
An elementary classification of the
quaternionic reflection groups of rank two

Shayne Waldron

Department of Mathematics
University of Auckland

Private Bag 92019, Auckland, New Zealand
e–mail: waldron@math.auckland.ac.nz

September 2, 2025

Abstract

We give an elementary classification and presentation of the finite quaternionic
reflection groups of rank two, based on the notion of a “reflection system”. This
simplifies the existing classification, which is shown to be incomplete, e.g., there
exist four imprimitive quaternionic reflection groups of order 192 with 22 reflections
which are not isomorphic (one of which was previously unknown).

Key Words: imprimitive quaternionic reflection groups, reflection systems, symplectic
group, binary polyhedral groups, dicyclic groups, finite collineation groups, representa-
tions over the quaternions, Frobenius-Schur indicator,

AMS (MOS) Subject Classifications: primary 05B30, 15B33, 20C25, 20G20, 51M05,
51M20, secondary 15B57, 51E99, 51M15, 65D30.

1



1 Introduction
The finite (unitary) quaternionic reflection groups were formally introduced and then
classified by Cohen [Coh80], with various results then built upon it, e.g., the classification
of parabolic subgroups [BST23], [Sch23], and certain conformal field theories [DZ24].

This followed in the spirit of the real reflection groups which were classified by
Coxeter [Cox34], and the complex reflection groups which were classified by Shephard
and Todd [ST54]. There are various relationships between these groups, e.g., Cohen
understood that the quaternionic reflection groups in one dimension were classified by
Stringham [Str81], and recognised that some imprimitive collineation groups for C4

of Blichfeldt [Bli17] give rise to primitive quaternionic reflection groups of rank 2 (see
[Kan81] for an interesting overview, and [Zha97], [CS03], [Voi21] for general background).

Here we consider the classification of the imprimitive quaternionic reflection groups
of rank two. These are finite groups of unitary 2 × 2 monomial matrices over the
quaternions H, which are generated by reflections, i.e., nonidentity matrices g which fix
a 1-dimensional subspace (this is equivalent to rank(g−I) = 1). Elementary calculations
show that there are two types of reflections(

h 0
0 1

)
,

(
1 0
0 h

)
, h 6= 1,

(
0 b
b−1 0

)
,

which have orders the order of h and 2, respectively. The roots for these reflections, i.e., a
vector in the orthogonal complement of the fixed subspace are e1, e2, (1,−b), respectively.
The six primitive quaternionic reflection groups of rank two can be obtained by adding
single non-monomial reflection to an imprimitive reflection group [Wal24], [BW25].

Let G be an irreducible imprimitive quaternionic reflection group of rank two. Then
G is conjugate in U(H2) to a unitary group where the reflections are(

h 0
0 1

)
,

(
1 0
0 h

)
, h ∈ H, h 6= 1,

(
0 b
b−1 0

)
, b ∈ L, (1.1)

where 1 ∈ L (a standardisation condition), 1 ∈ H, and H and L are subsets of U(H).

• Since the reflections for a given root (e.g., e1) are a subgroup of G, we conclude
that H is a group.

• Since the set of reflections in G is closed under conjugation, we have that(
h 0
0 1

)(
0 1
1 0

)(
h 0
0 1

)−1

=
(

0 h
h−1 0

)
∈ G,(

0 b
b−1 0

)(
h 0
0 1

)(
0 b
b−1 0

)−1

=
(

1 0
0 b−1hb

)
∈ G, h ∈ H, b ∈ L.

Hence H ⊂ L, and H is a normal subgroup of the group K = 〈L〉 generated by L.

Therefore, each group G of the above form is determined by H CK, which are uniquely
defined up to conjugation in U(H), the reflections in G, and a suitable L.
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Clearly, not every H CK and L ⊂ K gives a reflection group as above, and so the
classification of the imprimitive reflection groups of rank two can be reduced to finding
the suitable subsets L (and H), and then any isomorphisms between the reflection
groups that they give – just as was done by Shephard and Todd, and in turn Cohen.
Our contribution to this approach is the observation that the L further satisfies certain
algebraic properties which we describe as being a “reflection system”. The remainder
of the paper is devoted to determining all the reflection systems, and consequently
classifying the imprimitive quaternionic reflection groups of rank two (Theorem 6.1).
The existing classification is shown to be incomplete, and with some double counting.

2 Reflection systems and the canonical form
Let G be the imprimitive reflection group generated by the reflections of (1.1). Then(

0 b
b−1 0

)(
1 0
0 h

)
=
(

0 bh
(bh)−1

)
∈ G, h ∈ H, b ∈ L,(

0 a
a−1 0

)(
0 b
b−1 0

)(
0 a
a−1 0

)−1

=
(

0 ab−1a
(ab−1a)−1 0

)
∈ G, a, b ∈ L,

so that

1. LH = L, i.e., L is a union of cosets in the group K/H (and so |H| divides |L|).

2. ab−1a ∈ L, ∀a, b ∈ L, i.e., L is closed under the binary operation (a, b) 7→ ab−1a.

Hence, there is an irreducible imprimitive quaternionic reflection group generated by
reflections of the form (1.1) if and only if H CK and H ⊂ L ⊂ K satisfies K = 〈L〉 and
the two conditions above hold, and we denote this group by G = G(K,L,H).

Let LG give the set of nondiagonal reflections in G = G(K,L,H), i.e.,

LG := {b ∈ K :
(

0 b
b−1 0

)
∈ G} ⊃ L. (2.2)

If all the nondiagonal reflections in G = G(K,L,H) are given by L, i.e., L = LG, then
we say that G is in canonical form, as a subgroup of G(K,K,K), and we denote it by

GK(L,H) = G(L,H) = G(K,L,H), (2.3)

and call this unique (K,L,H), or (L,H), the canonical label for the group G, as a
subgroup of GK(K,K). We observe that for the canonical label

HL :=
{
h :

(
h 0
0 1

)
∈ 〈

{( 0 b
b−1 0

)}
b∈L
〉
}
⊂ H. (2.4)

Clearly,
G(K,L1, H1) ⊂ G(K,L2, H2), L1 ⊂ L2, H1 ⊂ H2, (2.5)
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for suitable (Lj, Hj), including the canonical labels. Indeed,

G(K1, L1, H1) ⊂ G(K2, L2, H2), K1 ⊂ K2, L1 ⊂ L2, H1 ⊂ H2, (2.6)

and so it may be possible to obtain the same reflection group for K1 6= K2. This happens
in two instances (see Example 4.4 and Theorem 5.3).

We now define the fundamental algebraic object of our investigation.

Definition 2.1 We call a subset L of K (a finite group) a reflection system for K if

1. K = 〈L〉.

2. L is closed under the binary operation (a, b) 7→ a ◦ b := ab−1a.

3. 1 ∈ L.

We say that reflection systems L and L′ for K are isomorphic if there is a bijection
ψ : L→ L′ which preserves ◦, i.e., ψ(a ◦ b) = ψ(a) ◦ ψ(b).

Example 2.1 The group K = Z2 × Z2 has two reflection systems

L3 = {(0, 0), (1, 0), (0, 1)}, L4 = Z2 × Z2 = {(0, 0), (1, 0), (0, 1), (1, 1)}.

We will often define a reflection system L via a generating set, i.e., a subset X of
L whose closure under the binary operation ◦ is L, and we write L = L(X). We note
that

• For any reflection group G = G(K,L,H), L is a reflection system for K.

• L = K is a reflection system for K, and this is the only case where L is a group.

• Since 1 ◦ x = x−1, reflection systems are closed under taking inverses.

• Since x−1 ◦ 1 = x2, reflection systems are closed under taking squares.

Moreover, if L is a reflection system and x ∈ L (so that x−1 ∈ L), then it follows that
xL and Lx are reflection systems, via the calculations

xa ◦ xb = xa(xb)−1xa = xab−1x−1xa = xab−1a = x(a ◦ b),
ax ◦ bx = ax(bx)−1ax = axx−1b−1ax = ab−1ax = (a ◦ b)x, a, b ∈ L.

The corresponding reflections for these systems are conjugate in U(H2) to those for L,
via the calculations(

x 0
0 1

)−1

Mxb

(
x 0
0 1

)
= Mb,

(
1 0
0 x

)
Mbx

(
1 0
0 x

)−1

= Mb, Mb :=
(

0 b
b−1 0

)
.

Therefore, we consider reflection systems L and L′ for K to be equivalent if L′ equals
xL or Lx, for some x ∈ L, up to an automorphism of K. This is an equivalence relation,
and equivalent reflection systems lead to the same reflection groups G(K,L,H). Clearly,
equivalent reflection systems are isomorphic.
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Lemma 2.1 Suppose that {1}∪A generates a reflection system L for K. If x ∈ L, then
{1, x}∪xA and {1, x}∪Ax generate the reflection systems xL and Lx for K, which are
equivalent to (but possibly not equal to) L.

Proof: We have observed that xL and Lx are closed under ◦, for any x, and that
they are generated by x({1}∪A) and ({1}∪A)x. If x ∈ L, then x−1 = x◦1 ∈ L, so that
1 = x−1 ∈ xL and 1 = x−1x ∈ Lx, and hence {1, x} ∪ xA and {1, x} ∪ Ax generate xL
and Lx. The groups generated by the above two sets contains A = x−1(xA) = (Ax)x−1,
and so they generate K = 〈A〉.

The binary polyhedral groups are considered in Section 4. It is convenient to now
consider the following particular example for the purposes of illustration and motivation.

Example 2.2 For the binary tetrahedral group of order 24

T := 〈i, 1 + i+ j + k

2 〉, (2.7)

the reflection system T can be generated as follows

LT24 := T = L({1, i, j, 1 + i+ j + k

2 }). (2.8)

There is also a second reflection system of size 12 given by

LT12 := L({1, i, 1 + i+ j + k

2 }). (2.9)

There are twelve equivalent copies of this reflection system in T . Six of these can be
obtained by left or right multiplication, namely LT12, iLT12, jLT12, kLT12, and

ζ−1LT12 = L({1, j, ζ}), ζLT12 = L({1, k, ζ}), ζ := 1 + i+ j + k

2 .

