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Abstract

We give an elementary classification and presentation of the finite quaternionic
reflection groups of rank two, based on the notion of a “reflection system”. This
simplifies the existing classification, which is shown to be incomplete, e.g., there
exist four imprimitive quaternionic reflection groups of order 192 with 22 reflections
which are not isomorphic (one of which was previously unknown).
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1 Introduction

The finite (unitary) quaternionic reflection groups were formally introduced and then
classified by Cohen |Coh80], with various results then built upon it, e.g., the classification
of parabolic subgroups [BST23], [Sch23|, and certain conformal field theories [DZ24].

This followed in the spirit of the real reflection groups which were classified by
Coxeter [Cox34], and the complex reflection groups which were classified by Shephard
and Todd [ST54]. There are various relationships between these groups, e.g., Cohen
understood that the quaternionic reflection groups in one dimension were classified by
Stringham [Str&1], and recognised that some imprimitive collineation groups for C*
of Blichfeldt [Blil7] give rise to primitive quaternionic reflection groups of rank 2 (see
[Kan&1] for an interesting overview, and [Zha97], [CS03], [Voi21] for general background).

Here we consider the classification of the imprimitive quaternionic reflection groups
of rank two. These are finite groups of unitary 2 x 2 monomial matrices over the
quaternions H, which are generated by reflections, i.e., nonidentity matrices g which fix
a 1-dimensional subspace (this is equivalent to rank(¢g—1) = 1). Elementary calculations
show that there are two types of reflections

h 0\ (10 0 b
(o3G0 wen (20)

which have orders the order of h and 2, respectively. The roots for these reflections, i.e., a

vector in the orthogonal complement of the fixed subspace are ey, es, (1, —b), respectively.
The six primitive quaternionic reflection groups of rank two can be obtained by adding
single non-monomial reflection to an imprimitive reflection group [Wal24], [BW25].

Let G be an irreducible imprimitive quaternionic reflection group of rank two. Then
G is conjugate in U(H?) to a unitary group where the reflections are

h 0 10 0 b
(0 1>, <0 h>, heH, h#1, <61 0)’ belL, (1.1)

where 1 € L (a standardisation condition), 1 € H, and H and L are subsets of U (H).

« Since the reflections for a given root (e.g., e1) are a subgroup of G, we conclude
that H is a group.

» Since the set of reflections in G is closed under conjugation, we have that
hoo\ (0 1\ (b O\ _ (0 By _,
0 1/\1 0/\0 1 —\rt oo ’
-1
0 b\ (h O 0 b 10
<b1 0> <0 1> <b1 o) - (0 blhb> €G,  hed bel

Hence H C L, and H is a normal subgroup of the group K = (L) generated by L.

Therefore, each group G of the above form is determined by H < K, which are uniquely
defined up to conjugation in U(H), the reflections in GG, and a suitable L.
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Clearly, not every H << K and L C K gives a reflection group as above, and so the
classification of the imprimitive reflection groups of rank two can be reduced to finding
the suitable subsets L (and H), and then any isomorphisms between the reflection
groups that they give — just as was done by Shephard and Todd, and in turn Cohen.
Our contribution to this approach is the observation that the L further satisfies certain
algebraic properties which we describe as being a “reflection system”. The remainder
of the paper is devoted to determining all the reflection systems, and consequently
classifying the imprimitive quaternionic reflection groups of rank two (Theorem |6.1).
The existing classification is shown to be incomplete, and with some double counting.

2 Reflection systems and the canonical form

Let G be the imprimitive reflection group generated by the reflections of (|1.1)). Then

0 b\ (1 O 0 bh
(50 (u Mee nemses

—1
0 a 0 b 0 a 0 ab~ta
(a‘l O> <b‘1 0) (a‘l 0) a ((ab_la)_1 0 ) €G, a,b€ L,

1. LH = L, i.e., L is a union of cosets in the group K/H (and so |H| divides |L|).

so that

2. ab~'a € L,Va,b € L, i.e., L is closed under the binary operation (a,b) — ab'a.

Hence, there is an irreducible imprimitive quaternionic reflection group generated by
reflections of the form (1.1)) if and only if H < K and H C L C K satisfies K = (L) and
the two conditions above hold, and we denote this group by G = G(K, L, H).

