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ABSTRACT

We give an algorithm for computing orthogonal polynomials over triangular domains in
Bernstein–Bézier form which uses only the operator of degree raising and its adjoint. This
completely avoids the need to choose an orthogonal basis (or tight frame) for the orthogonal
polynomials of a given degree, and hence the difficulties inherent in that approach. The
results are valid for Jacobi polynomials on a simplex, and show the close relationship
between the Bernstein form of Jacobi polynomials, Hahn polynomials and degree raising.
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1. Introduction

This paper considers orthogonal polynomials over a triangular (or simplicial) domain.
The use of the Bernstein basis for polynomials on triangular domains is well established
in CAGD (Computer Aided Geometric Design) since the “Bernstein–Bézier control net”
of the Bernstein coefficients closely reflects the shape of the function and simplifies the
smoothness conditions across an interface (cf [B87]).

Recently (cf [FGS03], [W06]) there has been interest in the Bernstein(–Bézier) form of
orthogonal polynomials on triangular domains. It turns out that the Bernstein coefficients
of such orthogonal polynomials can be interpreted as orthogonal polynomials for a discrete
inner product; and they can be characterised as the kernel of the adjoint of the degree
raising operator for this inner product.

In [FGS03] the Bernstein form of an orthogonal basis for the orthogonal polynomials
on a triangle was developed, and [W06] advocated the use of a tight frame invariant under
the symmetries of the triangle. From a computational point of view, what one really wants
is the matrix representing the orthogonal projection onto the orthogonal polynomials of a
given degree with respect to the Bernstein basis. A formula for the entries of this ‘projection
matrix’ was given in [W06]. This involved a multivariate analogue of a 3F2 hypergeometric
sum, and something of a similar complexity could be developed from [FGS03].

The main result of this paper is a simple formula for this projection matrix. It
involves only powers of the degree raising operator and its adjoint, and so can easily be
implemented in existing Bernstein–Bézier software. This approach completely circumvents
the need choose a basis, or tight frame for the orthogonal polynomials of a given degree.

The rest of the paper is set out as follows. In the next section, we define the Jacobi
polynomials on a simplex, and outline how their Bernstein coefficients can be interpreted as
orthogonal polynomials for a discrete inner product. This is based on the close relationship
between these polynomials and the degree raising operator. In the third and final section,
we give the projection matrix and discuss the corresponding algorithm.

The paper uses standard multi–index notation, e.g., for α, β ∈ ZZd
+ and x ∈ IRd,

xα := xα1

1 . . . xαd

d , α! := α1! · · ·αd!, (α)β := (α1)β1
· · · (αd)βd

,

where (x)n := x(x + 1) · · · (x + n − 1) is the Pochhammer symbol, and

|α| := α1 + · · · + αd, Γ(x) :=
∏

j

Γ(xj), xj > 0.

2. The Bernstein form and orthogonal polynomials

Throughout ξ = (ξ0, ξ1, . . . , ξd) will be the barycentric coordinates of a d–simplex
T ⊂ IRd (the convex hull of d + 1 affinely independent points in IRd) with volume vold(T ).
For example, the standard triangle with vertices (0, 0), (1, 0), (0, 1) has

T = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x}, vol2(T ) =
1

2
, ξ(x, y) = (1 − x − y, x, y).
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Let Πn(V ) be the polynomials of degree ≤ n on a d–dimensional affine space V , and
Πn(X) their restrictions to a subset X ⊂ V for which Πn(V ) → Πn(X) : f 7→ f |X is
invertible. Of particular interest is X given by IRd, T and the simplex points

Sn = Sn(d) := {α ∈ ZZd+1
+ : |α| = n}, #Sn =

(

n + d

d

)

= dim(Πn(IRd)).

For example, for d = 2, we have S0 = {(0, 0, 0)}, S1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and

S2 = {(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}.

Without confusion, we will refer to f ∈ Πn(X) as a polynomial of degree ≤ n in d variables.
Each polynomial f ∈ Πn(IRd) can be expressed in terms of the Bernstein basis

f =
∑

|α|=n

cα(f)Bα =
∑

|α|=n

cαBα,

where the Bernstein polynomials of degree n are defined by

Bα :=

(

|α|

α

)

ξα =
|α|!

α!
ξα =

n!

α!
ξα, |α| = n, α ∈ ZZd+1

+ .

It is easy to show that f ∈ Πn(IRd) has exact degree s if and only if c(f) ∈ Πn(Sn) has
exact degree s. For example, the Bernstein coefficients of f = 1 are cα(f) = 1, ∀α.

