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ABSTRACT

Given a suitable weight on IRd, there exist many (recursive) three term recurrence
relations for the corresponding multivariate orthogonal polynomials. In principle, these
can be obtained by calculating pseudoinverses of a sequence of matrices. Here we give
an explicit recursive three term recurrence for the multivariate Jacobi polynomials on a
simplex. This formula was obtained by seeking the best possible three term recurrence.
It defines corresponding linear maps, which have the same symmetries as the spaces of
Jacobi polynomials on which they are defined. The key idea behind this formula is that
some Jacobi polynomials on a simplex can be viewed as univariate Jacobi polynomials,
and for these the recurrence reduces to the univariate three term recurrence.
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1. Introduction

A sequence of univariate orthogonal polynomials (pn) satisfies a three term recurrence

pn+1(x) = (Anx + Bn)pn(x) − Cnpn−1(x), n ≥ 0, p−1 := 0.

This can be viewed as a formula for the inclusion of vector spaces

Pn+1 ⊂ span(Π1Pn) ⊕a Pn−1, Pn := span{pn},

where ⊕a is an algebraic direct sum, i.e., span(Π1Pn) ∩ Pn−1 = {0}, and Πk = Πk(IRd) is
the space polynomials of degree ≤ k. In particular, the coefficients An, Bn, Cn are unique.

For Pn the space of multivariate orthogonal polynomials of degree n for some weight
on IRd (details below) the situation is more complicated. Here

Pn+1 ⊂ span(Π1Pn) + Pn−1,

but the above sum may not be direct. For example, the orthogonal polynomials on the
triangle (with constant weight) satisfy

P3 ⊂ span(Π1P2) = P1 ⊕ P2 ⊕ P3,

with ⊕ the orthogonal direct sum, so that

span(Π1P2) ∩ P1 = P1, dim(P1) = 2.

Thus the cubic orthogonal polynomials can be expressed a linear combination of quadratic
ones multiplied by linear polynomials, without needing the linear orthogonal polynomials!
See Example 1 of Section 3 for the details. This is quite different from the univariate case
where Cn > 0, n ≥ 1.

Since span(Π1Pn) is orthogonal to Πn−2, we have the inclusion

span(Π1Pn) ⊂ Pn+1 ⊕ Pn ⊕ Pn−1 (orthogonal direct sum). (1.1)

This map, and formulas for it, are sometimes referred to as three term recurrence relations

(cf [DX01]). A version of Favard’s theorem holds for this map (see [K82a], [K82b], [X93]).
However, it is not recursive in the sense that it allows orthogonal polynomials in Pn+1 to
be calculated from those of degrees n and n− 1 in a similar fashion to the univariate case.
We will call any pair of linear maps (or the formulas defining them)

Bn : Pn+1 → span(Π1Pn), Cn : Pn+1 → Pn−1,

with
f = Bn(f) + Cn(f), ∀f ∈ Pn+1 (1.2)

a recursive three term recurrence. Such a recurrence is recursive, in the above sense,
since an orthogonal polynomial f ∈ Pn+1 is uniquely determined as the projection of its
leading term (homogeneous term of degree n + 1) onto Pn+1.
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In principle, a recursive three term recurrence can be calculated using the inclusion
map (1.1) as follows. Let Qn be the orthogonal projection onto Pn, and

L = Qn+1|span(Π1Pn) : span(Π1Pn) → Pn+1

be the orthogonal projection of span(Π1Pn) onto Pn+1 (this is clearly onto by considering
leading terms). Let R be any right inverse of L, i.e., an injective linear map

R : Pn+1 → span(Π1Pn)

which preserves leading terms. Then f−Rf is a polynomial of degree n, which is orthogonal
to Πn−2, and so belongs to Pn⊕Pn−1. Hence we obtain the recursive three term recurrence

f =
(

Rf + Qn(f − Rf)
)

+ Qn−1(f − Rf) ∈ span(Π1Pn) + Pn−1, ∀f ∈ Pn+1. (1.3)

By taking R to be the Bn of (1.2), it follows that all recursive three term recurrences
can be obtained in this way. One choice for a general weight (described via the monic
orthogonal polynomials) and the associated evaluation algorithms is given in [BPS10].

In the univariate case, there is, of course, just one choice for R, and (1.3) reduces to
the classical three term recurrence. For the multivariate Jacobi polynomials, we propose
a natural R, which, e.g., shares symmetries of the weight and varies continuously with it.

2. The Jacobi polynomials on a simplex

Here we define the Jacobi polynomials on a simplex. The orthogonal polynomials
for other weight functions (or measures) on IRd can be defined similarly (see [DX01]).
Applications of these polynomials include spectral methods on triangular domains [D91],
Fourier series [X10], and the construction and analysis of good points for cubature and
polynomial interpolation on a triangle [B83], [BS92].

Throughout, let ξ = (ξv)v∈V be the barycentric coordinates of the d–simplex T ⊂ IRd

obtained by taking the convex hull of d + 1 affinely independent points V in IRd. These
are the coefficients of x ∈ IRd as an affine combination of the points V , i.e.,

x =
∑

v∈V

ξv(x)v,
∑

v∈V

ξv(x) = 1, (2.1)

and are well suited to describing polynomials on T (cf [B87]).
Cases of interest include V = {−1, 1} ⊂ IR1, where T is the interval [−1, 1], and

ξ−1(x) =
1 − x

2
, ξ1(x) =

1 + x

2
,

and V = {e1, e2, 0} ⊂ IR2, e1 = (1, 0), e2 = (0, 1), where T is the standard triangle

T = {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ 1}, (2.2)
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and
ξe1(x, y) = x, ξe2(x, y) = y, ξ0(x, y) = 1 − x − y. (2.3)

We will repeatedly use the facts that

ξv(x) ≥ 0, ∀x ∈ T, ξv ∈ Π1(IR
d),

∑

v∈V

ξv = 1.