The automorphism i 7→ j, j 7→ i, gives another copy

L({1, j, 1 + i+ j + k

2 }),

and multiplication of this (as above) gives the remaining six copies.

Reflection systems are constructed implicitly in [Coh80], via

L = Lα := {x ∈ K : α(xH) = x−1H},

where α is an automorphism of K/H (H CK) of order one (the identity) or two. This
is easily verified, e.g., for a, b ∈ Lα, we have

α(ab−1aH) = α(aH)α(b−1H)α(aH)
= (a−1H)(bH)(a−1H) = a−1ba−1H = (ab−1a)−1H,
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so that ab−1a ∈ Lα. Conversely, if L is a reflection system for K, and H C K with
L = LH, then

α(xH) := x−1H, x ∈ L, (2.10)
defines an automorphism of K/H of order ≤ 2.

For the groups of order 96 and 48 constructed in [Coh80] (Table I) from what is
essentially the 12 element reflection system LT12 for T of (2.9), automorphisms of order
two are taken, namely conjugation by the permutation (1 2), where H = C2, K/H ∼= A4,
and conjugation by i− j (for which (i− j)2 = −2), where H = C1.

We can now give the structural form of a reflection group in the canonical form.
Lemma 2.2 A reflection group in the canonical form has the following elements

G = GK(L,H) =
{(b 0

0 bα h

)(
0 1
1 0

)m
: b ∈ K, h ∈ H, m = 0, 1

}
, (2.11)

where bα is any element of the coset α(bH) of (2.10), e.g., bα = b−1, b ∈ L. Therefore
(i) G has order 2|H||K|.

(ii) G has 2|H|+ |L| − 2 reflections.
Proof: Since (

a 0
0 b

)(
0 1
1 0

)
=
(

0 a
b 0

)
,

there is a 1-1 correspondence between the diagonal and nondiagonal elements of G.
Hence, it suffices to determine the subgroup of diagonal matrices in G. A product of
two reflections given by elements of L is diagonal, i.e.,(

0 a
a−1 0

)(
0 b−1

b 0

)
=
(
ab 0
0 a−1b−1

)
, a, b ∈ L, (2.12)

so that G contains the diagonal matrices of the form(
b1b2 · · · br 0

0 b−1
1 b−1

2 · · · b−1
r h

)
, b1, . . . , br ∈ L, h ∈ H. (2.13)

To see this, take products of the diagonal matrices in (2.12), choosing some b = 1 to get
the case when r is odd, and right multiply by the appropriate diagonal reflection.

Since L generates K, for any b ∈ K, there is at least one choice in (2.13), with
b = b1b2 · · · br.

We claim that b−1
1 b−1

2 · · · b−1
r h ∈ α(bH), so that b−1

1 b−1
2 · · · b−1

r h = bα h
′, with h′ ∈ H.

This follows from the calculation
α(b−1

1 b−1
2 · · · b−1

r H) = α(b−1
1 H)α(b−1

2 H) · · ·α(b−1
r H)

= (b1H)(b2H) · · · (brH) = b1b2 · · · brH = bH,

=⇒ b−1
1 b−1

2 · · · b−1
r H = α2(b−1

1 b−1
2 · · · b−1

r H) = α(bH).
Since H is normal in K, the matrices in (2.13) form a group, i.e., they give all the
diagonal matrices in G, and we obtain (2.11) and hence |G| = 2|H||K|.

Finally, from (1.1), G has 2(|H| − 1) + |L| = 2|H|+ |L| − 2 reflections.
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We can use Lemma 2.2 to address the question of when two reflection groups in the
canonical form GK(L,H) and GK′(L′, H ′) give the same reflection group. For this to
happen they must have the same order and number of reflections, i.e.,

2|H||K| = 2|H ′||K ′|, 2|H|+ |L| − 2 = 2|H ′|+ |L′| − 2. (2.14)

There are three cases:

(i) If the groups K and K ′ are the same, so that |K| = |K ′|, then this gives

|H| = |H ′|, |L| = |L′|.

Hence, the groups GK(L,H) would all be different if K has only one reflection
system of any given size (up to equivalence) and one normal subgroup H of any
given order. It turns out (from our calculations) that this is always the case.

(ii) If K and K ′ are different, with the same orders, then again |L| = |L′|. But L and
L′ have different algebraic structures (they generate different groups), and so the
reflection groups generated by the reflections that they give are not isomorphic,
and correspondingly the groups GK(L,H) and GK′(L′, H ′) are different.

(iii) If K and K ′ are different, with different orders, say |K| < |K ′|, then the reflections
in the corresponding groups must all be of order 2, so that (see Lemma 3.1)

H = C2, H ′ = 1, |K ′| = 2|K|, |L′| = |L|+ 2.

We will see there are cases where this can happen, and the reflection groups are
the same (Example 4.4 and Theorem 5.3).

We now outline the calculations to follow.

3 Finite subgroups of U(H) and the general method
The finite subgroups K of U(H), equivalently of the unit quaternions H∗, were classified
(up to conjugation) by Stringham [Str81]. They are (see [LT09] Theorem 5.12)

(i) The cyclic group Cn of order n, n ≥ 1.

(ii) The dicyclic (or binary dihedral group) Dn = Dicn of order 4n, n ≥ 2.

(iii) The binary tetrahedral group T of order 24.

(iv) The binary octahedral group O of order 48.

(v) The binary icosahedral group I of order 120.
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The notation Dn for the dicyclic group (as for the dihedral group) is not standardised,
e.g., Q4n is also used. We use the indexing of [Coh80] for the purpose of easy comparison.
From these, we proceed as follows.

General method (Classification of imprimitive reflection groups of rank two)
For each finite group K ⊂ U(H), as above, determine the reflection systems L (there is
always L = K). Then for a given reflection system L of K, construct the corresponding
reflection groups, for which there are exactly |L| nondiagonal reflections (given by L),
as follows:

1. Determine the normal subgroup HL CK of (2.4), to obtain the reflection group

GK(L,HL), (3.15)

which we call the base group for L.

2. Determine the other reflection groups with nondiagonal reflections given by L,
which we call the higher order groups for L. These contain GK(L,HL) as a
proper subgroup, and are given by

GK(L,H), H 6= HL LH = L, (3.16)

where HCK, HL ⊂ H ⊂ L, with LH = L. In particular, we have |H| divides |L|.
We observe LH ⊂ LH′ , H ⊂ H ′, so that once an H with LH 6= L has been found,
none of the groups G(K,L,H ′), H ′ ⊃ H are in the canonical form, and hence are
not included in our classification.

3. Determine any isomorphisms between GK(L,H) and GK′(L′, H ′), so that the list
of imprimitive reflection groups has no duplicates.

In summary:

• We work up from the base group for L, adding diagonal reflections given by H,
until the point where any enlargement of H introduces new nondiagonal reflections.

For any reflection group G(K,L,H), it is often convenient to give a generating set
of reflections given by subsets L ⊂ L, H ⊂ H, i.e.,(

h 0
0 1

)
, h ∈ H,

(
0 b
b−1 0

)
, b ∈ L,

and we write
G(K,L,H) = G(L,H). (3.17)

If b = 1 ∈ L, then it suffices to take just one of the reflections corresponding to a given
h ∈ H, since (

0 b
b−1 0

)(
h 0
0 1

)(
0 b
b−1 0

)
=
(

1 0
0 b−1hb

)
.
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Typically, one would take L to be a generating set for L, and H to be elements of H \HL

that together with HL generate H. As larger H are taken, it is often possible to remove
elements from L to get a smaller generating set.

As an illustration, we now consider the case (i), i.e., when K is the cyclic group Cn,
which gives the complex reflection groups.
Example 3.1 (Cyclic group) Let K = Cn = 〈ω〉, where ω = e

2πi
n is a primitive n-th

root of unity. There is just one reflection system
Ln = L({1, ω}) = {1, ω, . . . , ωn−1},

and these are the only complex reflection systems. The base group
GCn(Ln, 1) = G({1, ω}, {}), n ≥ 3,

is the dihedral group of order 2n. The normal subgroups of K = Cn are
H = Cn/p = 〈{ωp}〉, p | n.

Each of these gives a higher order group for Ln (for p 6= n), and we obtain the following
imprimitive reflection groups for the reflection system Ln = Cn

GCn(Cn, Cn/p) = G({1, ω}, {ωp}) = G(n, p, 2), |G| = 2nn
p
,

where G(n, p, 2) is the notation used by Shephard and Todd. The inclusions between
them follow immediately from (2.5).

For n = 2, we have the only real imprimitive reflection group G(2, 1, 2) (Heisenberg
group), with the base group G(2, 2, 2) being reducible.
Lemma 3.1 Let |K| < |K ′|. If the reflection groups GK(L,H) and GK′(L′, H ′) are
isomorphic, then they can only have reflections of order 2, so that H = C2, H ′ = 1, and

|K ′| = 2|K|, |L′| = |L|+ 2.
Moreover, L is a subreflection system of L′, and K is a subgroup of K ′.

Proof: For any reflection group GK(L,H) the nondiagonal reflections (given by L)
have order 2, and the diagonal reflections given by h ∈ H have order the order of h,
and so in our case, we must have |H|, |H ′| ≤ 2. From the orders of the reflection groups
being equal, we then have

2|H||K| = 2|H ′||K ′| =⇒ |K ′|
|K|

= |H|
|H ′|

= 2 =⇒ H = C2, H
′ = 1, |K ′| = 2|K|.