Let µ be some positive measure on X for which

〈f, g〉µ :=

∫

X

f(x)g(x) dµ(x)

defines an inner product on Πs(X) (see [DX01]). Then Pµ
s the space of orthogonal

polynomials of degree s (for the measure µ) consists of all f ∈ Πs(X) for which

〈f, g〉µ = 0, ∀g ∈ Πs−1(IR
d).

Note dim(Pµ
s ) =

(

s+d−1
d−1

)

> 0 for s > 0, d > 1, and that polynomials in Pµ
s need not be

orthogonal to each other, even though they are referred to as “orthogonal polynomials”.
Let ν ∈ IRd+1, νj > 0 be a fixed parameter. Then

〈f, g〉ν :=
Γ(|ν|)

Γ(ν)

1

d! vold(T )

∫

T

fg ξν−1, ν ∈ IRd+1, νj > 0. (2.1)

defines an inner product on continuous functions on T . The corresponding orthogonal
polynomials are called the Jacobi polynomials and are denoted by Pν

s . They are called
Legendre polynomials when νj = 1, ∀j. For the standard triangle (2.1) becomes

〈f, g〉ν =
Γ(ν0 + ν1 + ν2)

Γ(ν0)Γ(ν1)Γ(ν2)

∫ 1

0

∫ 1−x

0

f(x, y)g(x, y) (1 − x − y)ν0xν1yν2 dy dx.
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We define an inner product on functions Sn → IR, i.e., polynomials in Πn(Sn), by

〈f, g〉ν,n :=
∑

|α|=n

(ν)α

α!
f(α)g(α). (2.2)

The corresponding orthogonal polynomials of degree s are called Hahn polynomials, and
we denote them by Pν,n

s , 0 ≤ s ≤ n. In [W06] it was shown that f =
∑

|α|=n cαBα ∈ Πn(T )

is a Jacobi polynomial of degree s if and only if its Bernstein coefficients c(f) = (cα) are
a Hahn polynomial in Pν,n

s . These coefficients are also closely related to degree raising.
By the multinomial theorem

f =
∑

|α|=n

cαBα =
∑

|α|=n

cαBα

(

d
∑

i=0

ξi

)j

=
∑

|α|=n+j

(Rjc)αBα,

where the powers of the degree raising operator R are given by

(Rjc)α =
∑

|γ|=j

(

j

γ

)

(−α)γ

(−|α|)j

cα−γ , j = 0, 1, 2, . . . . (2.3)

The adjoint of the degree raising operator with respect to (2.2) is defined by

〈Rc, b〉ν,n = 〈c,R∗
νb〉ν,n−1, c : Sn−1 → IR, b : Sn → IR.

The powers of the adjoint of R are given by

((R∗
ν)jb)β =

∑

|γ|=j

(β + ν)γ

(|β| + 1)j

(

j

γ

)

bβ+γ , b : Sn → IR, 0 ≤ j ≤ n. (2.4)

Theorem 2.5 ([W06]). Let f =
∑

|α|=n cαBα ∈ Πn(IRd), c = (cα) and 0 ≤ s ≤ n. Then
the following are equivalent
(i) f ∈ Pν

s (Jacobi polynomials)
(ii) c ∈ Pν,n

s (Hahn polynomials)
(iii) (R∗

ν)n−s+1c = 0.

The association of the (possibly degree raised) Bernstein coefficients of f ∈ Pν
s with

a Hahn polynomial preserves the respective inner products.

Theorem 2.6 ([W06]). Let f =
∑

|α|=n cα(f)Bα, g =
∑

|α|=n cα(g)Bα and 0 ≤ s ≤ n.
If f or g belongs to Pν

s , then we have

〈f, g〉ν =
(n!)2

(n − s)!(|ν|)n+s

∑

|α|=n

(ν)α

α!
cα(f)cα(g) =

(n!)2

(n − s)!(|ν|)n+s

〈c(f), c(g)〉ν,n.

We will need the following formula for the “commutator” of R and R∗
ν .
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Lemma 2.7. For c : Sn → IR, n ≥ 1, we have

(|α| + 1)2(R∗
νRc)α − |α|2(RR∗

νc)α = (|ν| + 2|α|)cα. (2.8)

Proof: For j = 1, (2.3) and (2.4) become

(Rc)α =
∑

|γ|=1

(−α)γ

−|α|
cα−γ , (R∗

νc)α =
∑

|γ|=1

(α + ν)γ

|α| + 1
cα+γ .