For the parameters κ = (κv)v∈V , κv > −1 we define an inner product by

〈f, g〉 :=

∫

T

fg ξκ, ∀f, g ∈ C(T ). (2.4)

The condition κv > −1 ensures the integrability of the Jacobi weight ξκ =
∏

v∈V ξκv
v .

For V = {−1, 1} ⊂ IR and κ−1 = α, κ1 = β, this is the usual Jacobi weight

ξκ(x) =

(

1 − x

2

)α (

1 + x

2

)β

.

We will use standard multi-index notation, with |κ| :=
∑

v κv (even if some entries are
negative). The shorthand notation 1 = (1) for the vector of 1’s, etc, is used, and causes
no confusion as it is easily inferred from the context. By default all multi-indices α, β,

etc, are in ZZV
+, and we write the v–th coordinate of α as αv. The multivariate factorial is

β! :=
∏

v βv!, and the multivariate Pochhammer symbol is (κ)β :=
∏

v(κv)βv
, with

(x)0 := 1, (x)n := x(x + 1) · · · (x + n − 1), x ∈ IR.

Let ev be the multi-index which is zero in all coordinates but the v–th where it is 1. By
α ≥ β we mean αv ≥ βv, ∀v, and similarly.

For a given κ > −1, the space Pn of (multivariate) Jacobi polynomials Pn with
respect to (2.4) consists of all f ∈ Πn(IRd) which satisfy

〈f, p〉 = 0, ∀p ∈ Πn−1.

This space has dimension
(

n+d−1
d−1

)

, and is spanned by the polynomials (cf [CW02], [X05])

pξα = pκ
ξα =

(−1)|α|(κ + 1)α

(|α| + |κ| + d)|α|

∑

β≤α

(|α| + |κ| + d)|β|(−α)β

(κ + 1)β

ξβ

β!
∈ ξα + Π|α|−1, (2.5)

where |α| = n. The formula (2.5) can be expressed in terms of the Lauricella function FA.
These polynomials are the orthogonal projection of ξα onto Π|α|, and date back to Appell
1882 for the case d = 2 and one entry of α fixed to be zero (cf [EMOT53] Vol 1. §5.13
and Vol. 2 §12.4). Though not linearly independent, they do form a tight frame for Pn (cf
[W06]), i.e.,

f =
∑

|α|=n

(|κ + 1|)2n

α!(κ + 1)α
〈f, pξα〉pξα , ∀f ∈ Pn. (2.6)
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From (2.5), we obtain

pξα =
∑

β

c(α, β)ξβ , c(α, β) :=
(κ + 1 + β)α−β

(|α| + |κ| + d + |β|)|α|−|β|

(−α)α−β

(α − β)!
, (2.7)

where only the terms with β ≤ α are nonzero. In particular, we observe that

c(α, α − β) =
(κ + 1 + α − β)β

(2|α| + |κ| + d − |β|)|β|

(−α)β

β!
, 0 ≤ β ≤ α. (2.8)

When ξα is the power of a barycentric coordinate ξv, i.e., α = nev, the sum in (2.5)
becomes a 2F1, which can be expressed in terms of a univariate Jacobi polynomial

pξn
v

=
(−1)nn!

(n + |κ| + d)n

(κv + 1)n

n!
2F1

(

−n, 1 + κv + (|κ| − κv + d − 1) + n

κv + 1
; ξv

)

=
n!

(n + |κ| + d)n
P (|κ|−κv+d−1,κv)

n (2ξv − 1).

(2.9)

This leads to a natural recursive three term recurrence for pξn
v
.

Lemma 2.10. We have the following three term recurrence

pξn+1
v

= (ξv + bv,n)pξn
v
− cv,npξn−1

v
, n ≥ 1, (2.11)

where bv,n and cv,n are unique, and given by

bv,n = −
〈ξvpξn

v
, pξn

v
〉

〈pξn
v
, pξn

v
〉

=
(κv + n)n

2n + |κ| + d − 1
−

(κv + n + 1)(n + 1)

2n + |κ| + d + 1
, (2.12)

cv,n =
〈pξn

v
, pξn

v
〉

〈pξn−1
v

, pξn−1
v

〉
=

n(n + |κ| − κv + d − 1)(n + κv)(n + |κ| + d − 1)

(2n + |κ| + d − 1)2(2n + |κ| + d − 2)(2n + |κ| + d)
. (2.13)

Proof: It follows from (2.9) and the three term recurrence relation for univariate
Jacobi polynomials that (2.11) holds with bv,n and cv,n given by the above formulas.

The polynomials {pξα : |α| = n} given by (2.5) do not form a basis. However, the
subset of those not involving the barycentric coordinate ξv0 for a fixed point v0 ∈ V , i.e.,

Bv0,n := {pξβ : |β| = n, βv0 = 0} (2.14)

do form a basis for Pn. For the standard triangle (or simplex) it is usual to choose v0 = 0.

Our three term recurrence formulas will be defined for all pξα . To verify that these
do give linear maps, we will need the following Lemma.
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Lemma 2.15. Fix a point v0 ∈ V . The polynomial pξα ∈ Pn can be expanded in terms
of the basis (2.14) as follows

pξα = (−1)αv0

∑

|β|=αv0
βv0=0

(

αv0

β

)

pξβ+α−αv0ev0
. (2.16)

In particular, for v 6= v0, we have

(−1)αv0−j
∑

|β|=αv0
βv0=0

(

αv0

β

)

(βv − j + 1)j pξβ+α−αv0ev0−ev

= (αv0 − j + 1)j p
ξα−ev+j(ev−ev0 ) , j ≥ 0,

(2.17)

except for when αv = 0 and j = 0.

