

2
)(ξv − 1), ξvξw(ξv − 1), ξvξwξu (v, w, u distinct points of V ).

Clearly, each of these satisfies the conditions of (3.17), i.e.,

f(v) = 0,

∫

[v,w]

f = 0, v 6= w.

Example 7. Given the equivalence of (3.17) and (3.18), the linear functionals giving the
interpolation conditions (3.15) of the map Ln = LV +

∑n

k=2 Qk,∗ have a basis given by

{f 7→

∫

conv(W )

fξβ : φ 6= W ⊂ V, |W | ≤ n, β ∈ ZZW
+ , |β| = n − |W |}.

This follows from the dimension count

d+1∑

j=1

(
d + 1

j

)(
n − j + j − 1

j − 1

)

=

(
n + d

d

)

= dim(Πn(IRd)).
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4. The limit of the diagonal form of the Bernstein operator

The Bernstein operator on the simplex T = conv(V ) is the positive linear operator
Bn : C(T ) → Πn given by

Bnf = Bn,V f :=
∑

|α|=n

α∈ZZV
+

(
n

α

)

ξαf(vα), vα :=
∑

v∈V

α(v)

|α|
v ∈ T. (4.1)

In [CW02] it was shown that Bn had eigenvalues

λ
(n)
k :=

n!

(n − k)!

1

nk
, k = 1, . . . , n, 1 = λ

(n)
1 > λ

(n)
2 > · · · > λ(n)

n > 0, (4.2)

and corresponding eigenvectors of the form

p
(n)

ξβ = ξβ + lower order powers of ξ, |β| = k.

Moreover, p
(n)

ξβ has a limit as n → ∞. We will show this limit is precisely p∗
ξβ ∈ Pk,∗, i.e.,

the Jacobi polynomials for the singular weight are limiting eigenfunctions of the Bernstein
operator.

Lemma 4.3. Let W = supp(α), |α| = k ≥ 2 and α| := α|W . The polynomial p∗ξα ∈ Pk,∗

can be factored

p∗ξα =
( ∏

w∈W

ξw

)

g(ξ|), ξ| := ξ|W ,

where

g(ξ|) := (−1)k−|W | (k − 1)|W |

(k − 1)k

(2)α|−1

∑

γ∈ZZW
+

γ≤α|−1

(k − 1 + |W |)|γ|
(−(α| − 1))γ

(2)γ

ξγ

|

γ!
. (4.4)

Proof: The factor (β)α−β ensures those terms in (3.1) for supp(β) 6= W are zero,
and so

p∗ξα =
(−1)k

(k − 1)k

∑

β≤α

supp(β)=W

(k − 1)|β|(−α)β(β)α−β

ξβ

β!

=
(−1)k

(k − 1)k

ξ1
|

∑

1≤β|≤α|

(k − 1)|β||(−α|)β|
(β|)α|−β|

ξ
β|−1

|

β|!
.

Making the substitution γ = β| − 1, we obtain

p∗ξα =
(−1)k

(k − 1)k

ξ1
|

∑

γ∈ZZW
+

γ≤α|−1

(k − 1)|γ+1|(−α|)γ+1(γ + 1)α|−γ−1

ξγ

|

(γ + 1)!
.
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This can be rearranged using

(−α|)γ+1(γ+1)α|−γ−1 = (−α|)1(−α|+1)γ(γ+1)α|−γ−1 = (−1)|W |(−(α|−1))γ(γ+1)α|−γ ,

(γ + 1)α|−γ

(γ + 1)!
=

(γ + 2)α|−γ−1

γ!
=

(2)α|−1

(2)γ

1

γ!
, (k − 1)|γ+1| = (l − 1)|W |(k − 1 + |W |)|γ|,

to get

p∗ξα =
(−1)k

(k − 1)k

ξ1
|

∑

γ∈ZZW
+

γ≤α|−1

(k − 1)|W |(k − 1 + |W |)|γ|(−1)|W |(−(α| − 1))γ

(2)α|−1

(2)γ

ξγ

|

γ!

= ξ1
| (−1)k−|W | (k − 1)|W |

(k − 1)k

(2)α|−1

∑

γ∈ZZW
+

γ≤α|−1

(k − 1 + |W |)|γ|
(−(α| − 1))γ

(2)γ

ξγ

|

γ!
= ξ1

| g(ξ|),

which gives the desired factorisation.