Thus we calculate

(R∗
νRc)α =

∑

|δ|=1

(α + ν)δ

|α| + 1

∑

|γ|=1

(−α − δ)γ

−(|α| + 1)
cα+δ−γ ,

(RR∗
νc)α =

∑

|γ|=1

(−α)γ

−|α|

∑

|δ|=1

(α − γ + ν)δ

|α|
cα−γ+δ,

so that
(|α| + 1)2(R∗

νRc)α − |α|2(RR∗
νc)α =

∑

|γ|=1

∑

|δ|=1

Aα,ν,γ,δ cα−γ+δ,

where Aα,ν,γ,δ := −(α + ν)δ(−α − δ)γ + (−α)γ(α − γ + ν)δ. But

Aα,ν,γ,δ = −(α + ν)δ(−α)γ + (−α)γ(α + ν)δ = 0, γ 6= δ,

and so only the terms with γ = δ in the above sum are nonzero. For these

Aα,ν,γ,δ = −(α+ν)γ{(−α)γ −1}+(−α)γ{(α+ν)γ −1} = (α+ν)γ −(−α)γ = (ν)γ +2(α)γ ,

and we obtain

(|α| + 1)2(R∗
νRc)α − |α|2(RR∗

νc)α =
∑

|γ|=1

{(ν)γ + 2(α)γ}cα = (|ν| + 2|α|)cα.

Corollary 2.9. For c : Sn → IR, we have

(n + k)2R∗
νRkc = n2RkR∗

νc + k(|ν| + 2n + k − 1)Rk−1c n ≥ 0, k ≥ 0. (2.10)

Proof: For n ≥ 1 the result follows from (2.8) by induction. It also holds for
n = 0. Since in that case c is the constant c0, and

(R∗
νRkc)β = c0(R

∗
ν1)β = c0

∑

|γ|=1

(β + ν)γ

(|β| + 1)1

(

1

γ

)

=
k − 1 + |ν|

k
c0, k ≥ 1.
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Corollary 2.11. Let f =
∑

|α|=n cαBα ∈ Pν
s , n ≥ s. For j, k ≥ 0 with n + k − j ≥ 0,

(R∗
ν)jRkc =

(n − s + k − m + 1)m

(n + k − m + 1)2m
(|ν| + n + s + k − m)m(R∗

ν)j−mRk−mc,

for any 0 ≤ m ≤ min{j, k}.

Proof: First suppose s = n. Then R∗
νc = 0 by (iii) of Theorem 2.5, so that m

applications of (2.10) gives

(R∗
ν)jRkc =

k(|ν| + 2n + k − 1)

(n + k)2
(R∗

ν)j−1Rk−1c = · · ·

=
(k − m + 1)m(|ν| + 2n + k − m)m

(n + k − m + 1)2m
(R∗

ν)j−mRk−mc.

Now suppose 0 ≤ s ≤ n, so that c = Rn−sb. Then by the result just proved

(R∗
ν)jRkc = (R∗

ν)jRn−s+kb

=
(n − s + k − m + 1)m(|ν| + 2s + n − s + k − m)m

(s + n − s + k − m + 1)2m
(R∗

ν)j−mRn−s+k−mb

=
(n − s + k − m + 1)m(|ν| + s + n + k − m)m

(n + k − m + 1)2m
(R∗

ν)j−mRk−mc.

3. The orthogonal projection matrix

In this section functions IRd → IR, T → IR will be equipped with the inner product
(2.1), and those Sn → IR with (2.2). So for example, by the (orthogonal) projection of
f ∈ Πn(IRd) onto Pν

s , 0 ≤ s ≤ n we mean the unique p ∈ Pν
s with 〈f −p, g〉ν = 0, ∀g ∈ Pν

s .
We denote by cn the map taking f ∈ Πn(IRd) to its coordinates in the Bernstein basis

cn : Πn(IRd) → IRSn : f 7→ cn(f) = (cn
α(f))|α|=n, f =

∑

|α|=n

cn
α(f)Bα,

and by Bn its inverse the basis map

Bn := [Bα : |α| = n] : IRSn → Πn(IRd) : b 7→
∑

|α|=n

bαBα, Bn = (cn)−1.

Here is the main result.
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Theorem 3.1. The matrix A = B−1
s PBs representing P the orthogonal projection of

Πs(IR
d) onto Pν

s with respect to the Bernstein basis (Bα)|α|=s is given by

A =

s
∑

k=0

(s − k + 1)2k(−1)k

k!(|ν| + 2s − k − 1)k

Rk(R∗
ν)k. (3.2)

Proof: The matrix A given by (3.2) represents P if and only BsAB−1
s f ∈ Pν

s ,
f −BsAB−1

s f ⊥ BsAB−1
s f , ∀f ∈ Πs(IR

d). Writing f =
∑

|α|=s cαBα = Bsc, this becomes

BsAc ∈ Pν
s , Bsc − BsAc ⊥ BsAc, ∀c : Ss → IR.