Proof: Let Q be the orthogonal projection onto Pn. Since Q(Πn−1) = 0, we have

pξα = Q(ξα) = Q
(

(

1 −
∑

v 6=v0

ξv

)αv0

ξα−αv0ev0

)

= Q
(

(

−
∑

v 6=v0

ξv

)αv0

ξα−αv0ev0

)

.

The multinomial expansion gives
(

−
∑

v 6=v0

ξv

)αv0

= (−1)αv0

∑

|β|=αv0
βv0=0

(

αv0

β

)

ξβ ,

and so we conclude that

pξα = (−1)αv0

∑

|β|=αv0
βv0=0

(

αv0

β

)

Q(ξβ+α−αv0ev0 ),

which is (2.16).
Now the particular case. Since

(

αv0

β

)

(βv − j + 1)j = (αv0 − j + 1)j

(

αv0 − j

β − jev

)

,

the left hand side of (2.17) becomes

(αv0 − j + 1)j

{

(−1)αv0−j
∑

|β|=αv0
βv0=0

(

αv0 − j

β − jev

)

pξβ+α−αv0ev0−ev

}

.

Since either j = 0, αv > 0 or j > 0, by making the substitutions

γ = α − ev + j(ev − ev0), β̂ = β − jev,

the sum in the curly brackets above can be written

(−1)γv0

∑

|β̂|=γv0
β̂v0=0

(

γv0

β̂

)

p
ξβ̂+γ−γv0ev0

,

which by (2.16) equals pξγ = p
ξα−ev+j(ev−ev0 ) , and so we obtain (2.17).
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3. Motivating examples

Before giving the general Theorem 4.3, we illustrate the reasoning which lead to it.
Here we consider the Legendre polynomials on a triangle, i.e, the constant weight (κ = 0)
on a triangle (d = 2). We will work with the barycentric coordinates (2.1).

Example 1. There are many recursive three term recurrences. We have

span(Π1P2) = span{ξvpξ2
w

: v, w ∈ V } = P3 ⊕ P2 ⊕ P1. (3.1)

This follows since span(Π1P2) is orthogonal to P0, so that span(Π1P2) ⊂ P3 ⊕ P2 ⊕ P1,
and the (easily checked) fact that the nine polynomials in (3.1) are linearly independent,
and hence are a basis for P3 ⊕P2 ⊕P1. Thus the sum span(Π1P2) +P1 is not direct, and
there are many different three term recurrences for the cubic Legendre polynomials on a
triangle (as outlined in the introduction). In particular, since P3 ⊂ span(Π1P2), there is a
unique one involving only the quadratics P2. As an example, we have

pξ3
v

=
8

5
ξv(pξ2

u
+ pξ2

w
) +

3

5
(ξwpξ2

w
+ ξupξ2

u
) −

7

5
(ξwpξ2

u
+ ξupξ2

w
) −

24

35
pξ2

v
, (3.2)

where {v, w, u} are different vertices of the triangle. An even more spectacular departure
from the univariate setting is that (3.1) implies P1 can be computed from P2, explicitly

pξv
= 20ξvpξ2

v
+

10

3
(ξu +ξw)pξ2

v
+

70

3
(ξwpξ2

u
+ξupξ2

w
)−10(ξwpξ2

w
+ξupξ2

u
)−

80

3
ξv(pξ2

u
+pξ2

w
).

Though the formulas of Example 1 have a certain uniqueness, it would be hard to
argue that the three term recurrence (3.2) had merit over that from Lemma 2.10, i.e.,

pξ3
v

= ξvpξ2
v
−

17

35
pξ2

v
−

3

50
pξv

.

We therefore seek to extend the formula of Lemma 2.10 to all of Pn+1. Below we use Bn

and Cn for a recursive three term recurrence operator pair as in (1.2).

Example 2. The quadratics. The polynomials {pξ2
v
}v∈V are a basis for P2, on which

(2.11) gives a recursive three term recurrence

pξ2
v

=
(

ξv −
7

15

)

pξv
−

1

18
=: B1(pξ2

v
) + C1(pξ2

v
). (3.3)

A three term recurrence formula for pξvξw
, v 6= w, can be obtained by factoring out one of

the barycentric coordinates

pξvξw
=

(

ξv −
1

5

)

pξw
+

2

15
pξv

+
1

36
, pξvξw

=
(

ξw −
1

5

)

pξv
+

2

15
pξw

+
1

36
. (3.4)
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Since 2pξvξw
= pξ2

u
− pξ2

v
− pξ2

w
, the three term recurrence given by (3.3) is

pξvξw
= B1(pξvξw

) + C1(pξvξw
) =

1

2
B1(pξ2

u
− pξ2

v
− pξ2

w
) +

1

2
C1(pξ2

u
− pξ2

v
− pξ2

w
)

=
1

2

(

ξu −
7

15

)

pξu
−

1

2

(

ξv −
7

15

)

pξv
−

1

2

(

ξw −
7

15

)

pξw
+

1

2

(

−
1

18
+

1

18
+

1

18

)

.

Using ξu + ξv + ξw = 1 and pξu
+ pξv

+ pξw
= 0, this simplifies to

pξvξw
=

1

2

(

ξv −
1

15

)

pξw
+

1

2

(

ξw −
1

15

)

pξv
+

1

36
, (3.5)

which is the average of the formulas in (3.4), and has the symmetries we would expect.