From the number of reflections in the groups being equal, we then have
2|H|+ |L| − 2 = 2|H ′|+ |L′| − 2 =⇒ |L′| = |L|+ 2.

An isomorphism GK(L,H) → GK′(L′, H ′) must map the reflections given by L to the
reflections given by L′, say(

0 b
b−1 0

)
7→
(

0 b′

(b′)−1 0

)
, b ∈ L.

Since the injective map L → L′ : b 7→ b′ preserves ◦, L is a reflection subsystem of L′,
and K = 〈L〉 is a subgroup of K ′ = 〈L′〉.
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4 The binary polyhedral groups
We now consider the binary polyhedral groups

T := 〈i, 1 + i+ j + k

2 〉 (binary tetrahedral group of order 24),

O := 〈1 + i√
2
,
1 + i+ j + k

2 〉 (binary octahedral group of order 48),

I := 〈i, 1 + i+ j + k

2 ,
1 + τi+ σj

2 〉, (binary icosahedral group of order 120),

where
τ := 1 +

√
5

2 , σ := 1−
√

5
2 .

Some insight into these groups is obtained by listing their elements and orders (see the
appendix). Each of these contains the quaternion group

Q8 = 〈i, j〉 = {1,−1, i,−i, j,−j, k,−k}.

Since (1+i√
2 )2 = i, we have the inclusions

T ⊂ O, T ⊂ I.

We consider the first example in some detail for the purpose of illustration.

Example 4.1 (Binary tetrahedral group) Let K = T be the binary tetrahedral group,
which has normal subgroups H = 1, C2, Q8, T , and two reflection systems (Example 2.2)

LT24 := T = L({1, i, j, 1 + i+ j + k

2 }), LT12 := L({1, i, 1 + i+ j + k

2 }).

For the reflection system L = K = LT24 = T , we have HL = Q8, and hence obtain the
following reflection groups G in the canonical form

GT (T , T ), |G| = 1152, 70 reflections (higher order group),
GT (T , Q8), |G| = 384, 38 reflections (base group).

For the reflection system L = LT12, the condition |H| divides |L| = 12 implies that H
could be 1 or C2. We have HL = 1, and obtain the reflection groups in canonical form

GT (LT12, C2), |G| = 96, 14 reflections (higher order group),
GT (LT12, 1), |G| = 48, 12 reflections (base group).

Since LT12 ⊂ LT24 = T , it follows immediately from (2.6) that these four groups satisfy

GT (LT12, 1) ⊂ GT (LT12, C2) ⊂ GT (T , Q8) ⊂ GT (T , T ).

We now make some observations, which apply to our calculations generally.
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• The orders and numbers of reflections are calculated using Lemma 2.2, e.g., the
reflection group G = GT (T , Q8) has

|G| = 2|Q8||T | = 384, and 2|Q8|+ |T | − 2 = 38 reflections.

• Our method finds all the reflection subgroups of GT (T , T )
which have the canonical form.

There are also many other reflection subgroups (not in the canonical form). These
include imprimitive reflection groups for other choices of K, and complex reflection
groups (see Example 4.2).

• A reflection group can have noncanonical labels, e.g., the base group for a reflection
system L, can be indexed by any HCK with H ⊂ HL. As an example, GT (T , Q8)
has noncanonical labels

G(T , T , 1), G(T , T , C2).

• Whether a reflection subgroup is normal is determined by the reflection orbits
[Wal25]. These are the orbits, under conjugation, of the subgroups of the reflections
for a given root. From this theory, it immediately follows that

GT (LT12, 1) CGT (LT12, C2), GT (T , Q8) CGT (T , T ),
and GT (LT12, C2) is not normal in GT (T , Q8).

• The number of occurences of a reflection group in canonical form as a subgroup
of GK(K,K) is given by the size of the equivalence class of the reflection system,
e.g., the reflection groups GT (LT12, 1), GT (LT12, C2) each appear twelve times as
subgroups of GT (T , T ), as the equivalence class of LT12 has size 12 (Example 2.2).
In particular, GK(K,H) CGK(K,K).

The base group for the reflection system L = K has the following general form.
Lemma 4.1 For the reflection system L = K, the base group is given by
HL = HK = [K,K] = K(1) = 〈{aba−1b−1 : a, b ∈ K}〉 (the commutator subgroup).

Therefore, the reflection groups in the canonical form for L = K are
GK(K,H), [K,K] ⊂ H ⊂ K,

where H is a subgroup of K ([K,K] ⊂ H implies H is normal).
Proof: The group generated by the reflections given by L = K contains(

0 ab
(ab)−1 0

)(
0 a
a−1 0

)(
0 b−1

b 0

)(
0 1
1 0

)
=
(
aba−1b−1 0

0 1

)
, a, b ∈ K,

so that
aba−1b−1 ∈ HK =⇒ [K,K] ⊂ HK .

Any subgroup H that contains [K,K] is normal in K, and hence gives a reflection
group for L = K in the canonical form. In particular, by taking H = [K,K], we conclude
that HK = [K,K].
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Example 4.2 The reflection group GT (T , T ) has reflection subgroups H which are not
in the canonical form (for K = T ), including

H = 〈
(
i 0
0 1

)
,

(
j 0
0 1

)
,

(
0 i
−i 0

)
〉 = GQ8(Q8, Q8), |H| = 128, 22 reflections,

H = 〈
(1+i+j+k

2 0
0 1

)
,

(
0 i
−i 0

)
〉 ∼= G(6, 1, 2), |H| = 72, 16 reflections,

H = 〈
(
j 0
0 1

)
,

(
0 1
1 0

)
,

(
0 i
−i 0

)
〉 = GQ8(Q8, C4), |H| = 64, 14 reflections.

Example 4.3 (Binary octahedral group) Let K = O be the binary octahedral group,
which has normal subgroups H = 1, C2, Q8, T ,O. Elementary calculations, show that
there are five reflection systems of sizes 14, 18, 20, 32, 48, given by

LO48 := {1, 1 + i√
2
,
1 + j√

2
,
1 + i+ j + k

2 }, (1 copy)

LO32 := {1, 1 + i√
2
, j,

1 + i+ j + k

2 }, (4 copies)

LO20 := {1, 1 + i√
2
,
1 + i+ j + k

2 ,
j − k√

2
}, (10 copies)

LO18 := {1, 1 + i√
2
,
1 + i+ j + k

2 }, (9 copies)

LO14 := {1, i, 1 + i+ j + k

2 ,
j − k√

2
}, (7 copies)

For these reflection systems, the base groups are

GO(O, T ), |G| = 2304, 94 reflections,
GO(LO32, Q8), |G| = 768, 46 reflections,
GO(LO20, C2), |G| = 192, 22 reflections,
GO(LO18, 1), |G| = 96, 18 reflections,
GO(LO14, 1), |G| = 96, 14 reflections,

and there is just one higher order group

GO(O,O), |G| = 4608, 142 reflections.

The inclusions between the reflection systems given above (which are mostly obvious
from their definitions) are given in Figure 3. We also observe that

LO18 ∩ LO14 = LT12, LO14 = LT12 ∪ {
j − k√

2
,
k − j√

2
}. (4.18)

In view of the group orders and number of reflections, there is one possible isomorphism
between the reflection groups for T and O.
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Example 4.4 By 4.18), there is an isomorphism GO(LO14, 1)→ GT (LT12, C2) given by 0 j−k√
2

k−j√
2 0

 7→ (
−1 0
0 1

)
,

(
0 b
b−1 0

)
7→
(

0 b
b−1 0

)
, b ∈ LT12 = {1, i, 1 + i+ j + k

2 }.

Example 4.5 (Binary icosahedral group) Let K = I be the binary icosahedral group,
which has normal subgroups H = 1, C2, I. Elementary calculations, show that there are
four reflection systems of sizes 20, 30, 32, 120, given by

LI120 := {1, i, 1 + i+ j + k

2 ,
τ + σi− j

2 }, (1 copy)

LI32 := {1, 1 + i+ j + k

2 ,
τ + σi− j

2 ,
j − τi− σk

2 }, (16 copies)

LI30 := {1, 1 + i+ j + k

2 ,
τ + σi− j

2 }, (15 copies)

LI20 := {1, i, 1 + i+ j + k

2 ,
i+ σj + τk

2 }, (10 copies).

For these reflection systems, the base groups are

GI(I, I), |G| = 28800, 358 reflections,
GI(LI32, C2), |G| = 480, 34 reflections,
GI(LI30, 1), |G| = 240, 30 reflections,
GI(LI20, 1), |G| = 240, 20 reflections,

and there is one higher order group

GI(LI20, C2), |G| = 480, 22 reflections.

There are no further isomorphisms, and so we count 14 quaternionic reflection groups
corresponding to the groups T ,O, I, as in [Coh80] (which has a few typos). Taylor
[Tay25] (and in personal correspondence) observes that some imprimitive quaternionic
reflection groups are conjugate to primitive complex reflection groups, i.e.,

GT (LT12, 1) ∼= G12, GO(LO18, 1) ∼= G13, GI(LI30, 1) ∼= G22, (4.19)

and therefore counts 11 quaternionic reflection groups.
In Table 1, we summarise our classification of the reflection groups for T ,O, I. This

includes the reflection orbits for G, using the notation n1Ra1 , . . . , nmRam of [Wal25],
which we now explain. Let Ra be the reflection subgroup generated by the reflections
with root a. This consists of all reflections with root a and the identity. The reflection
type is the set of orbits of the reflection subgroups Ra under the conjugation action of the
reflection group G. This provides more nuanced information than number of reflections
and their orders, and can be used to distinguish reflection groups in which these are
equal, but the groups are not isomorphic. The notation njRaj indicates that the orbit
of Raj is of size nj, and usually just the abstract type of Raj is recorded. For our groups

13



GK(L,H) we observe that diagonal matrices are conjugated to diagonal matrices (and
similarly for nondiagonal matrices), so that the diagonal reflections form a single orbit

2H =
{(H 0

0 1

)
,

(
1 0
0 H

)}
,

whilst the order two reflections corresponding to b ∈ L give orbits of the form nC2.
For the base group G = GK(L,LH), the orbit of a nondiagonal reflection is given by(

0 b
b−1 0

)G
=
{( 0 c
c−1

)
: c ∈ Orb(L, b)

}
, b ∈ L,

where the orbit of b ∈ L is

Orb(L, b) := the closure of {b} under x 7→ a ◦ x = ax−1a, a ∈ L,

and the reflection type is mC2, m = |Orb(L, b)|. The orbits give a partition of L, and
if L is generated by b1, . . . , bm, then its orbits are Orb(L, b1), . . . ,Orb(L, bm) (with some
possibly being equal to each other). The orbit of a nondiagonal matrix under a higher
group for L is given by a union of the orbits for the base group.