Let Lg give the set of nondiagonal reflections in G = G(K, L, H), i.e.,

0 b

Le:={be K: <b1 0) eG} DL (2.2)

If all the nondiagonal reflections in G = G(K, L, H) are given by L, i.e., L = L¢, then
we say that G is in canonical form, as a subgroup of G(K, K, K), and we denote it by

Gr(L, H) = G(L,H) = G(K, L, H), (2.3)

and call this unique (K, L, H), or (L, H), the canonical label for the group G, as a
subgroup of G (K, K). We observe that for the canonical label

Hy = {h: (8 ?) E <{<b91 8>}beL>} c (2.4)

Clearly,
G(K, L, Hy) C G(K, Lo, Hy), Ly C Ly, Hy C Ho, (2.5)



for suitable (L;, H;), including the canonical labels. Indeed,
G(Kl, Ly, Hl) C G(KQ, LQ,HQ), Ky C Ky, Ly C Ly, H C H,, (26)

and so it may be possible to obtain the same reflection group for K; # K. This happens
in two instances (see Example and Theorem [5.3]).
We now define the fundamental algebraic object of our investigation.

Definition 2.1 We call a subset L of K (a finite group) a reflection system for K if
1. K= (L).
2. L is closed under the binary operation (a,b) — aob:= ab™la.

3. 1€lL.

We say that reflection systems L and L’ for K are isomorphic if there is a bijection
¥ : L — L' which preserves o, i.e., 1(aob) = (a) o (b).

Example 2.1 The group K = Zs X Zs has two reflection systems
L3 = {(0’ 0)7 (17 O>7 (07 1)}7 Ly =79 X Zy = {(07 0)7 (17 0)7 (07 1)7 (17 1)}

We will often define a reflection system L via a generating set, i.e., a subset X of
L whose closure under the binary operation o is L, and we write L = L(X). We note
that

For any reflection group G = G(K, L, H), L is a reflection system for K.

o [ = K is a reflection system for K, and this is the only case where L is a group.

1

Since 1 ox = 27, reflection systems are closed under taking inverses.

e Since z7! o1 = 22, reflection systems are closed under taking squares.

Moreover, if L is a reflection system and x € L (so that 27! € L), then it follows that
xL and Lx are reflection systems, via the calculations

1

raoxb = ra(zb) 'za = rab 'z 'xa = rab~la = z(a o b),

az o br = ax(br) ‘ax = axz™'b'ax = ab~'ax = (a o b)x, a,be L.

The corresponding reflections for these systems are conjugate in U(H?) to those for L,
via the calculations

—1 -1
z 0 x 0 1 0 1 0 0 b
(0 1) Mz (o 1) = Ms, (o x) Mps (o x) = Ms, My = (b—l o)‘

Therefore, we consider reflection systems L and L’ for K to be equivalent if L’ equals
xL or Lz, for some x € L, up to an automorphism of K. This is an equivalence relation,
and equivalent reflection systems lead to the same reflection groups G(K, L, H). Clearly,
equivalent reflection systems are isomorphic.
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Lemma 2.1 Suppose that {1} U A generates a reflection system L for K. If x € L, then
{1,z}UxA and {1,2} U Az generate the reflection systems xL and Lx for K, which are
equivalent to (but possibly not equal to) L.

Proof: We have observed that xL and Lx are closed under o, for any x, and that
they are generated by z({1}UA) and ({1}UA)z. If x € L, then 27! = zo1 € L, so that
l=z"1!e€xzl and 1 =27 'z € Lz, and hence {1,7} UzA and {1,2} U Az generate xL
and Lz. The groups generated by the above two sets contains A = 271(zA) = (Ax)z ™1,
and so they generate K = (A). O

The binary polyhedral groups are considered in Section [4 It is convenient to now

consider the following particular example for the purposes of illustration and motivation.

Example 2.2 For the binary tetrahedral group of order 24

14+i4+j+k

T = (4, 5

) (2.7)

the reflection system T can be generated as follows

l4i+j+k

L], =T =L({1,i,}, 5 H. (2.8)

There is also a second reflection system of size 12 given by

1+i+j+k

L], .= L({1,1, 5

1. (2.9)

There are twelve equivalent copies of this reflection system in T. Six of these can be
obtained by left or right multiplication, namely L],, iL],, jL],, kLT,, and

) iy
C_ILE = L({Lij})? CLTQ = L({l’ k’C})’ ¢i= m—gj—i_

The automorphism i — j, j + 1, gives another copy

l4itji4k

L({1,, ),

and multiplication of this (as above) gives the remaining six copies.
Reflection systems are constructed implicitly in [Coh80], via
L=L,={z€K:azH)=x"H},

where « is an automorphism of K/H (H <1 K) of order one (the identity) or two. This
is easily verified, e.g., for a,b € L,, we have
alab 'aH) = a(aH)a(b™ H)a(aH)
= (a'H)(bH)(a'H) = a 'ba 'H = (ab~'a) ' H,



so that ab™'a € L,. Conversely, if L is a reflection system for K, and H <1 K with
L = LH, then

a(zH) :=a 'H, x €L, (2.10)
defines an automorphism of K/H of order < 2.