Example 3. The cubics. We now consider how the recursive three term recurrence

pξ3
v

=
(

ξv −
17

35

)

pξ2
v
−

3

50
pξv

=: B2(pξ3
v
) + C2(pξ3

v
). (3.6)

can be extended. Since 3pξuξvξw
= pξ3

u
+ pξ3

v
+ pξ3

w
, we obtain from (3.6) that

pξuξvξw
= (B2+C2)(pξuξvξw

) =
1

3

(

ξu−
17

35

)

pξ2
u
+

1

3

(

ξv−
17

35

)

pξ2
v
+

1

3

(

ξw−
17

35

)

pξ2
w
+0. (3.7)

Thus we need only decide on the best recurrence for pξ2
vξw

. The analogue of (3.4) is

pξ2
vξw

=
(

ξv −
13

35

)

pξvξw
+

2

35
pξ2

v
+

1

60
pξv

−
2

75
pξw

=: f
v,w
1 (ξ),

pξ2
vξw

=
(

ξw −
1

7

)

pξ2
v

+
8

35
pξvξw

+
2

75
pξv

−
1

150
pξw

=: f
v,w
2 (ξ).

(3.8)

The four dimensional space P3 can be decomposed

P3 = span{pξ3
v

: v ∈ V } ⊕ span{q},

where, with v, w, u some fixed ordering of the points of V ,

q = qv,w,u := pξv(ξ2
w−ξ2

u)+ξw(ξ2
u−ξ2

v)+ξu(ξ2
v−ξ2

w).

The polynomial q above is mapped to itself by rotations of the triangle, and to its negative
by the reflections. Hence for a recurrence to be invariant under the symmetries of the
triangle, one must choose the space spanned by the linear polynomial C2(q) ∈ P1 = Π1⊖Π0

to be invariant under these symmetries, i.e., C2(q) = 0, giving q = B2(q). By (3.1) this is
possible, with the formula given by

B2(q) = q = ξv(pξ2
w
− pξ2

u
) + ξw(pξ2

u
− pξ2

v
) + ξu(pξ2

v
− pξ2

w
) ∈ span(Π1P2). (3.9)

Since

pξ2
vξw

= −
1

6
pξv(ξ2

w−ξ2
u)+ξw(ξ2

u−ξ2
v)+ξu(ξ2

v−ξ2
w) −

1

2
pξ3

v
+

1

6
pξ3

w
−

1

6
pξ3

u
,
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we can use (3.6) and (3.9) to obtain the corresponding recurrence for pξ2
vξw

C2(pξ2
vξw

) = −
1

6
0 −

1

2

(

−
3

50
pξv

)

+
1

6

(

−
3

50
pξw

)

−
1

6

(

−
3

50
pξu

)

=
1

50
(pξv

− pξw
),

since pξv
+ pξw

+ pξu
= 0, and after considerable (but routine) simplification

B2(pξ2
vξw

) =
2

3

(

ξv −
9

35

)

pξvξw
+

1

3

(

ξw −
1

35

)

pξ2
v
.

Thus the best possible recurrence for pξ2
vξw

is

pξ2
vξw

=
2

3

(

ξv −
9

35

)

pξvξw
+

1

3

(

ξw −
1

35

)

pξ2
v

+
1

50
(pξv

− pξw
)

=
2

3
f

v,w
1 (ξ) +

1

3
f

v,w
2 (ξ),

(3.10)

which we observe is (remarkably) a convex combination of those in (3.8).

It turns out that extensions of Lemma 2.10, similar to that of (3.10), hold for the
Jacobi polynomials of any degree for any weight in any number of dimensions (Theorem
4.3). The general form of the recurrences (3.3) and (3.6) is given in Proposition 5.1.

4. The recursive three term recurrence

We now extend the best possible recurrence formula (3.10) for the cubic Legendre
polynomials on a triangle. The key features of our recurrence are:

• The formulas are simple, recursive, and reduce to those of Lemma 2.10.

• They are defined on the linearly dependent set {pξα}, and give linear maps.

• They have the same symmetries as the spaces they are defined on.

• They depend continuously on the parameter κ > −1.

Recall that an affine map σ of the simplex T onto itself induces an action on functions

σf := f(σ−1), f ∈ C(T ), (4.1)

and is uniquely determined by its action on the vertices V (a permutation of V ), or,
equivalently, its (induced) action on the barycentric coordinates. We observe

σξv = ξσv, ∀v ∈ V, =⇒ σξα = ξσα, σα := (ασ−1v)v∈V . (4.2)

The symmetry group of a Jacobi weight ξκ consists of those affine maps σ which map
T onto itself and leave ξκ invariant, i.e.,

G = Sym(ξκ) := {σ : σξκ = ξκ} = {σ : κσv = κv,∀v ∈ V }.

Clearly, this is a group, and Pn is invariant under its action, i.e., for all σ ∈ Sym(ξκ)

σf ∈ Pn, ∀f ∈ Pn,

since (by a change of variables) 〈σf, σg〉 = 〈f, g〉, ∀f, g.
We denote the support of a multi-index β by suppβ := {v ∈ V : βv > 0}.
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Theorem 4.3 (Recursive three term recurrence). Let n ≥ 0, λ := 2|α|+ |κ|+ d− 3.
Then the Jacobi polynomials pξα ∈ Pn+1 satisfy the (recursive) three term recurrence

pξα =
∑

v∈V

αv

|α|
(ξv + bα

v )pξα/ξv
−

∑

|β|=2
β≤α

cα
β pξα−β , α ∈ ZZ+

V , |α| = n + 1, (4.4)

where bα
v and cα

β are the continuous functions of κ given by

bα
v :=

(κv + αv)(|α| − 1) − αv + 1

2|α| + |κ| + d − 3
−

|α|(κv + αv)

2|α| + |κ| + d − 1
, αv 6= 0, (4.5)

except for λ = 0, i.e., |α| = 1, |κ| = −d + 1, and

cα
β :=

(κ + 1 + α − β)β

|α|λ2(λ − 1)

(−α)β

β!