Table 1: The imprimitive reflection groups GK(L,H) = G(L,H) obtained from the
reflection systems L for K = T ,O, I. The base groups have H = {}, and the L given
is a generating set for the corresponding reflection system. The only isomorphism is
GT (LT12, C2) ∼= GO(LO14, 1), and so there are 14 groups in total.

K |L| H order refs reflection orbits L H

T 24 T 1152 70 2T , 24C2 {1, i} {1+i+j+k
2 }

T 24 Q8 384 38 2Q8, 24C2 {1, i, j, 1+i+j+k
2 } {}

T 12 C2 96 14 2C2, 12C2 {1, i, 1+i+j+k
2 } {−1}

T 12 1 48 12 12C2 {1, i, 1+i+j+k
2 } {}

O 48 O 4608 142 2O, 48C2 {1, 1+i+j+k
2 } {1+i√

2 }
O 48 T 2304 94 2T , 24C2, 24C2 {1, 1+i√

2 ,
1+j√

2 ,
1+i+j+k

2 } {}
O 32 Q8 768 46 2Q8, 8C2, 24C2 {1, 1+i√

2 , j,
1+i+j+k

2 } {}
O 20 C2 192 22 2C2, 2C2, 6C2, 12C2 {1, 1+i√

2 ,
1+i+j+k

2 , j−k√2 } {}
O 18 1 96 18 6C2, 12C2 {1, 1+i√

2 ,
1+i+j+k

2 } {}
O 14 1 96 14 2C2, 12C2 {1, i, 1+i+j+k

2 , j−k√2 } {}

I 120 I 28800 358 2I, 120C2 {1, i, 1+i+j+k
2 , τ+σi−j

2 } {}
I 32 C2 480 34 2C2, 2C2, 30C2 {1, 1+i+j+k

2 , τ+σi−j
2 , j−τi−σk2 } {}

I 30 1 240 30 30C2 {1, 1+i+j+k
2 , τ+σi−j

2 } {}
I 20 C2 480 22 2C2, 20C2 {1, i, 1+i+j+k

2 , i+σj+τk2 } {−1}
I 20 1 240 20 20C2 {1, i, 1+i+j+k

2 , i+σj+τk2 } {}
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Figure 1: The inclusions between the reflection systems for T ,O, I, and the inclusions
between the reflection groups that correspond to them.

LT24

LT12

LO48

LO32

LO20

LO18 LO14

LI120

LI32 LI20

LI30

GT (T , T )

GT (T , Q8)

GT (LT12, C2)

GT (LT12, 1)

GO(O,O)

GO(O, T )

GO(LO32, Q8)

GO(LO20, C2)

GO(LO18, 1) GO(LO14, 1)

GI(I, I)

GI(LI32, C2) GI(LI20, C2)

GI(LI30, 1) GI(LI20, 1)

5 The dicyclic (binary dihedral) groups
We now consider the dicyclic (binary dihedral) groups

Dn := 〈ω, j〉, ω := ζ2n = e
πi
n , n ≥ 2,

where ω is a primitive 2n-th root of unity. This group has 4n has elements, of two types

ωm, ω`j = jω−`, 1 ≤ m, ` ≤ 2n. (5.20)

We observe that ω 7→ ω, j 7→ ωj defines an automorphism of Dn.
The group D2 is the quaternion group Q8, which has a slightly special structure,

since ω = i, so that i, j, k play the same role. For n ≥ 2, the normal subgroups of Dn
are

Cr = 〈ω 2n
r 〉, r | 2n, Dn, (5.21)
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and, for n 6= 2 even, there are two additional nonabelian normal subgroups of order 2n

Dn/2 = 〈ω2, j〉, 〈ω2, ωj〉. (5.22)

In view of the automorphism ω 7→ ω, j 7→ ωj, which maps the first group of (5.22) to
the second, it suffices to consider just Dn/2. For D2 = Q8, the normal subgroups are
those of (5.21) and 〈j〉, 〈k〉 (which are abelian).

To understand what subsets of (5.20) might generate reflection systems, we will use
Lemma 2.1 and the following general property.

Lemma 5.1 For x, y ∈ K, their closure under ◦ contains the following elements

(xy−1)nx ∈ L({x, y}), n = 0, 1, 2, . . . . (5.23)

Proof: We prove this by strong induction on n. The n = 0, 1 cases are immediate

x ◦ x = xx−1x = x, x ◦ y = xy−1x = (xy−1)x.

Since n = 2k or n = 2k + 1, with k < n, we have

(xy−1)kx ◦ x = (xy−1)kxx−1(xy−1)kx = (xy−1)2kx,

(xy−1)kx ◦ y = (xy−1)kxy−1(xy−1)kx = (xy−1)2k+1x,

which completes the induction.
Since the elements of the two types (5.20) are closed under ◦, i.e.,

ωa ◦ ωb = ωaω−bωa = ω2a−b, ωaj ◦ ωbj = ωaj(−ωbj)ωaj = ω2a−bj,

a generating set for a reflection system for K = Dn must contain at least one of each.
By taking x = 1 in (5.23), it follows that

L({1, ωa1 , . . . , ωam})

is the cyclic group generated by ωa1 , . . . , ωam , and so we can suppose, without loss of
generality, that a generating set for a reflection system has the form

A = {1, ωa, ωb1j, . . . , ωb`j}.

By Lemma 2.1, generators for an equivalent reflection system are

A(ωb1j)−1 = {−ωb1j,−ωa+b1j, 1, ωb2−b1 , . . . , ωb`−b1},

and so, by the previous reasoning, one may suppose the generating set is

{−ωb1j,−ωa+b1j, 1, ωb2−b1}(ωb1j) = {1, ωa, ωb1j, ωb2j}.

We now consider conjugation of the above set by ωγ. Since

ωγ(ωa)ω−γ = ωa, ωγ(ωbj)ω−γ = ω2γ+bj,
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we can suppose that the generating set for a reflection system for K = Dn has one of
the forms

{1, ωa, j, ωbj}, {1, ωa, ωj, ωb+1j}.

Since the automorphism ω 7→ ω, j 7→ ωj of Dn maps the first to the second, it suffices
to consider just the first. The set of indices (a, b) giving the desired reflection systems is

Ωn := {(a, b) : 1 ≤ a ≤ b ≤ n, a | n, b | n, gcd(a, b) = 1}

= {(n
x
,
n

y
) : 1 ≤ y ≤ x ≤ n, lcm(x, y) = n}. (5.24)

For example,
Ω6 = {(1, 1), (1, 2), (1, 3), (1, 6), (2, 3)}, |Ω6| = 5.

The size of this set |Ωn| is the sequence A018892 in on-line encyclopedia of integer
sequences, where several formulas for it are given, including

|Ωn| =
1
2

(∏
j

(2αj + 1) + 1
)
, n =

∏
j

p
αj
j (prime factorisation),

Thus the size of Ωn grows with the number of prime factors of n and their multiplicities.
We now have a key technical result.

Lemma 5.2 The reflection systems for the dicyclic group Dn are (up to equivalence)

L
(n)
(a,b) := L({1, ωa, j, ωbj})

= {ωma}1≤m≤ 2n
a
∪ {ω`bj}1≤`≤ 2n

b
, (a, b) ∈ Ωn. (5.25)

Each of these has a different number of elements, which is given by

|L(n)
(a,b)| =

2n
a

+ 2n
b
. (5.26)

Proof: We start from our general observation that a reflection system must have the
form

L = L({1, ωa, j, ωbj}),
for some a and b. Since x−1 ∈ L({1, x}) = 〈x〉, it makes no difference if we take x or x−1

as a generator, and so we may suppose that 1 ≤ a, b ≤ n. Further, since we can take
any generator of 〈ωa〉, we can suppose that a | n, and similarly b | n. Since

L
(n)
(a,b)j

−1 = L({−j,−ωaj, 1, ωb}) = L({j, ωaj, 1, ωb}) = L
(n)
(b,a), (5.27)

so that L(n)
(a,b) and L

(n)
(b,a) are equivalent reflection systems, we may suppose (arbitrarily)

that a ≤ b. We now consider the condition on a and b for {1, ωa, j, ωbj} to generate
Dn = 〈ω, j〉. The subgroup of 〈ω〉 contained within 〈ωa, j, ωbj〉 is that generated by the
products of ωa and ωb = (ωbj)j−1, which is all of 〈ω〉 if and only if gcd(a, b) = 1. This
condition then implies Dn = 〈ωa, j, ωbj〉, and hence we arrive at the index set Ωn.
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Taking x = ωa, y = 1 and x = j, y = ωbj in (5.23) gives

ωma ∈ L({1, ωa}, ω`bj ∈ L({j, ωbj}),

so the elements listed in (5.25) are in L = L
(n)
(a,b), and contain a generating set for L.

They give all of L, as claimed, since they are closed under ◦, i.e., by the calculations

ωm1a ◦ ωm2a = ω(2m1−m2)a, ω`1bj ◦ ω`2bj = ω(2`1−`2)bj,

ωma ◦ ω`bj = −ω`bj = ω(n
b

+`)b, ω`bj ◦ ωma = −ωma = ω(n
a

+m)a.