For the groups of order 96 and 48 constructed in [Coh80] (Table I) from what is
essentially the 12 element reflection system L], for 7 of , automorphisms of order
two are taken, namely conjugation by the permutation (12), where H = Cy, K/H = Ay,
and conjugation by ¢ — j (for which (i — j)? = —2), where H = C}.

We can now give the structural form of a reflection group in the canonical form.

Lemma 2.2 A reflection group in the canonical form has the following elements

G:GK(L,H):{<8 b:)h) (g é) be K, heH, m:O,l}, (2.11)

where by 1s any element of the coset a(bH) of , e.g., bo = b7, b € L. Therefore
(i) G has order 2|H||K|.

(ii) G has 2|H| + |L| — 2 reflections.

Proof: Since
a 0\ (0 1)\ (0 a
0 b/\1 0/ \b 0)’

there is a 1-1 correspondence between the diagonal and nondiagonal elements of G.
Hence, it suffices to determine the subgroup of diagonal matrices in G. A product of
two reflections given by elements of L is diagonal, i.e.,

0 a\ /(0 bt ab 0
(a—l O) (b 0 > - (0 a,_lb_1> y a,b € L, (212)

so that GG contains the diagonal matrices of the form
biby - - - b, 0
0 brltoyt---b7th
To see this, take products of the diagonal matrices in (2.12)), choosing some b = 1 to get
the case when r is odd, and right multiply by the appropriate diagonal reflection.
Since L generates K, for any b € K, there is at least one choice in (2.13)), with
b:blbg"'br.
We claim that b7'b;"---b'h € a(bH), so that by'by" - b7th = by b/, with ' € H.
This follows from the calculation
a(by by -+ b H) = a(by ' H)a(by ' H) -+ ab, ' H)
= (btH)(boH) - (b.H) = biby---b.H = bH,
= bbb H = (bbb H) = ao(bH).
Since H is normal in K, the matrices in (2.13) form a group, i.e., they give all the

diagonal matrices in G, and we obtain (2.11)) and hence |G| = 2|H||K].
Finally, from (1.1)), G has 2(|H| — 1) + |L| = 2|H| + |L| — 2 reflections. O

), by,...,b, € L, heH. (2.13)




We can use Lemma [2.2| to address the question of when two reflection groups in the
canonical form Gk (L, H) and Gg/ (L', H'") give the same reflection group. For this to
happen they must have the same order and number of reflections, i.e.,

2|H||K| = 2|H'||K'], 2H|+|L| —2=2|H'| +|L'| — 2. (2.14)
There are three cases:
(i) If the groups K and K’ are the same, so that |K| = |K’|, then this gives
|H| = [H"],  [L] = |L]].

Hence, the groups G (L, H) would all be different if K has only one reflection
system of any given size (up to equivalence) and one normal subgroup H of any
given order. It turns out (from our calculations) that this is always the case.

(ii) If K and K’ are different, with the same orders, then again |L| = |L'|. But L and
L’ have different algebraic structures (they generate different groups), and so the
reflection groups generated by the reflections that they give are not isomorphic,
and correspondingly the groups G (L, H) and Gg/(L', H') are different.

(iii) If K and K’ are different, with different orders, say | K| < |K’|, then the reflections
in the corresponding groups must all be of order 2, so that (see Lemma

H=0C, H=1 - |K|=2K| |[L]=|L|+2.

We will see there are cases where this can happen, and the reflection groups are

the same (Example [£.4] and Theorem [5.3)).

We now outline the calculations to follow.

3 Finite subgroups of U(H) and the general method

The finite subgroups K of U(H), equivalently of the unit quaternions H*, were classified
(up to conjugation) by Stringham [Str81]. They are (see [LT09] Theorem 5.12)

(i) The cyclic group C,, of order n, n > 1.