{ 2|α|

λ + 1
− 2 +

∑

v∈supp β

βv
λ(βv − 1) + 1 − αv

κv + αv

}

, (4.6)

except for λ = 1, i.e., |α| = 2, |κ| = −d. Moreover, there are (unique) linear maps
Bn = Bκ

n : Pn+1 → span{Π1Pn} and Cn = Cκ
n : Pn+1 → Pn−1 with

Bn(pξα) =
∑

v∈V

αv

|α|
(ξv + bα

v )pξα/ξv
, Cn(pξα) =

∑

|β|=2
β≤α

cα
β pξα−β , ∀pξα ∈ Pn+1, (4.7)

and these commute with the action of the symmetries of the weight.

Proof: The formal power series in ξ obtained by substituting (2.7) into

pξα −
∑

v∈V

αv

|α|
(ξv + bα

v )pξα/ξv
(4.8)

is a polynomial of degree n involving only the powers ξβ , β < α. The coefficient of ξα−ev

is
c(α, α − ev) −

∑

w∈supp(α−ev)

αw

|α|
c(α − ew, α − ew − ev) −

αv

|α|
bα
v .

This can be made zero by choosing bα
v (for αv 6= 0) to be

bα
v :=

|α|

αv
c(α, α − ev) −

|α|

αv

∑

w∈supp(α−ev)

αw

|α|
c(α − ew, α − ew − ev). (4.9)

Using (2.8), and taking care when the sum over w ∈ supp(α− ev) is empty, (4.9) becomes

bα
v = −

|α|

αv

(κv + αv)αv

2|α| + |κ| + d − 1
+

∑

w 6=v

αw

αv

(κv + αv)αv

2|α| + |κ| + d − 3
+

αv

αv

(κv + αv − 1)(αv − 1)

2|α| + |κ| + d − 3

= −
|α|(κv + αv)

2|α| + |κ| + d − 1
+

(|α| − αv)(κv + αv)

2|α| + |κ| + d − 3
+

(κv + αv − 1)(αv − 1)

2|α| + |κ| + d − 3
,
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except when λ = 0, which gives (4.5).
With the choice (4.5) for bα

v , the formal power series obtained from (4.8) becomes a
polynomial of degree n − 1, with the coefficient of ξα−β , β ≤ α, |β| = 2, given by

−cα
β := c(α, α − β) −

∑

v∈V
αv−βv≥1

αv

|α|
c(α − ev, α − ev − β) −

∑

v∈V
βv≥1

αv

|α|
c(α − ev, α − β)bα

v , (4.10)

which, by Lemma 6.1, simplifies to (4.6). Here |α| ≥ 2 implies λ > 0. With this definition
for cα

β ,

pξα −
∑

v∈V

αv

|α|
(ξv + bα

v )pξα/ξv
+

∑

|β|=2
β≤α

cα
β pξα−β

is a polynomial of degree n − 2, which is orthogonal to Πn−2, and hence is equal to zero.
This establishes (4.4), except in the exceptional cases λ = 0 and λ = 1. Outside of these
cases, bα

v and cα
β are rational functions of κ, and hence are continuous.

When bα
v and cα

β are not defined by (4.5) and (4.6), we extend (4.4) by taking limits
in κ, as follows. Observe λ = 2|α| + |κ| + d − 3 → λ∗ = 2|α| + |κ∗| + d − 3 as κ → κ∗.
Thus, for |α| = 1, λ 6= 0, we have

bα
v =

0

λ
−

κv + 1

λ + 2
→ −

κ∗
v + 1

2
, as κ → κ∗,

and for |α| = 2 (β = α), λ 6= 1, we have

cα
β =

(κ + 1)α

2λ2

{ −2

λ + 1
+

∑

v∈supp α

αv(αv − 1)

κv + αv

}

→
(κ∗ + 1)α

2

{

−2 +
∑

v∈supp α

αv(αv − 1)

κ∗
v + αv

}

, as κ → κ∗.

By defining bα
v and cα

β to take these limiting values in the exceptional cases, (4.4) can be
extended, with the bα

v and cα
β (so defined) being continuous functions of κ.

We now show that there are linear maps Bn and Cn on Pn+1 satisfying (4.7). Since
(4.4) implies the sum of such maps would be the identity, it suffices to consider only Bn.
Let Bn(pξα) be defined by (4.7), and L : Pn+1 → span(Π1Pn) be the linear map defined
on the basis (2.14) by L(pξα) := Bn(pξα), α(v0) = 0. In view of the basis expansion (2.16),

L(pξα) = (−1)αv0

∑

|β|=αv0
βv0=0

(

αv0

β

)

Bn(pξβ+α−αv0ev0
), (4.11)

and we need only show that L(pξα) = Bn(pξα) (for αv0 6= 0).
Fix β with |β| = αv0 , βv0 = 0 and v 6= v0. Since

b
β+α−αv0ev0
v = bα

v − rβv, r = r|α|,|κ|,d :=
2(|α| + |κ| + d − 1)

λ(λ + 2)
,
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we obtain

Bn(p
ξβ+α−α(v0)ev0

) =
∑

v∈V

βv + αv − αv0(ev0)v

|α|
(ξv + b

β+α−αv0ev0
v )pξβ+α−αv0ev0−ev

=
∑

v 6=v0

βv + αv

|α|
(ξv + bα

v − rβv)pξβ+α−αv0ev0−ev ,

=
∑

v 6=v0

{αv

|α|
(ξv + bα

v ) +
βv

|α|
(ξv + bα

v − r − rαv) +
βv(βv − 1)

|α|
(−r)

}

pξβ+α−αv0ev0−ev .