In particular, the size of L is given by (5.26).
Finally, we show the reflection systems of (5.25) have different numbers of elements,

and consequently are not isomorphic. This follows from the fact that (a, b) 7→ 1
a

+ 1
b

is
bijective on ordered pairs with a ≤ b and gcd(a, b) = 1, and hence on Ωn. Suppose that

a ≤ b, a′ ≤ b′, gcd(a, b) = gcd(a′, b′) = 1.

Then
1
a

+ 1
b

= 1
a′

+ 1
b′

⇐⇒ a+ b

ab
= a′ + b′

a′b′
,

where the latter fractions are in reduced form. The sum and product uniquely determine
a pair {a, b}, since they are the roots of the quadratic (x−a)(x− b) = x2− (a+ b)x+ab,
so that {a, b} = {a′, b′}, and so (a, b) = (a′, b′).

The reflection systems for Dn satisfy the inclusions implied by their generators, i.e.,

L
(n)
(a′,b′) ⊂ L

(n)
(a,b), a | a′, b | b′, (5.28)

and, by (5.27), also (at the level of equivalence)

L
(n)
(a′,b′) ⊂ L

(n)
(a,b), a | b′, b | a′. (5.29)

Figure 2: The reflection systems L(n)
(a,b) for D6, and their inclusions.

L24 = L
(6)
(1,1)

L18 = L
(6)
(1,2) L16 = L

(6)
(1,3)

L14 = L
(6)
(1,6) L10 = L

(6)
(2,3)
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Theorem 5.1 (Base groups for Dn) The base reflection group for the reflection system
L = L

(n)
(a,b), (a, b) ∈ Ωn, of (5.25) is

G = GDn(L(n)
(a,b), Cn/ab), (5.30)

where HL = Cn/ab = 〈ω2ab〉, and

|G| = 8n
2

ab
, G has 2n

ab
+ 2n

a
+ 2n

b
− 2 reflections.

Moreover, these groups are all different.

Proof: In view of our general method, it suffices to find HL. Since |HL| divides |L|,
where

|L| = 2n
a

+ 2n
b

= 2(a+ b) n
ab
,

the cyclic group 〈ω2ab〉 of order n
ab

, which is normal in Dn, could be contained in HL.
This is seen to be the case by the direct calculation:(

0 ω−ma

ωma

)(
0 j
−j 0

)(
0 ω`bj

(ω`bj)−1

)(
0 1
1 0

)
=
(
ω−ma−`b 0

0 ωma−`b

)
,

and choose m = b, ` = a in the above, to obtain(
ω−2ab 0

0 1

)
∈ GDn(L,HL) =⇒ ω2ab ∈ HL =⇒ 〈ω2ab〉 ⊂ HL.

By considering all the products of two reflections given by L, which are diagonal matrices,
it is easy to conclude that 〈ω2ab〉 = HL, i.e., ωab 6∈ HL.

The order and number of reflections follow from Lemma 2.2, by the calculation

|G| = 2|Dn||HL| = 2(4n) n
ab
, 2|HL|+ |L| − 2 = 2 n

ab
+
(2n
a

+ 2n
b

)
− 2.

It follows from the general theory that the base groups for different reflection systems
are different reflection groups. This can also be seen directly here, by considering the
orders and number of reflections. Suppose that the orders were equal, i.e.,

8n
2

ab
= 8 n

2

a′b′
=⇒ 2n

ab
= 2n
a′b′

,

then from the number of reflections being equal, we have

2n
ab

+ 2n
a

+ 2n
b
− 2 = 2n

a′b′
+ 2n
a′

+ 2n
b′
− 2 =⇒ 1

a
+ 1
b

= 1
a′

+ 1
b′
,

and since the map (a, b) 7→ 1
a

+ 1
b

is bijective on Ωn, we conclude that (a, b) = (a′, b′).
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Since the order of any normal subgroupH which gives a reflection groupGDn(L(n)
(a,b), H)

(in canonical form) must divide

|L(n)
(a,b)| =

2n
a

+ 2n
b

= 2(a+ b) n
ab
,

we can only have H = Dn, when (a, b) = (1, 1), i.e., L = L
(n)
(1,1) = Dn, HL = 〈ω2〉, giving

the higher order group

GDn(Dn,Dn) = G({1, ω, j, ωj}, {ω, j}), (5.31)

for the base group GDn(Dn, Cn). For n even, and (a, b) = (1, 1), there is the second
higher order group

GDn(Dn,Dn/2) = G({1, ω, j, ωj}, {ω2, j}), (5.32)

for the base group GDn(Dn, Cn). It is not possible to have H = Dn/2 for any other
reflection system L

(n)
(a,b), (a, b) 6= 1, since |Dn/2| = 2n would need to divide

|L(n)
(a,b)| =

2n
a

+ 2n
b
≤ 2n

1 + 2n
2 = 3n.

These two cases withstanding, there can possibly be only one other higher order group

GDn(L(n)
(a,b), C2n/ab).

Theorem 5.2 (Higher order groups for Dn) If ab is odd, then there is one higher order
reflection group for the reflection system L = L

(n)
(a,b), (a, b) ∈ Ωn, of (5.25) given by

G = GDn(L(n)
(a,b), C2n/ab), (5.33)

where HL = C2n/ab = 〈ω2b〉, and otherwise G(Dn, L(n)
(a,b), C2n/ab) is not in the canonical

form. For this G,

|G| = 16n
2

ab
, G has 4n

ab
+ 2n

a
+ 2n

b
− 2 reflections.

Moreover, these groups are all different from each other and the base groups.

Proof: We first observe that since gcd(a, b) = 1, it is not possible to have a and b

both be even. If a is even (so b is odd), then G(Dn, L(n)
(a,b), C2n/ab) contains the reflection

(
0 ω

a
2

ω−
a
2 0

)
=
(
−1 0
0 1

) [(0 1
1 0

)(
0 ωa

ω−a 0

)] b−1
2
(

0 1
1 0

) [( 0 j
−j 0

)(
0 ωbj

(ωbj)−1 0

)]a
2
,

and hence is not in the canonical form. Similarly, for b even, we have(
0 ω

b
2 j

(ω b
2 j)−1 0

)
=
(
−1 0
0 1

) [(0 1
1 0

)(
0 ωa

ω−a 0

)] b
2
[( 0 j
−j 0

)(
0 ωbj

(ωbj)−1 0

)]a−1
2
(

0 j
−j 0

)
,
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and again G(Dn, L(n)
(a,b), C2n/ab) is not in the canonical form.

For ab is odd, in can be shown that G(Dn, L(n)
(a,b), C2n/ab) is in canonical form, by

considering all the diagonal matrices which are given by a product of reflections.
Since a higher order group corresponds to a unique reflection system L, the higher

order groups (if there is one) are not isomorphic to each other, or a base group, which
completes the proof.

Example 5.1 For the quaternion group Q8 = D2, there are two reflection systems

L
(2)
(1,1) = Q8 = {1,−1, i,−i, j,−j, k,−k}, L

(2)
(1,2) = L({1, i, j}) = {1,−1, i,−i, j,−j},

of size 8 and 6, giving the base groups

GQ8(Q8, C2), |G| = 32, 10 reflections,
GQ8(L(2)

(1,2), 1), |G| = 16, 6 reflections,

and one higher order group

GQ8(Q8, C4), |G| = 64, 14 reflections.

The final reflection group is given by (5.31), i.e.,

GQ8(Q8, Q8), |G| = 128, 22 reflections.

The reflection groups GDn(L(n)
(a,b), Cr) of Theorems 5.1 and 5.2 are given by the unique

index [n, a, b, r] ∈ Λn, where

Λn =
⋃

(a,b)∈Ωn
{[n, a, b, n

ab
]} ∪

⋃
(a,b)∈Ωn
ab is odd

{[n, a, b, 2n
ab

]}. (5.34)

We will use the notation

Gn(a, b, r) = G(n, a, b, r) := GDn(L(n)
(a,b), Cr) = G({1, ωa, j, ωbj}, {ω 2n

r }), (5.35)

for these groups (the H above not being required for the base group). We observe that

• abr = n for the base group.

• abr = 2n for the higher order group (when ab is odd).

• Gn(a, b, r) has order 8nr.

• Gn(a, b, r) has 2r + 2n
a

+ 2n
b
− 2 reflections.

The size of Λn depends on the number of divisors of 2n2, which we denote τ(2n2), i.e.,

|Λn| =
τ(2n2)

2 + 1.
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Figure 3: Summary of the reflection groups for K = Dn, as they evolve from the base
group G(n, a, b, n

ab
), (a, b) ∈ Ωn, for the cases (a, b) = 1 and (a, b) 6= 1, respectively.

GDn(Dn,Dn)

G(n, 1, 1, 2n) GDn/2(Dn,Dn/2)

G(n, 1, 1, n)

(n even) G(n, a, b, 2n
ab

)

G(n, a, b, n
ab

)

(ab odd)

We now consider when the Gn(a, b, r) for different indices can give the same group.
Since isomorphic groups have the same reflection orbits, we first consider these. We
recall that since {1, ωa, j, ωb} generates L = L

(n)
(a,b), we have

L
(n)
(a,b) = Orb(L, 1) ∪Orb(L, ωa) ∪Orb(L, j) ∪Orb(L, ωbj),

where

Orb(L, 1) ∪Orb(L, ωa) = {ωma}1≤m≤ 2n
a
, Orb(L, j) ∪Orb(L, ωbj) = {ω`bj}1≤`≤ 2n

b
.

Lemma 5.3 (L(n)
(a,b) orbits) The orbits of L = L

(n)
(a,b), (a, b) ∈ Ωn, satisfy

(i) Orb(L, ωa) = Orb(L, 1) if and only if n
a

is odd.