In view of (2.3), the factor g(ξ|) above can be interpreted as a Jacobi polynomial of
degree k − |W | on the simplex with vertices W for the parameter µ = ν − 1 = 1.

Corollary 4.5. Let p
(n)

ξβ , 2 ≤ |β| = k ≤ n, be the eigenfunction of Bernstein operator Bn

of the form

p
(n)

ξβ = ξβ + lower order powers of ξ,

then

lim
n→∞

p
(n)

ξβ = p∗ξβ ∈ Pk,∗.

Proof: In [CW02:Th.4.2] this limit was calculated. The formula given there is
precisely the factored form (4.4).

Now we consider the univariate Bernstein operator on the interval T = [0, 1], which is
given by

Bnf(x) :=

n∑

k=0

(
n

k

)

xk(1 − x)n−kf
(k

n

)

.

With p
(n)
k (x) denoting the λ

(n)
k –eigenfunction of Bn with leading term xk, the diagonal

form of Bn can be written

Bnf(x) = LV f(x) +

n∑

k=2

µ
(n)
k (f) p

(n)
k (x), ∀f ∈ C[0, 1] (4.6)

where µ
(n)
k (f) are the dual functionals to the p

(n)
k . In [CW00:Th.4.2] it was shown that

µ
(n)
k (f) has a limit as n → ∞ for f a polynomial. We now show that this limit is (3.12).
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Lemma 4.7. For k ≥ 2, the operator Qk,∗ can be expressed

Qk,∗f = (2k − 1)!
∑

W⊂V
W 6=φ

∑

|α|=k

(−1)k

α!
p∗ξα

∫

[W ]

( ∑

β

supp(β)=W

(k − 1)|β|

(k − 1)k

(−α)β

β!

ξ
β|−1

|

(β| − 1)!
f
)

, (4.8)

where β| = β|W , W = supp(β), ξ| = ξ|W .

Proof: We have

Qk,∗f = (2k − 1)!
∑

|α|=k

(−1)k

α!

∑

β 6=0

(k − 1)|β|

(k − 1)k

(−α)β

β!
p∗ξα

∫

[v0, . . . , v0
︸ ︷︷ ︸

β(v0)

,...,vd, . . . , vd
︸ ︷︷ ︸

β(vd)

]

f.

By summing over those β with supp(β) = W ⊂ V , and applying (3.7), we obtain

Qk,∗f = (2k − 1)!
∑

W⊂V
W 6=φ

∑

|α|=k

(−1)k

α!

∑

β

supp(β)=W

(k − 1)|β|

(k − 1)k

(−α)β

β!
p∗ξα

1

Γ(β|)

∫

[W ]

fξ
β|−1

|

= (2k − 1)!
∑

W⊂V
W 6=φ

∑

|α|=k

(−1)k

α!
p∗ξα

∫

[W ]

( ∑

β

supp(β)=W

(k − 1)|β|

(k − 1)k

(−α)β

β!

ξ
β|−1

|

(β| − 1)!
f
)

,

as claimed.

Theorem 4.9. Let d = 1 and V = {0, 1}. Then for k ≥ 2,

Qk,∗f = ν∗
k(f) p∗k, f ∈ C[0, 1],

where p∗k := p∗
ξk
1

, and

ν∗
k(f) =

1

2

(
2k

k

){

f(1) + (−1)kf(0) − k

∫ 1

0

f(t)P
(1,1)
k−2 (2t − 1) dt

}

. (4.10)

Proof: For α = (j, k − j), comparing powers of x gives

p∗ξα(x) = (1 − x)jxk + lower order terms = (−1)jp∗
ξk
1

= (−1)jp∗k,

so that (4.8) reduces to

Qk,∗f = (2k − 1)!
∑

W⊂V
W 6=φ

k∑

j=0

(−1)k(−1)j

j!(k − j)!
p∗k

∫

[W ]

(∑

β

supp(β)=W

(k − 1)|β|

(k − 1)k

(−(j, k − j))β

β!

ξ
β|−1

|

(β| − 1)!
f
)

.
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The binomial identity gives

k∑

j=0

(−1)k(−1)j

j!(k − j)!
(−(j, k − j))β =

∑

β0≤j≤k−β1

(−1)k(−1)j (−j)β0

j!