(4.12)
By substituting (4.12) into (4.11), interchanging the order of summation, and then applying
(2.17) of Lemma 2.15 for the cases j = 0, 1, 2, respectively, we obtain

L(pξα) =
∑

v 6=v0

αv

|α|
(ξv + bα

v )pξα−ev −
∑

v 6=v0

αv0

|α|
(ξv + bα

v − r − rαv)pξα−ev0

−
∑

v 6=v0

r

|α|
αv0(αv0 − 1)pξα+ev−2ev0 .

(4.13)

Since

∑

v 6=v0

ξv = 1 − ξv0 ,
∑

v 6=v0

bα
v = −1 − bα

v0
+ r(|α| + d − 1),

∑

v 6=v0

pξα+ev−2ev0 = −pξα−ev0 ,

the sum of the last two terms of (4.13) is

−
αv0

|α|

(

1 − ξv0 − 1 − bα
v0

+ r(|α| + d − 1) − rd − r(|α| − αv0) − r(αv0 − 1)
)

pξα−ev0 ,

and so (4.13) becomes

L(pξα) =
∑

v 6=v0

αv

|α|
(ξv + bα

v )pξα−ev +
αv0

|α|
(ξv0 + bα

v0
)pξα−ev0 = Bn(pξα).

Thus the existence of a (unique) linear map Bn satisfying (4.7) is proved.
Finally, the symmetry condition. Since Bn + Cn is the identity, its suffices to show

it for Bn. Since (σα)σv = αv, (2.5) gives σpκ
ξα = pσκ

ξσα . Hence for σ ∈ Sym(ξκ), we have
σpξα = pξσα , and thereby obtain

σ(Bnpξα) =
∑

v∈V

αv

|α|
(σξv + bα

v )σpξα/ξv
=

∑

v∈V

(σα)σv

|α|
(ξσv + bσα

σv )pξσα/ξσv
= Bn(pξσα),

i.e., σBn = Bnσ, ∀σ ∈ Sym(ξκ), as asserted.
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We note that when bα
v and cα

β are not defined by (4.5) and (4.6), they are given by

bα
v = −

κv + 1

2
(λ = 0), cα

β =
(κ + 1)α

2

{

−2 +
∑

v∈supp α

αv(αv − 1)

κv + αv

}

(λ = 1).

The proof above shows (more generally) that for any permutation σ of the vertices

σBκ
n(f) = Bσκ

n (σf), σCκ
n(f) = Cσκ

n (σf).

Theorem 4.3 reduces to Lemma 2.10 when α = (n + 1)ev. For the linears P1, (4.4) gives

pξv
= ξv −

κv + 1

|κ| + d + 1
, (4.14)

for the quadratics P2 it gives (3.3), (3.5), and for the cubics P3 it gives (3.6), (3.10) and
(3.7) in the form

pξvξwξu
=

1

3

(

ξv −
1

35

)

pξwξu
+

1

3

(

ξw −
1

35

)

pξvξu
+

1

3

(

ξu −
1

35

)

pξvξw
. (4.15)

A basis for Pn can be obtained by projecting the monomials

x 7→ xα = xα1
1 xα2

2 · · ·xαd

d , |α| = n

onto Pn. The resulting polynomials Pα(x), which have leading term xα, are the monic

or monomial orthogonal polynomials (see [S99], [X05]). For the standard triangle we have
the following.

Corollary 4.16 (Standard triangle). For the weight

w(x, y) = xαyβ(1 − x − y)γ , α, β, γ > −1 (4.17)

on the standard triangle (2.2) the monomial orthogonal polynomials Pj,k(x, y) = xjyk+· · ·,
j + k > 0 are given by the recursive three term recurrence

Pj,k(x, y) =
j

j + k

(

x + b
j,k
1

)

Pj−1,k(x, y) +
k

j + k

(

y + b
j,k
2

)

Pj,k−1(x, y)

− c
j,k
2,0 Pj−2,k(x, y) − c

j,k
1,1 Pj−1,k−1(x, y) − c

j,k
0,2 Pj,k−2(x, y),

(4.18)

where, P0,0(x, y) := 1, and with λ := 2(j + k) + α + β + γ − 1,

b
j,k
1 :=

(α + j)(j + k − 1) − j + 1

λ
−

(j + k)(α + j)

λ + 2
,

b
j,k
2 :=

(β + k)(j + k − 1) − k + 1

λ
−

(j + k)(β + k)

λ + 2
,

c
j,k
2,0 :=

j(j − 1)(α + j − 1)(α + j)

(j + k)λ2(λ − 1)

{ j + k

λ + 1
− 1 +

λ + 1 − j

α + j

}

,

c
j,k
0,2 :=

k(k − 1)(β + k − 1)(β + k)

(j + k)λ2(λ − 1)

{ j + k

λ + 1
− 1 +

λ + 1 − k

β + k

}

,

c
j,k
1,1 :=

jk

j + k

(α + j)(β + k)

λ2(λ − 1)

{2(j + k)

λ + 1
− 2+

( 1 − k

β + k
+

1 − j

α + j

)}

.