(ii) Orb(L, ωbj) = Orb(L, j) if and only if n
b

is odd.

In particular, L can have two, three or four orbits.

Proof: We first consider the orbit of ωa. We observe that Orb(L, ωa) = Orb(L, 1) if
and only if 1 ∈ Orb(L, ωa). Since

ωma ◦ ωa = ω(2m−1)a, ω`bj ◦ ωa = −ωa = ωa+n,

the orbit Orb(L, ωa) consists of all elements of the form ω(2m−1)a and ω(2m−1)a+n. Such
elements can be equal to 1 if and only if (2m − 1)a = 2n or (2m − 1)a = n, with the
latter condition able to be satisfied when n

a
is odd (m = n+a

2a ), which gives

ω
n+a
2a a ◦ ωa = ωn = −1 =⇒ 1 = j ◦ (ω n+a

2a a ◦ ωa) ∈ Orb(L, ωa).

The argument for the orbit of ωbj follows similarly. Since

ωma ◦ ωbj = −ωbj = ωb+nj, ω`bj ◦ ωbj = ω(2`−1)bj,
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the elements of Orb(L, ωbj) have the form ω(2`−1)bj or ω(2`−1)b+nj, and this can be equal
to j only in the second case, when b

n
is odd and 2`− 1 = n

b
, which gives

ω
n+b
2b bj ◦ ωbj = ωnj = −j =⇒ j = 1 ◦ (ω n+b

2b bj ◦ ωbj) ∈ Orb(L, ωbj).

It is easy enough to choose n, a, b so that there are all possibilities of equality and
inequality in (i) and (ii), e.g., L has exactly two orbits if and only if n is odd.

From the proof of Lemma 5.3, it follows that Orb(L, ωa) and Orb(L, 1) have the
same size (whether or not they are equal), and similarly for the other pair of orbits, so
we conclude

|Orb(L, ωa)| = |Orb(L, 1)| =


2n
a
, n

a
is odd;

n
a
, n

a
is even,

(5.36)

|Orb(L, ωbj)| = |Orb(L, j)| =


2n
b
, n

b
is odd;

n
b
, n

b
is even,

(5.37)

Theorem 5.3 (Isomorphisms) The only reflection groups G = G(n, a, b, r) for different
indices which are isomorphic are given by the infinite family of index pairs

[n, 1, n, 2], [2n, 2, n, 1], n odd, (5.38)

with an isomorphism G(n, 1, n, 2)→ G(2n, 2, n, 1) given by(
1 0
0 −1

)
7→
(

0 k
−k 0

)
,

(
0 b
b−1 0

)
7→
(

0 b
b−1 0

)
, b ∈ {1, ω, j}, ω := e

πi
n .

Proof: Suppose that G = G(n, a, b, r) and G′ = G(n′, a′, b′, r′) are isomorphic, then
all their reflections have order 2, and by Lemma 3.1, we have

H = C2, H ′ = 1 |G′| = 2|G| =⇒ n′ = 2n,

so that r = 2, and r′ = 1, i.e., n′

a′b′
= 1. There are two possibilities, depending on

whether G is a higher order group, or a base group, respectively, i.e.,

n

ab
= 1, n′

a′b′
= 1 =⇒ a′b′ = n′ = 2n = 2ab, (5.39)

n

ab
= 2, n′

a′b′
= 1 =⇒ a′b′ = n′ = 2n = 4ab. (5.40)

From |L′| = |L|+ 2, these give

2n′a
′ + b′

a′b′
= 2na+ b

ab
+ 2 =⇒ a′ + b′ = a+ b+ 1, (5.41)

2n′a
′ + b′

a′b′
= 2na+ b

ab
+ 2 =⇒ a′ + b′ = 2(a+ b) + 1. (5.42)
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Since a′b′ = 2n, either a′ or b′ is even (they have no common factors), with the other
being odd. In the first case, (5.41) implies a+ b = a′ + b′ − 1 is even. But a and b have
no common factors, so they must both be odd, and hence n = ab is odd.

The reflection system L
(2n)
(a′,b′) for G(2n, a′, b′, 1) must have an orbit of size 2. Since

2n
b′
< 2n

a′
, Lemma 5.3 and (5.37) give two possibilities

4n
b′

= 2 (2n
b′

odd), 2n
b′

= 2 (2n
b′

even),

i.e.,
a′ = 1, b′ = 2n, a′ = 2, b′ = n.

Consider the case: a′ = 1, b′ = 2n. From (5.39), (5.41) and (5.40), (5.42), we have
a+ b = 2n, ab = n =⇒ a = n−

√
n2 − n,

a+ b = n, ab = n

2 =⇒ a = n−
√
n2 − 2n
2 .

Since n and n− 1 have no common factors, the square root of n2 − n = n(n− 1) above
cannot be an integer, and similarly n2 − 2n = n(n − 2) cannot be a perfect square for
n 6= 2. Thus an isomorphism with a′ = 1, b′ = 2n is not possible.

For the other case: a′ = 2, b′ = n, (5.39), (5.41) and (5.40), (5.42), give
a+ b = n+ 1, ab = n =⇒ a = 1, b = n,

a+ b = n+ 1
2 , ab = n

2 =⇒ a = n+ 1−
√
n2 − 6n+ 1
4 .

The latter case is not possible, since for n2−6n+1, n 6= 0, to be a perfect square, we must
have n = 6, which gives a = 7−1

4 = 3
2 . For the first case, we obtain the indices [n, 1, n, 2],

[2n, 2, n, 1], where n is odd (as previously observed), and corresponding groups
G = G(n, 1, n, 2), G′ = G(2n, 2, n, 1).

Let ω be a primitive 4n = 2(2n) root of unity, so the reflection systems are

L = L
(n)
(n,1) = L({1, ω2, j, (ω2)nj}) = L({1, ω2, j,−j}) = L({1, ω2, j}),

L′ = L
(2n)
(2,n) = L({1, ω2, j, ωnj}) = L({1, ω2, j, ij}) = L({1, ω2, j, k}),

where |L′| = |L|+ 2, gives
L′ = L ∪ {k,−k}.

Both reflection groups have three orbits of reflections (of order 2), respectively{(1 0
0 −1

)
,

(
−1 0
0 1

)}
,

{( 0 j
−j 0

)
,

(
0 −j
j 0

)}
,

{( 0 b
b−1 0

)
: b ∈ L \ {j,−j}

}
,

{( 0 k
−k 0

)
,

(
0 −k
k 0

)}
,

{( 0 j
−j 0

)
,

(
0 −j
j 0

)}
,

{( 0 b
b−1 0

)
: b ∈ L \ {j,−j}

}
.

It is easy to verify that(
1 0
0 −1

)
7→
(

0 k
−k 0

)
,

(
0 b
b−1 0

)
7→
(

0 b
b−1 0

)
, b ∈ L = L

(n)
(1,n),

gives an isomorphism G→ G′ (which is defined by its action on generators).
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Table 2: The imprimitve reflection groups for the dicyclic group Dn, n ≥ 2, including
the particular case D2 = Q8. Those for which H is cyclic are of the form Gn(a, b, r).
The base groups have H = {}, and the L given is a generating set for the corresponding
reflection system. The only isomorphism is GDn(L(n)

(1,n), C2) ∼= GD2n(L(2n)
(2,n), 1), n odd.

K L |L| H order reflections L H

Q8 Q8 8 Q8 128 22 {1, i} {i, j}
Q8 Q8 8 C4 64 14 {1, i} {j}
Q8 Q8 8 C2 32 10 {1, i, j, k} {}
Q8 L

(2)
(1,2) 6 1 16 6 {1, i, j} {}

Dn Dn 4n Dn 32n2 12n− 2 {1, ω, j, ωj} {ω, j}
Dn Dn 4n Dn/2 = 〈ω2, j〉 16n2 8n− 2 {1, ω, j, ωj} {ω2, j}
Dn L

(n)
(a,b)

2n
a

+ 2n
b

C 2n
ab

= 〈ωab〉 16n2

ab
4n
ab

+ 2n
a

+ 2n
b
− 2 {1, ωa, j, ωbj} {ωab}

Dn L
(n)
(a,b)

2n
a

+ 2n
b

C n
ab

= 〈ω2ab〉 8n2

ab
2n
ab

+ 2n
a

+ 2n
b
− 2 {1, ωa, j, ωbj} {}

The stipulation of the orbit size being 2 is necessary in the above proof.

Corollary 5.1 Reflection groups G(n, a, b, r) and G(n′, a′, b′, r′), n < n′, with reflections
of order only two, have the same order and the same number of reflections, but are not
isomorphic, in the following cases

(i) n = ab is odd, a 6= 1, and

(a+ b+ 1)2 − 8ab = c2, c ∈ {1, 3, 5, . . .},

with the groups being G(n, a, b, 2) and G(2n, a+b+1+c
2 , a+b+1−c

2 , 1).

(ii) n = 2ab is even, and

(2(a+ b) + 1)2 − 8ab = c2, c ∈ {1, 3, 5, . . .},

with the groups being G(n, a, b, 2) and G(2n, 2(a+b)+1+c
2 , 2(a+b)+1−c

2 , 1).

Proof: The assertion that the groups have reflections of order only two, the same
order and number of reflections, with r = 2, r′ = 1, in the proof of Theorem 5.3, leads
to the necessary and sufficient conditions (5.39), (5.41) and (5.40), (5.42).

For the first pair, n = ab is odd, n′ = 2n, and

a′b′ = 2ab, a′ + b′ = a+ b+ 1.

The condition a 6= 1 excludes the isomorphism of Theorem 5.3. Using a′+ b′ = a+ b+ 1
to eliminate a′ (equivalently b′) from a′b′ = 2ab gives the quadratic equation

x2 − (a+ b+ 1)x+ 2ab = 0,
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which has a′ and b′ as roots. The descriminant of this equation is (a + b + 1)2 − 8ab,
which therefore must be a square, say c2, giving the formulas

a′ = a+ b+ 1− c
2 , b′ = a+ b+ 1 + c

2 .