(i) The dicyclic (or binary dihedral group) D,, = Dic,, of order 4n, n > 2.
(77i) The binary tetrahedral group 7 of order 24.
(iv) The binary octahedral group O of order 48.

(v) The binary icosahedral group Z of order 120.



The notation D, for the dicyclic group (as for the dihedral group) is not standardised,
e.g., Q4 is also used. We use the indexing of [Coh80] for the purpose of easy comparison.
From these, we proceed as follows.

General method (Classification of imprimitive reflection groups of rank two)

For each finite group K C U(H), as above, determine the reflection systems L (there is
always L = K'). Then for a given reflection system L of K, construct the corresponding
reflection groups, for which there are exactly |L| nondiagonal reflections (given by L),
as follows:

1. Determine the normal subgroup Hy <t K of (2.4)), to obtain the reflection group
Gx(L,Hyp), (3.15)
which we call the base group for L.

2. Determine the other reflection groups with nondiagonal reflections given by L,
which we call the higher order groups for L. These contain G (L, Hy) as a
proper subgroup, and are given by

Gy(L,H), H+#H, Ly=L, (3.16)

where H <K, H, C H C L, with LH = L. In particular, we have |H| divides |L|.

We observe Ly C Ly, H C H', so that once an H with Ly # L has been found,
none of the groups G(K, L, H"), H D H are in the canonical form, and hence are
not included in our classification.

3. Determine any isomorphisms between Gk (L, H) and G/(L', H'), so that the list
of imprimitive reflection groups has no duplicates.

In summary:

o We work up from the base group for L, adding diagonal reflections given by H,
until the point where any enlargement of H introduces new nondiagonal reflections.

For any reflection group G(K, L, H), it is often convenient to give a generating set
of reflections given by subsets £L C L, H C H, i.e.,

h 0 0 b
(0 1), heH, (b—l 0), beL,

G(K,L,H)=G(L,H). (3.17)

If b=1 € L, then it suffices to take just one of the reflections corresponding to a given

h € H, since
0 b\ (h O 0 by (1 0
b=t 0)\0 1/\p=t 0)  \0 b7 thb/"

and we write



Typically, one would take £ to be a generating set for L, and H to be elements of H\ H,
that together with Hj generate H. As larger H are taken, it is often possible to remove
elements from £ to get a smaller generating set.

As an illustration, we now consider the case (i), i.e., when K is the cyclic group C,,
which gives the complex reflection groups.
Example 3.1 (Cyclic group) Let K = C,, = (w), where w = e’ is a primitive n-th
root of unity. There is just one reflection system

L,=L{1,w}) ={1,w,...,0w" '},
and these are the only complex reflection systems. The base group
Gcn(L'nJ 1) = g({]‘7w}7 {})7 n 2 37

is the dihedral group of order 2n. The normal subgroups of K = C,, are

H=Cup= (")), pln.

Each of these gives a higher order group for L, (for p # n), and we obtain the following
imprimitive reflection groups for the reflection system L, = C,

Gen(Cn, Crpp) = G{1, 0} {w"}) = G(n,p,2), |G| = 271;,

where G(n,p,2) is the notation used by Shephard and Todd. The inclusions between
them follow immediately from .

For n =2, we have the only real imprimitive reflection group G(2,1,2) (Heisenberg
group), with the base group G(2,2,2) being reducible.

Lemma 3.1 Let |K| < |K'|. If the reflection groups G (L,H) and Gg:(L',H') are
isomorphic, then they can only have reflections of order 2, so that H = Cy, H' =1, and
|K'| =2|K[,  [L|=|L[+2.

Moreover, L is a subreflection system of L', and K is a subgroup of K’.

Proof: For any reflection group G (L, H) the nondiagonal reflections (given by L)
have order 2, and the diagonal reflections given by A € H have order the order of h,
and so in our case, we must have |H|,|H’'| < 2. From the orders of the reflection groups
being equal, we then have
K| [H] : :

= =2 = H=0C, H =1, |K'|=2K]|.
K| [H]

From the number of reflections in the groups being equal, we then have
20H| + |L|—2=2|H'|+|L'|-2 = |L|=|L|+2.