(4.19)

Proof: In view of (2.3), the monomial orthogonal polynomials are given by

Pj,k = P
(α,β,γ)
j,k := pξ(j,k,0) , ξ(x, y) = (x, y, 1 − x − y), κ = (α, β, γ),

to which we apply Theorem 4.3 for the multi-indices (j, k, 0).
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We conclude this section with some technical remarks about Theorem 4.3. The special
case λ = 0 in (4.5) is already apparent in the recurrence for univariate Jacobi polynomials

P
(α,β)
n+1 (x) =

(2n + α + β + 1)(2n + α + β + 2)

2(n + 1)(n + α + β + 1)
xP (α,β)

n (x)

+
(2n + α + β + 1)(α2 − β2)

2(n + 1)(n + α + β + 1)(2n + α + β)
P (α,β)

n (x)

−
(α + n)(β + n)(2n + α + β + 2)

(n + 1)(n + α + β + 1)(2n + α + β)
P

(α,β)
n−1 (x),

(4.20)

where the denominator λ = 2n+α+β is zero for n = 0, α+β = 0. This is used by [IM91]
as the starting point to define the exceptional Jacobi polynomials via the recurrence (4.20).
In a similar fashion, one might define multivariate exceptional Jacobi polynomials.

It appears that cα
β 6= 0 for all β ≤ α, |β| = 2, specifically

cα
2ev

> 0, cα
ev+ew

< 0, v 6= w,

which would imply that Cn is onto Pn−1. This could be considered a multivariate analogue
of Cn 6= 0. By way of comparison, C2 = 0 in the recurrence of (3.7).

We emphasize that our three term recurrence is a pair of linear maps. Hence it gives
explicit three term recurrence formulas for any other system (by substitution) – provided

that 〈f, pξα〉 can be computed for each polynomial f in the system. For example, if (Q
[n]
j )

is an orthonormal basis for Pn, then substituting our recurrence into (2.6) and expanding
in the orthonormal basis gives

Q
[n+1]
ℓ =

∑

j

A
[n]
j Q

[n]
j +

∑

k

B
[n]
k Q

[n−1]
k , (4.21)

where

A
[n]
j :=

∑

|α|=n+1

(|κ + 1|)2n+2

α!(κ + 1)α
〈Q

[n+1]
ℓ , pξα〉

∑

v∈V

αv

|α|
(ξv + bα

v )〈pξα/ξv
, Q

[n]
j 〉,

B
[n]
k := −

∑

|α|=n+1

(|κ + 1|)2n+2

α!(κ + 1)α
〈Q

[n+1]
ℓ , pξα〉

∑

|β|=2
β≤α

cα
β 〈pξα−β , Q

[n−1]
k 〉.

The formula (4.21) for an orthonormal basis (cf [P57]), and simplifications of it, gives
a benchmark with which to compare any other three term recurrence for an orthogonal
basis that might be constructed in the future.

5. Nonrecursive three term recurrences

We now give an explicit formula for the inclusion

span(Π1Pn) ⊂ Pn+1 ⊕ Pn ⊕ Pn−1.

This extends three term recurrence of [BS92] for the monomial Jacobi polynomials on the
standard triangle (cf Corollary 4.16).
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Proposition 5.1 (Three term recurrence). Let n ≥ 0, and λ := 2|α| + |κ| + d − 3.
Then the Jacobi polynomials pξα ∈ Pn+1 satisfy the (nonrecursive) three term recurrence

ξvpξα/ξv
= pξα −

∑

w∈supp α

bα,v
w pξα−ew +

∑

|β|=2
β≤α

c
α,v
β pξα−β , αv 6= 0, (5.2)

where bα,v
w and c

α,v
β are the continuous functions of κ given by

bα,v
w :=

2αw(κw + αw)

λ(λ + 2)
, w 6= v, bα,v

v :=
(αv − 1)(κv + αv − 1)

λ
−

αv(κv + αv)

λ + 2
. (5.3)

except for λ = 0, i.e., |α| = 1, |κ| = −d + 1, and

c
α,v
β :=

(κ + 1 + α − β)β

λ2(λ − 1)

(−α)β

β!

{ 2

λ + 1
−

βv

αv
+

βv

αv

λ(βv − 1) + 1 − αv

κv + αv

}

, (5.4)

except for λ = 1, i.e., |α| = 2, |κ| = −d.

Proof: In a similar fashion to Theorem 4.3, choose

bα,v
w = c(α, α−ew)−c(α−ev, α−ev −ew) =

(αw − δvw)(κw + αw − δvw)

λ
−

αw(κw + αw)

λ + 2
,

(5.5)
where δvw = (ev)w is the Dirac delta function, so that

ξvpξα/ξv
−

(

pξα −
∑

w∈supp α

bα,v
w pξα−ew

)

(5.6)

is a polynomial of degree |α| − 2, and (5.3) holds. Let c
α,v
β be the ξα−β (β ≤ α, |β| = 2)

coefficient of formal power series (5.6) in ξ, i.e.,

c
α,v
β = c(α − ev, α − ev − β) − c(α, α − β) +

∑

w∈supp β

bα,v
w c(α − ew, α − β),

which, by Lemma 6.1, simplifies to (5.4). With this definition for cα,v
w ,

ξvpξα/ξv
−

(

pξα −
∑

w∈supp α

bα,v
w pξα−ew +

∑

|β|=2
β≤α

c
α,v
β pξα−β

)

is a polynomial of degree n − 2, which is orthogonal to Πn−2, and hence is zero.
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The equation (5.2) can easily be solved for pξα , thereby giving a recursive three term
recurrence for pξα . By taking the convex combination of these with coefficients αv

|α| one

obtains (4.4). By way of comparison, the only other recurrence that I am aware of is a
nonrecursive three term recurrence in the Prorial orthonormal basis (cf [P57]) for Jacobi
polynomials on the standard triangle, i.e.,

Pn
k (x, y) := h−1

k,n(1 − x)kP
(γ,β)
k

( 2y

1 − x
− 1

)

P
(2k+β+γ+1,α)
n−k (2x − 1), 0 ≤ k ≤ n

where hk,n are the normalising constants. The matrices which need to be (pseudo)inverted
to obtain a recursive three term recurrence have a tridiagonal block form (see [DX01:86–88]
for the explicit formulas).