Since c = b′ − a′, of integers with different parity, we conclude that c must be odd.
The argument for the second pair is similar, with a′ and b′ being the roots of

x2 − (2(a+ b) + 1)x+ 4ab = 0,

i.e.,
a′ = 2(a+ b) + 1− c

2 , b′ = 2(a+ b) + 1 + c

2 .

where
(2(a+ b) + 1)2 − 16ab = c2.

Example 5.2 There appear to be infinitely many type (i) index pairs of Corollary 5.1,
with the first few being

[273, 7, 39, 2], [546, 21, 26, 1], [315, 7, 45, 2], [630, 18, 35, 1],
[357, 7, 51, 2], [714, 17, 42, 1], [975, 13, 75, 2], [1950, 39, 50, 1],

[1001, 11, 91, 2], [2002, 26, 77, 1], [1105, 13, 85, 2], [2210, 34, 65, 1],
[1365, 15, 91, 2], [2730, 42, 65, 1], [1885, 13, 145, 2], [3770, 29, 130, 1].

There are infinitely many of type (ii), including the family

[2m(2m− 1),m, 2m− 1, 2], [4m(2m− 1), 2m− 1, 2m, 1], m = 1, 2, 3, . . . ,

which may in fact be all of them.

We now consider how our reflection groups for Dn relate those of Cohen [Coh80].
No isomorphisms were found in [Coh80], since the Lemma 2.3 (stated without proof
there) says that one must have K = K ′ to obtain isomorphic groups. This is false (our
Theorem 5.3, and also Example 4.4).

Table I of [Coh80] has seven lines for the reflection groups for Dn. The lines 4, 5
give the reflection groups GDn(Dn,Dn/2) and GDn(Dn,Dn), respectively, and the lines
1, 2, 3, 6, 7 give groups of the form GDn(L(n)

(a,b), Cr) = G(n, a, b, r). The parameters for
these groups are summarised in Table 3 (see Example 8.1). These do not account for
all the groups G(n, a, b, r) in our classification, with the first reflection groups missing
being given by the indices

[6, 1, 3, 4], [9, 1, 3, 6], [10, 1, 5, 4], [12, 1, 3, 8], [15, 1, 5, 6], [15, 1, 3, 10], (5.43)

[18, 1, 3, 12], [18, 1, 9, 4], [20, 1, 5, 8], [21, 1, 7, 6], [21, 1, 3, 14], [22, 1, 11, 4],
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[24, 1, 3, 16], [25, 1, 5, 10], [26, 1, 13, 4], [27, 1, 9, 6], [27, 1, 3, 18], [28, 1, 7, 8],
[30, 1, 3, 20], [30, 3, 5, 4], [30, 1, 15, 4], [30, 1, 5, 12], [33, 1, 3, 22], [33, 1, 11, 6], . . . .

These are the indices [n, a, b, r] ∈ Λn, with

(a, b) 6= (1, 1), r 6= 2, r - n, r | 2n,

and give higher order groups, with the base group appearing in either line 2 or 3.

Table 3: Cohen’s Table I (lines 1, 2, 3, 6, 7)

K H |L| α ∈ Aut(K/H) |G| [n, a, b, r]†

Dm C2m 4m 1 16m2 [m,1,1,2m]

D2m` C2m 2m{gcd(2`,r+1) αr, 0≤r≤`, r odd 32m2` [2m`,gcd(`, r−1
2 ),gcd(`, r+1

2 ),2m]
+ gcd(2`,r−1)} `=gcd(`, r+1

2 ) gcd(`, r−1
2 )

D(2m+1)` C2m+1 (2m+1){gcd(2`,r−1) βr, 0≤r≤`, r odd 8(2m+ 1)2` [(2m+1)`,gcd(`, r−1
2 ),gcd(`, r+1

2 ),2m+1]
+ gcd(2`,r+1)} `=gcd(`, r+1

2 ) gcd(`, r−1
2 )

D2m+1 C2 2{gcd(2m+1,r+1) αr, 0≤r≤m, 2m+1= 16(2m+ 1) [2m+1,gcd(2m+1,r−1),gcd(2m+1,r+1),2]
+ gcd(2m+1,r−1)} gcd(2m+1,r+1) gcd(2m+1,r−1)

Dm 1 gcd(2m,r+1) βr, 0≤r≤m, r odd 8m [m,gcd(m, r−1
2 ),gcd(m, r+1

2 ),1]
+ gcd(2m,r−1) m=gcd(m, r+1

2 ) gcd(m, r−1
2 )

† The index given may not have a ≤ b for all choices of m, `, r. Lines 2, 3, 5 are the base group (abr = n).

We consider the first of the new reflection groups given by the indices (5.43).

Example 5.3 (Groups of order 192) The previously unknown reflection group with index
[6, 1, 3, 4] has order 192. The collection of all reflection groups of this order is

G identifier refs |L| H

[6, 1, 3, 4] 〈192, 385〉 22 16 C4
[12, 1, 6, 2] 〈192, 1312〉 30 28 C2
[12, 2, 3, 2] 〈192, 1330〉 22 20 C2
[24, 1, 24, 1] 〈192, 463〉 50 50 1
[24, 3, 8, 1] 〈192, 471〉 22 22 1
GO(LO20, C2) 〈192, 1486〉 22 20 C2
G9 〈192, 963〉 30

We observe that there are four groups with 22 reflections, each for a different group K,
including an example of type (ii) in Corollary 5.1 (reflections of order two only, c = 5).

27



We now consider the possibility of an isomorphism between a reflection group G
given by a polyhedral group (see Table 1) and a reflection group G′ given by a dicyclic
group (see Table 2). For such an isomorphism

• The H for the group G must be a normal subgroup of some dicyclic group, i.e.,
H = 1, C2, Q8 (T ,O, I are not subgroups of a dicyclic group).

• The group G must have at least two reflection orbits (Lemma 5.3).

In view of Table 1, this narrows down the possible orders of G to 48, 96, 192, 384, 480, 768.
Since there are finitely many reflection groups of those orders, we can simply examine
the reflection structure of each group, or their isomorphism class (as in Example 5.3 for
groups of order 192). This calculation, see Example 5.4, gives the following.

Proposition 5.1 There are no isomorphisms between the reflection groups given by the
polyhedral groups and those given by dicyclic groups.

Example 5.4 The reflection groups of orders 48, 96, 384, 480, 768 are the following

G identifier refs |L| H

[3, 1, 3, 2]∗ 〈48, 39〉 10 8 C2
[6, 2, 3, 1]∗ 〈48, 39〉 10 10 1
[6, 1, 6, 1] 〈48, 37〉 14 14 1
GT (LT12, 1) 〈48, 29〉 12 12 1
G12 〈48, 29〉 12
G6 〈48, 33〉 14
[6, 1, 3, 2] 〈96, 217〉 18 16 C2
[12, 3, 4, 1] 〈96, 119〉 14 14 1
[12, 1, 12, 1] 〈96, 111〉 26 26 1
GT (LT12, C2)∗ 〈96, 190〉 14 12 C2
GO(LO14, 1)∗ 〈96, 190〉 14 14 1
GO(LO18, 1) 〈96, 192〉 18 18 1
G13 〈96, 192〉 18
G8 〈96, 67〉 18

G identifier refs |L| H

[12, 1, 3, 4] 〈384, 12471〉 38 32 C4
[24, 1, 12, 2] 〈384, 14591〉 54 52 C2
[24, 3, 4, 2] 〈384, 14609〉 30 28 C2
[48, 1, 48, 1] 〈384, 1945〉 98 98 1
[48, 3, 16, 1] 〈384, 1952〉 38 38 1
GT (T , Q8) 〈384, 18130〉 38 24 Q8

[30, 1, 15, 2] 〈480, 1177〉 66 64 C2
[30, 3, 5, 2] 〈480, 1077〉 34 32 C2
[60, 3, 20, 1] 〈480, 349〉 46 46 1
[60, 5, 12, 1] 〈480, 346〉 34 34 1
[60, 4, 15, 1] 〈480, 877〉 38 38 1
[60, 1, 60, 1] 〈480, 869〉 122 122 1
GI(LI32, C2) 〈480, 957〉 34 32 C2
GI(LI20, C2) 〈480, 953〉 22 20 C2

Here, we include the primitive Shephard-Todd groups, with ∗ indicating an isomorphism.

6 Computations and concluding remarks
Our results combine to give the following classification.

Theorem 6.1 (Classification) Every finite imprimitive irreducible rank two quaternionic
reflection group can be written uniquely in the canonical form, except for the following

GO(LO14, 1) ∼= GT (LT12, C2), G(n, 1, n, 2) ∼= G(2n, 2, n, 1), n odd, (6.44)

which have two canonical forms. Tables 1 and 2 list all the possible canonical forms.
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There is an informal group (including Taylor, Bellamy, Schmitt, Thiel) working on a
systemic labelling and implementation of the quaternionic reflection groups in computer
algebra packages such as magma and gap. The classification of Theorem 6.1 suggests a
unique label, except for the cases (6.44), where possible options are

• Choose the higher order group, so the group is defined over a smaller K.

• Choose the base group, so that every reflection system leads to a reflection group
in the classification.