An isomorphism G (L, H) — Gg/(L', H') must map the reflections given by L to the
reflections given by L', say

0 b 0o v
(5 e (00 Y). v

Since the injective map L — L' : b — b preserves o, L is a reflection subsystem of L',
and K = (L) is a subgroup of K’ = (L'). O

2|H|| K| = 2|H'|| K|




4 The binary polyhedral groups

We now consider the binary polyhedral groups
l+i+5+k
T = (i, ————
1+7 14+i+5+k
V2 2

l+i+it+k 14+7Ti40j
7 := (i, 5 , 5

) (binary tetrahedral group of order 24),

0=

) (binary octahedral group of order 48),

), (binary icosahedral group of order 120),

+v6 o 1-V6
=

Some insight into these groups is obtained by listing their elements and orders (see the
appendix). Each of these contains the quaternion group

Q8 = <Z7-7> = {17 _Lia _i7j7 _j7k7 _k}

Since (1—\;;)2 = i, we have the inclusions

T C O, T CT.

We consider the first example in some detail for the purpose of illustration.

Example 4.1 (Binary tetrahedral group) Let K = T be the binary tetrahedral group,
which has normal subgroups H = 1,Cy, Qg, T, and two reflection systems (Example

itk 1tk
LI =T = L({Lij ———)),  Lh=L({1i——"—)).

For the reflection system L = K = L], = T, we have H;, = Qg, and hence obtain the
following reflection groups G in the canonical form

Gr(T,T), |G| = 1152, 70 reflections  (higher order group),
Gr(T,Qs), |G| = 384, 38 reflections (base group).

For the reflection system L = L7,, the condition |H| divides |L| = 12 implies that H
could be 1 or Cy. We have Hp = 1, and obtain the reflection groups in canonical form

G (L], Cy), |G| =96, 14 reflections (higher order group),
Gr(LT,, 1), |G| =48, 12 reflections (base group).

Since L], C L], = T, it follows immediately from @ that these four groups satisfy
GT(LZ;’ 1) C GT<L£, CQ) C G7'<7-, Qg) C G7'<7-, T)

We now make some observations, which apply to our calculations generally.
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e The orders and numbers of reflections are calculated using Lemma e.g., the
reflection group G = G7(T,Qs) has

|G| = 2|Qs]|T| = 384, and  2|Qs| + |T| — 2 = 38 reflections.

e Our method finds all the reflection subgroups of G+(T,7T)
which have the canonical form.

There are also many other reflection subgroups (not in the canonical form). These
include imprimitive reflection groups for other choices of K, and complex reflection

groups (see Example .

o A reflection group can have noncanonical labels, e.g., the base group for a reflection
system L, can be indexed by any H <t K with H C Hy. As an example, G (T, Qs)
has noncanonical labels

G(Ta T7 1)7 G<T> Ta 02)

e Whether a reflection subgroup is normal is determined by the reflection orbits
[Wal25]. These are the orbits, under conjugation, of the subgroups of the reflections
for a given root. From this theory, it immediately follows that

GT(LE, 1) < GT(LT% 02)7 GT(Tu Q8) < GT<T> T)a
and G'r(L],, Cy) is not normal in G (T, Qs).

o The number of occurences of a reflection group in canonical form as a subgroup
of Gk (K, K) is given by the size of the equivalence class of the reflection system,
e.g., the reflection groups G'r(L],,1), Gy (L7,,C5) each appear twelve times as
subgroups of G(7T,T), as the equivalence class of L7, has size 12 (Example .
In particular, G (K, H) < Gk (K, K).

The base group for the reflection system L = K has the following general form.
Lemma 4.1 For the reflection system L = K, the base group is given by
H,=Hyg =K, K] = K%Y = ({aba™'b"! : a,b € K}) (the commutator subgroup).
Therefore, the reflection groups in the canonical form for L = K are
Grg(K,H), [K,K|C HCK,
where H is a subgroup of K (K, K| C H implies H is normal).
Proof: The group generated by the reflections given by L = K contains

0 ab) (0 a\ {0 o'\ (0 1\ [aba 'b"t 0 be K
(@) o)\at 0/\b 0)\1 0/ 0 1) @ ’

so that
aba b€ Hy = |[K,K|C Hg.

Any subgroup H that contains [K, K] is normal in K, and hence gives a reflection
group for L = K in the canonical form. In particular, by taking H = [K, K|, we conclude
that Hx = [K, K. O

11



Example 4.2 The reflection group G+(T,T) has reflection subgroups H which are not
in the canonical form (for K =T ), including

0 0 0 ¢ .
H = ((6 1) , ({) 1) , (—i é)) = G (Qs,Qs), |H| =128, 22 reflections,

H = 0 1 2 o ) = G(6,1,2), |H| =172, 16 reflections,

—1q
0 0 1 0 =2 .
H = <<(]) 1) ) (1 O) ) (—i O>> = G, (Qs,Cy), |H| =64, 14 reflections.