By Theorem 2.5, the first of these conditions is equivalent to R∗
ν(Ac) = 0. Given that this

is satisfied, we can use Theorem 2.6 to express the second condition as

〈Bsc − BsAc,BsAc〉ν =
(s!)2

(|ν|)2s

〈c − Ac,Ac〉ν,s = 0.

Hence it suffices to show that R∗
ν(Ac) = 0 and c − Ac ⊥ Ac.

By (2.10), the sum
∑

akRk(R∗
ν)kc, c : Ss 7→ IR, is in the kernel of R∗

ν if

R∗
v

s
∑

k=0

akRk(R∗
ν)k =

s
∑

k=0

ak(R∗
vRk)(R∗

ν)k

=
1

s2

s
∑

k=0

ak

(

(s − k)2RkR∗
ν + k(|ν| + 2(s − k) + k − 1)Rk−1

)

(R∗
ν)k

=
1

s2

s
∑

k=0

ak

(

(s − k)2Rk(R∗
ν)k+1 + k(|ν| + 2s − k − 1)Rk−1(R∗

ν)k
)

=
1

s2

s−1
∑

k=0

{

ak(s − k)2 + ak+1(k + 1)(|ν| + 2s − k − 2)
}

Rk(R∗
ν)k+1 = 0.

We satisfy this by solving the recurrence

ak(s − k)2 + ak+1(k + 1)(|ν| + 2s − k − 2) = 0, 0 ≤ k < s, a0 := 1,

to obtain

ak =
(s − k + 1)2k(−1)k

k!(|ν| + 2s − k − 1)k

, 0 ≤ k ≤ s.

Thus R∗
ν(Ac) = 0. Furthermore, since a0 = 1, we have

c − Ac = −R

s
∑

k=1

(s − k + 1)2k(−1)k

k!(|ν| + 2s − k − 1)k

Rk−1(R∗
ν)kc,

so that c − Ac is in the image of R, and hence is orthogonal to Ac ∈ ker R∗
ν .
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This result can be generalised as follows.

Theorem 3.3. The matrix B = B−1
m QBn representing Q the orthogonal projection of

Πn(IRd) onto Pν
s with respect to the bases (Bα)|α|=n and (Bα)|α|=m, m ≥ s is given by

B =
(|ν| + 2s − 1)

(n − s)!

s
∑

k=0

(s − k + 1)2n−s+k(−1)k

k!(|ν| + 2s − k − 1)n−s+k+1
Rm−s+k(R∗

ν)n−s+k. (3.4)

Proof: With A, P as in Theorem 3.1, we will prove that

B = λRm−sA(R∗
ν)n−s, λ :=

(s + 1)2n−s

(1)n−s

1

(|ν| + 2s)n−s

,

and hence obtain (3.4) from (3.2). Clearly it suffices to prove this for m = s, i.e., with
B := λA(R∗

ν)n−s that BsBB−1
n f ∈ Pν

s and f − BsBB−1
n f ⊥ BsBB−1

n f , ∀f ∈ Πn(IRd).
The first condition holds since BsA maps into Pν

s , and so by Theorem 2.6, writing
f =

∑

|α|=n cαBα = Bnc and BsBB−1
n f = λBnRn−sA(R∗

ν)n−sc, the second becomes

〈c − λRn−sA(R∗
ν)n−sc,Rn−sA(R∗

ν)n−sc〉ν,n = 0,

which we can rewrite as

〈b − λ(R∗
ν)n−sRn−sAb,Ab〉ν,s = 0, b := (R∗

ν)n−sc. (3.5)

Now by Corollary 2.11,

(R∗
ν)n−sRn−sAb =

(1)n−s

(s + 1)2n−s

(|ν| + 2s)n−sAb =
1

λ
Ab,

so that 〈λ(R∗
ν)n−sRn−sAb,Ab〉ν,s = 〈Ab,Ab〉ν,s, and by Theorem 2.6,

〈b, Ab〉ν,s = 〈BsB
−1
s b,BsPB−1

s b〉ν,s =
(|ν|)2s

(s!)2
〈B−1

s b, PB−1
s b〉ν

=
(|ν|)2s

(s!)2
〈PB−1

s b, PB−1
s b〉ν = 〈BsPB−1

s b,BsPB−1
s b〉ν,s = 〈Ab,Ab〉ν,s.