6. Appendix

Lemma 6.1. Let λ := 2|α| + |κ| + d − 3, β ≥ α and |β| = 2. Then the constants cβ
α and

cβ,v
α in Theorem 4.3 and Proposition 5.1

cα
β = −c(α, α − β) +

∑

v∈V
αv−βv≥1

αv

|α|
c(α − ev, α − ev − β) +

∑

v∈V
βv≥1

αv

|α|
c(α − ev, α − β)bα

v , (6.2)

c
α,v
β = −c(α, α − β) + c(α − ev, α − ev − β) +

∑

w∈supp β

bα,v
w c(α − ew, α − β), (6.3)

simplify for λ 6= 1 as follows

cα
β =

(κ + 1 + α − β)β

|α|λ2(λ − 1)

(−α)β

β!

{ 2|α|

λ + 1
− 2 +

∑

v∈supp β

βv
λ(βv − 1) + 1 − αv

κv + αv

}

, (6.4)

c
α,v
β =

(κ + 1 + α − β)β

λ2(λ − 1)

(−α)β

β!

{ 2

λ + 1
−

βv

αv
+

βv

αv

λ(βv − 1) + 1 − αv

κv + αv

}

. (6.5)

Proof: Suppose λ 6= 1. Recall β ≤ α and |β| = 2. It follows from (2.8) that

−c(α, α − β) = (κ + 1 + α − β)β
(−α)β

β!

{ −1

(λ + 1)(λ + 2)

}

, (6.6)

c(α − ev, α − ev − β) = (κ + 1 + α − β)β
(−α)β

β!

{ (κv + αv − βv)(αv − βv)

λ(λ − 1)αv(κv + αv)

}

, (6.7)

c(α − ev, α − β) = (κ + 1 + α − β)β
(−α)β

β!

{ −βv

λαv(κv + αv)

}

. (6.8)
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The factorisations of (6.7) and (6.8) were obtained from the identities

αv(−α+ev)β = (−α)β(αv −βv), (κ+1+α−ev −β)β =
(κv + αv − βv)

(κv + αv)
(κ+1+α−β)β ,

(κ + 1 + α − β)β−ev
=

(κ + 1 + α − β)β

κv + αv
, (−α + ev)β−ev

=
(−α)β

−αv
,

1

(β − ev)!
=

βv

β!
,

when v ∈ suppβ, respectively, and follow by inspection otherwise. Let

A := (κ + 1 + α − β)β
(−α)β

β!
.

Using (6.7), the first sum in (6.2) can be split

A

|α|λ(λ − 1)

{

∑

v∈V
αv−βv≥1

(αv − βv) −
∑

v∈V
αv−βv≥1

βv(αv − βv)

κv + αv

}

.

The restriction αv − βv ≥ 1 can be removed from both sums above, and so we obtain

A

|α|λ(λ − 1)

{

|α| − 2 −
∑

v∈supp β

βv(αv − βv)

κv + αv

}

. (6.9)

Using (6.8) and (4.5) in the form

bα
v = (κv + αv)

2|α| − λ − 2

λ(λ + 2)
+

1 − αv

λ
,

the second sum in (6.2) can be written

A
∑

v∈supp β

{

βv
λ + 2 − 2|α|

|α|λ2(λ + 2)
+

βv(αv − 1)

|α|λ2(κv + αv)

}

= A
{

2
λ + 2 − 2|α|

|α|λ2(λ + 2)
+

∑

v∈supp β

βv(αv − 1)

|α|λ2(κv + αv)

}

.

(6.10)

Adding (6.6), (6.9) and (6.10), we get

cα
β = A

{2(|α| − λ − 1)

|α|λ2(λ2 − 1)
+

1

|α|λ2(λ − 1)

∑

v∈supp β

βv
λ(βv − 1) + 1 − αv

κv + αv

}

,

which gives (6.4).
Now we consider c

α,v
β . We may write (6.7) as

c(α − ev, α − ev − β) = A
{ 1

λ(λ − 1)
+

−βv

λ(λ − 1)αv
+

−βv(αv − βv)

λ(λ − 1)αv(κv + αv)

}

, (6.11)
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Since

(αw − δvw)(κw + αw − δvw) = αw(κw + αw) − δvw(κw + αw + αw − 1),

(5.5) can be written

bα,v
w =

2αw(κw + αw)

λ(λ + 2)
− δvw

(κw + αw

λ
+

αw − 1

λ

)

.

Using this, and (6.8) with v = w, the sum in (6.3) becomes

A
∑

w∈supp β

{ −2βw

λ2(λ + 2)
+δvw

( βw

λ2αw
+

βw(αw − 1)

λ2αw(κw + αw)

)}

= A
{ −4

λ2(λ + 2)
+

βv

λ2αv
+

βv(αv − 1)

λ2αv(κv + αv)

}

.

Finally, adding (6.6), (6.11) and the above gives

c
α,v
β = A

{ 2

λ2(λ2 − 1)
+

−βv

λ2(λ − 1)αv
+ βv

λ(βv − 1) + 1 − αv

λ2(λ − 1)αv(κv + αv)

}

,

which is (6.5).
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