(−(k − j))β1

(k − j)!

=
∑

β0≤j≤k−β1

(−1)k(−1)j (−1)β0

(j − β0)!

(−1)β1

(k − j − β1)!

=
(−1)k+β0+β1

(k − β0 − β1)!

k−β0−β1∑

r=0

(−1)r+β0

(
k − β0 − β1

r

)

=
(−1)k+β0+β1

(k − β0 − β1)!
(−1)β0(1 − 1)k−β0−β1

=

{

(−1)β0 , |β| = β0 + β1 = k;
0, otherwise

so that

Qk,∗f

p∗k
= (2k − 1)!

∑

W⊂V
W 6=φ

∫

[W ]

( ∑

|β|=k

supp(β)=W

(−1)β0

β!

ξ
β|−1

|

(β| − 1)!
f
)

.

There is just one term in (Qk,∗f)/p∗k for W = {0} and W = {1}, namely

(2k − 1)!
(−1)k

k!

f(0)

(k − 1)!
=

1

2

(
2k

k

)

(−1)kf(0), (2k − 1)!
(−1)0

k!

f(1)

(k − 1)!
=

1

2

(
2k

k

)

f(0).

The remaining terms (W = V = {0, 1}) are

(2k − 1)!

∫

[0,1]

(∑

|β|=k

β≥1

(−1)β0

β!

ξβ−1

(β − 1)!
f
)

= (2k − 1)!

∫

[0,1]

( ∑

|γ|=k−2

(−1)γ0+1

(γ + 1)!

ξγ

γ!
f
)

.

Letting γ = (k − 2 − j, j) the above can be written

(2k − 1)!

∫ 1

0

(k−2∑

j=0

(−1)k−2−j+1

(k − j − 1)!(j + 1)!

(1 − t)k−2−jtj

(k − 2 − j)!j!
f(t)

)

dt. (4.11)

Substituting n = k − 2 and x = 2t − 1 into (1.1) gives

P
(1,1)
k−2 (2t − 1) = 2−(k−2)

k−2∑

j=0

(
k − 2 + 1

j

)(
k − 2 + 1

k − 2 − j

)

(2t − 2)k−2−j(2t)j

=
k−2∑

j=0

(−1)k−j (k − 1)!(k − 1)!

(k − 1 − j)!(j + 1)!

(1 − t)k−2−jtj

(k − 2 − j)!j!
.

Thus (4.11) is equal to

−
(2k − 1)!

(k − 1)!(k − 1)!

∫ 1

0

P
(1,1)
k−2 (2t − 1)f(t) dt = −

k

2

(
2k

k

)∫ 1

0

P
(1,1)
k−2 (2t − 1)f(t) dt.

Thus (Qk,∗f)/p∗k is given by the formula (4.10).
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Corollary 4.12. Let µ
(n)
k , 2 ≤ k ≤ n be the dual linear functionals in the eigenfunction

expansion (4.6) of the Bernstein operator Bn. Then for f a polynomial

lim
n→∞

µ
(n)
k (f) = ν∗

k(f),

where ν∗
k is defined in (4.10).

Proof: In [CW02:Th.4.20] this limit was calculated. The formula µ∗
k(f) given

there for it is precisely (4.10).

Conclusion

The multivariate Bernstein operator has the diagonal form

Bn = λ
(n)
1 P

(n)
1 + λ

(n)
2 P

(n)
2 + · · · + λ(n)

n P (n)
n , n ≥ 1,

where P
(n)
k : C(T ) → Πk is the projection onto the λ

(n)
k –eigenspace. Corollary 4.5 and

Corollary 4.12 together imply that for the univariate Bernstein operator

lim
n→∞

P
(n)
k f = Qk,∗f, (4.13)

for all polynomials f .
We conjecture that (4.13) holds for all continuous functions f , and for Bernstein

operators Bn in any dimension. To prove this directly would seem to require a tractable

expansion of P
(n)
k f in terms of the values {f(vα) : |α| = n}. Such an expansion is not yet

known – even in the univariate case. Still, after all the years of study of the Bernstein
operator, the finer detail of its spectral properties have not been fully resolved.
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