Hence (3.5) holds and we obtain (3.4).

If f ∈ Πs(IR
d) and q is its projection onto Πs−1(IR

d), then p := f −q is the orthogonal
projection of f onto Pν

s . This relationship between p and q gives a geometric interpretation
of the Bernstein coefficients of the projection onto polynomials of one degree less.

Proposition 3.6. Let f =
∑

|α|=s bαBα ∈ Πs(IR
d) and q be its projection onto Πs−1(IR

d).

Then the Bernstein coefficients of q are given by the orthogonal projection of b onto Pν,s
s−1.

Proof: By the previous remark, q ∈ Πs−1(IR
d) is the orthogonal projection of f

onto Πs−1(IR
d) if and only if

f − q ∈ Pν
s ⇐⇒ R∗

ν(b − Rcs−1(q)) = 0 ⇐⇒ R∗
νRcs−1(q) = R∗

νb.

The last of these is the normal equations for the least squares solution of Rcs−1(q) = b,
and so cn(q) = Rcn−1(q) is the orthogonal projection of b onto Pν,s

s−1.
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Corollary 3.7. The matrix which represents the orthogonal projection of Πs(IR
d) onto

Πs−1(IR
d) with respect to the Bernstein basis (Bα)|α|=s is given by

R(R∗
νR)−1R∗

ν = −
s
∑

k=1

(s − k + 1)2k(−1)k

k!(|ν| + 2s − k − 1)k

Rk(R∗
ν)k. (3.8)

Proof: From the proof of Proposition 3.6, we have cs−1(q) = (R∗
νR)−1R∗

νb. Hence
the matrix is given by R(R∗

νR)−1R∗
ν , and by the remark, the matrix A of Theorem 3.1 is

given by
A = I − R(R∗

νR)−1R∗
ν .

The second formula in (3.8) is obtained by substituting (3.2) into R(R∗
νR)−1R∗

ν = I − A.

These results allow us to calculate the orthogonal projections onto Pν
s and Πs(IR

d) by
applying only the operation R of degree raising and its adjoint. The adjoint R∗

ν is easily
calculated. Indeed, with eα denoting the α–th standard basis vector, we have

(ν)α

α!
(R∗

νeβ)α = 〈R∗
νeβ , eα〉ν,n−1 = 〈eβ , Reα〉ν,n =

(ν)β

β!
(Reα)β

so that the entries of the matrices representing R∗
ν and R with respect to the standard

basis satisfy

(R∗
ν)αβ =

α!

(ν)α

(ν)β

β!
Rβα.

For Legendre polynomials (ν = 1) R∗
ν is simply the ‘matrix transpose’ of R.

A natural multivariate analogue of the Legendre/Jacobi basis is to express f ∈ Πn(IRd)
as f = f0 + · · ·+ fn, with fs ∈ Pν

s . In terms of the Bernstein basis, with c := cn(f), this is

c =
n
∑

s=0

cs, cs := cn(fs) ∈ Pν,n
s ,

where cs can be computed by Theorem 3.3. This calculation is well conditioned (cf [F00])
since the matrix B is an orthogonal projection with respect to (2.2), as is the map back
to the Bernstein form (adding the cs). The decomposition c =

∑

s cs is ideally suited to
surface smoothing problems as outlined in [FGS03] (see also [KA00]).

From (3.2) and (3.4) one can (obviously) obtain a formula for the entries of the
matrices A and B, e.g., the (α, β)–entry of A is

aαβ =
s
∑

k=0

(s − k + 1)2k(−1)k

k!(|ν| + 2s − k − 1)k

(Rk(R∗
ν)kδβ)α

=

s
∑

k=0

(s − k + 1)2k(−1)k

k!(|ν| + 2s − k − 1)k

∑

|γ|=k

(

k

γ

)

(−α)γ

(−s)k

(ν)β

(ν)α−γ

k!(−1)s−k

(s − k + 1)k

(−β)α−γ

β!
.

(3.9)
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The following formula for the entries of the matrix B was given in [W06:Th. 3.21]

bαβ = n!
(ν)β

β!

(−1)s

(s + |ν| − 1)s

(

m
s

)

(|ν| + 2s)m−s

∑

γ≤α,β

|γ|≤s

(s + |ν| − 1)|γ|(−α)γ(−β)γ(−s)|γ|

(ν)γ(−m)|γ|(−n)|γ|γ!
.

(3.10)
For m = s this is a multivariate extension of a 3F2 hypergeometric sum. Since the sum in
(3.9) is over α − β ≤ γ ≤ α, it requires considerable rearrangement to obtain (3.10).
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