• Live with the isomorphisms (6.44).
The L andH listed in Tables 1 and 2, easily allow for the groups GK(L,H), reflection

systems L(L) and orbits Orb(L, a) to be calculated. For example, in magma, the groups
G(n, a, b, r) are given by
Gn := function(n,a,b,r)

F:=CyclotomicField(4*n); z:=RootOfUnity(2*n); Z:=IntegerRing();
Q<i,j,k>:=QuaternionAlgebra<F|-1,-1>;
w:=Q!((z+ComplexConjugate(z))/2+(z-ComplexConjugate(z))/(2*RootOfUnity(4))*i);
gensH:={Matrix(Q,2,[wˆ(Z!(2*n/r)),0,0,1])};
gensL:={Matrix(Q,2,[0,c,cˆ-1,0]) : c in {1,wˆa,j,wˆb*j}};
return MatrixGroup< 2,Q | gensH join gensL >;

end function;

with the index set Λn being given by
Ln := function(n)

inds:={}; Z:=IntegerRing();
for x in [1..n] do for y in [x.. n] do

if LCM(x,y) eq n then
a:=Z!(n/y); b:=Z!(n/x);
Include(˜inds,[n,a,b,Z!(n/(a*b))]);
if IsOdd(a*b) then

Include(˜inds,[n,a,b,Z!(2*n/(a*b))]);
end if;

end if;
end for; end for;
return inds;

end function;

and L(L) can be recursively calculated from L (similarly for Orb(L, a)) via
function GenerateL(elts)

eltsiterate:=elts join {a*bˆ-1*a: a in elts, b in elts};
if eltsiterate eq elts

then return elts;
else return GenerateL(eltsiterate);

end if;
end function;
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Finally, we consider the classification of the imprimitive quaternionic reflection
groups G ⊂ U(Hn) of rank n greater than two, in the context of our methods.

Just as we chose 1 ∈ L, so that(
0 1
1 0

)
is a reflection in G,

leading to the canonical form (2.11), G may be put in a canonical form where its elements
have the form BPσ, where B is an n × n diagonal matrix with entries in K, and Pσ a
permutation matrix given by σ ∈ Sn. Here Pσ for a transposition σ = (αβ) is a
reflection which fixes the orthogonal complement V ⊥α,β of Vα,β = spanH{eα, eβ}, and the
vector eα + eβ. The (parabolic) subgroup of G generated by the reflections in G which
fix V ⊥α,β pointwise, is a rank two imprimitive reflection group. This leads to the following
(Theorem 2.9 of [Coh80]).

Theorem 6.2 (Classification) Every finite imprimitive irreducible quaternionic reflec-
tion group G of rank n ≥ 3 can be written uniquely in the canonical form

Gn(K,H) :=
{

b1
. . .

bn−1
(b1 · · · bn−1)−1h

Pσ : b1, . . . , bn−1 ∈ K, h ∈ H, σ ∈ Sn
}
,

(6.45)
where K is a finite subgroup of U(H), and H is a subgroup with [K,K] ⊂ H ⊂ K.

In particular, these groups have

|Gn(K,H)| = n!|H||K|n−1, Gn(K,H) has n(|H| − 1) + |K| reflections.

Proof: The key idea is that because G contains the subgroup {Pσ}σ∈Sn ∼= Sn, it acts
the same on any d-dimensional subspace of the form spanH{eα1 , . . . , eαd}. If its restriction
to a two-dimensional subspace is given by (2.11), then on a three-dimensional subspace,
we haveb 0 0

0 b−1 0
0 0 1

 =

1 0 0
0 0 1
0 1 0


b 0 0

0 bα 0
0 0 1


0 0 1

0 1 0
1 0 0


b 0 0

0 bα 0
0 0 1


−10 1 0

0 0 1
1 0 0

 , b ∈ K,

so that on a two-dimensional subspace it acts as an imprimitive reflection group with
L = K, and hence by Lemma 4.1, [K,K] ⊂ H ⊂ K. Again, in view of (2.11), G must
contain the diagonal elements

b1
b−1

1
1

. . .
1





1
b1b2

(b1b2)−1

. . .
1

 · · ·


1
. . .

1
b1 · · · bn−1

(b1 · · · bn−1)−1h

 ,
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and hence the elements of (6.45).
It remains to show that the set of matrices in (6.45) forms a group, as observed

(without proof) in [Coh80]. It is sufficient to show that a product of two diagonal
matrices from (6.45) is another, i.e.,

(a1 · · · an−1)−1ha(b1 · · · bn−1)−1hb = (a1b1 · · · an−1bn−1)−1h, ∃h ∈ H,

or, equivalently,

(a1 · · · an−1)−1(b1 · · · bn−1)−1H = (a1b1 · · · an−1bn−1)−1H. (6.46)

We can prove this by induction on n, using the fact that [K,K] ⊂ H implies the cosets
are permutation invariant, i.e., a1a2 · · · anH = aσ1aσ2 · · · aσnH, for any permutation σ.
Suppose that (6.46) holds for n ≥ 2 (it holds for n = 2 by Lemma 2.2). Then, we
calculate

(a1 · · · an)−1(b1 · · · bn)−1H = a−1
n (a1 · · · an−1)−1b−1

n (b1 · · · bn−1)−1H

= b−1
n a−1

n (a1 · · · an−1)−1(b1 · · · bn−1)−1H (permutation invariance)
= (anbn)−1(a1b1 · · · an−1bn−1)−1H (inductive hypothesis)
= (a1b1 · · · anbn)−1H,

which completes the induction.
We observe, from Tables 1 and 2, that G2(K,H) = GK(K,H), and for n ≥ 3 either

• There is one imprimitive reflection group Gn(K,K), when K = I,Dn (n is even).

• There are two imprimitive reflection groups Gn(K,H) (base group) and Gn(K,K),
when K = T ,O,Dn (n is odd), where H = Q8, T , Cn (respectively).
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8 Appendix
We recall Stringham’s list of the elements of the binary polyhedral groups [Str81]

The Double-Tetrahedron Group

iε, jε, kε,(1 + i+ j + k

2

)η
,

(1− i− j + k

2

)η
,

(1 + i− j − k
2

)η
,

(1− i+ j − k
2

)η
,

ε = 1, 2, 3, 4; η = 1, 2, 3, 4, 5, 6; N = 24.
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The Double-Oktahedron Group(1 + i√
2

)ε
,

(1 + j√
2

)ε
,

(1 + k√
2

)ε
,

(1 + i+ j + k

2

)η
,

(1− i− j + k

2

)η
,

(1 + i− j − k
2

)η
,

(1− i+ j − k
2

)η
,

(
j + k√

2

)ζ
,

(
k + i√

2

)ζ
,

(
i+ j√

2

)ζ
,

(
j − k√

2

)ζ
,

(
k − i√

2

)ζ
,

(
i− j√

2

)ζ
,

ε = 1, 2, 3, 4, 5, 6, 7, 8; η = 1, 2, 3, 4, 5, 6; ζ = 1, 2, 3, 4, N = 48.

The Double-Ikosahedron Group

iε, jε, kε,(
i+ σj + τk

2

)ε
,

(
j + σk + τi

2

)ε
,

(
k + σi+ τj

2

)ε
,(

i− σj + τk

2

)ε
,

(
j − σk − τi

2

)ε
,

(
k + σi− τj

2

)ε
,(

i+ σj − τk
2

)ε
,

(
j − σk + τi

2

)ε
,

(
k − σi− τj

2

)ε
,(

i− σj − τk
2

)ε
,

(
j + σk − τi

2

)ε
,

(
k − σi+ τj

2

)ε
,(1 + i+ j + k

2

)η
,

(1− i− j + k

2

)η
,

(1 + i− j − k
2

)η
,

(1− i+ j − k
2

)η
,(1 + τj + σk

2

)η
,

(1 + τk + σi

2

)η
,

(1 + τi+ σj

2

)η
,(1 + τj − σk

2

)η
,

(1 + τk − σi
2

)η
,

(1 + τi− σj
2

)η
,

(
τ + σj + k

2

)ζ
,

(
τ + σk + i

2

)ζ
,

(
τ + σi+ j

2

)ζ
,

(
τ + σj − k

2

)ζ
,

(
τ + σk − i

2

)ζ
,

(
τ + σi− j

2

)ζ
,

ε = 1, 2, 3, 4, ; η = 1, 2, 3, 4, 5, 6; ζ = 1, 2, . . . , 10, N = 120.

τ = 1 +
√

5
2 , σ = 1−

√
5

2
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Example 8.1 We give an illustration of how we deduced the indices for the reflection
groups G = GDn(L,H) in Table I of [Coh80]. The first entry has

n = m, H = C2m, |L| = 4m, |G| = 16m2.

Since
|L| = 4m = 2n

1 + 2n
1 ,

we must have (a, b) = (1, 1), and the index is

[n, a, b, r] = [m, 1, 1, 2m].

The base group with index [m, 1, 1,m] appears in lines 2 and 3 for n = m even or odd.
The second entry has

n = 2m`, H = C2m, |G| = 32m2`,

and
|L| = 2m

(
gcd(2`, r − 1) + gcd(2`, r + 1)

)
, 0 ≤ r ≤ `, r odd,

where
` = gcd(`, r + 1

2 ) gcd(`, r − 1
2 ).

By writing

|L| = 2n
a

+ 2n
b

= 2(2m`)
2`

(
gcd(2`, r − 1) + gcd(2`, r + 1)

)
,

we deduce that

a = 2`
gcd(2`, r + 1) = gcd(`, r − 1

2 ), b = 2`
gcd(2`, r − 1) = gcd(`, r + 1

2 ).

Here, one can have a ≤ b or a ≥ b. Since n = 2m`, we have a | n, b | n, and we verify

gcd(a, b) = gcd(gcd(`, r − 1
2 ), gcd(`, r + 1

2 ))

= 1
2 gcd(gcd(2`, r − 1), gcd(2`, r + 1)) = 1

22 = 1,

which follows from gcd(r − 1, r + 1) = 2, for r odd. Hence the index for this group is

[n, a, b, r] = [2m`, gcd(`, r − 1
2 ), gcd(`, r + 1

2 ), 2m],

and in particular, we obtain the index [n, 1, 1, n] for n even, of the base group for line 1.
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