Example 4.3 (Binary octahedral group) Let K = O be the binary octahedral group,
which has normal subgroups H = 1,Cs,Qs,T,O. Elementary calculations, show that
there are five reflection systems of sizes 14, 18, 20, 32, 48, given by

1+i 145 1+i+j+k

N R 5 b (1 copy)
1+i  14i+j+k .
Lg923:{17\/§,% 5 }, (4 copies)

1+i 14+i+j+k j—k

j;, A g (10 copies)

14+ 1+i+j+k

Lffs ={1,

L% ={1,

LY = {1 )
s = {1, Vol 5 b (9 copies)
1 k
LS, = {1, A —5‘7 i ‘7\/_ }, (7 copies)

For these reflection systems, the base groups are

Go(O,T), |G| = 2304, 94 reflections,
Go(LS, Qs), |G| =768, 46 reflections,
Go(LS), Cy), |G| =192, 22 reflections,

Go(L$, 1), |G| =96, 18 reflections,

Go(LS,1), |G| =96, 14 reflections,

and there is just one higher order group
Go(0,0), |G| = 4608, 142 reflections.

The inclusions between the reflection systems given above (which are mostly obvious
from their definitions) are given in Figure [3, We also observe that

LSnLS =17, LY, = L], (4.18)

-k k—
SF Gl bY
\/_ \/_
In view of the group orders and number of reflections, there is one possible isomorphism
between the reflection groups for 7 and O.
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Example 4.4 By[{.18), there is an isomorphism Go(L$,, 1) — Gr(L]y, Ca) given by
0 Lk -1 0 0 b 0 b 1+i+j+k
V2 T — JReEER N N

R B e e e B e

Example 4.5 (Binary icosahedral group) Let K = T be the binary icosahedral group,
which has normal subgroups H = 1,Cy,Z. Elementary calculations, show that there are
four reflection systems of sizes 20, 30, 32, 120, given by

1+i+j+k 74+0i—7

L%20 _{177 9 ) 9 }a (1 copy)
Laidia ke i ok

L%Z = {1, +Z—|2_j+ 7T+02-Z ij T; d }7 (16 COp’i@S)
l+t4+j+k 74+0i—7 .

D=1, IR TEIIE0Y 5 copes)
Cl4itjtk itoj+Th ,

LI, .= {1, ! 2J ,l+0]2 u }. (10 copies).

For these reflection systems, the base groups are

Gz(Z,1), |G| = 28800, 358 reflections,
GZ(L32, Cy), |G| = 480, 34 reflections,
Gz(LE,,1), |G| =240, 30 reflections,
Gz(LE,,1), |G| = 240, 20 reflections,

and there is one higher order group
Gz(L%y, Cy), |G| = 480, 22 reflections.

There are no further isomorphisms, and so we count 14 quaternionic reflection groups
corresponding to the groups 7,0,Z, as in [Coh80] (which has a few typos). Taylor
[Tay25] (and in personal correspondence) observes that some imprimitive quaternionic
reflection groups are conjugate to primitive complex reflection groups, i.e.,

Gr(LT,, 1) 2 G,  Go(L$,1) 2 G, Gr(Li, 1) = Gy, (4.19)

and therefore counts 11 quaternionic reflection groups.

In Table[l, we summarise our classification of the reflection groups for 7,0, Z. This
includes the reflection orbits for G, using the notation niR,,,...,n,R,, of [Wal25,
which we now explain. Let R, be the reflection subgroup generated by the reflections
with root a. This consists of all reflections with root a and the identity. The reflection
type is the set of orbits of the reflection subgroups R, under the conjugation action of the
reflection group G. This provides more nuanced information than number of reflections
and their orders, and can be used to distinguish reflection groups in which these are
equal, but the groups are not isomorphic. The notation n;R,; indicates that the orbit
of R,; is of size n;, and usually just the abstract type of R, is recorded. For our groups
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Gk (L, H) we observe that diagonal matrices are conjugated to diagonal matrices (and
similarly for nondiagonal matrices), so that the diagonal reflections form a single orbit

H 0 1 0
= {5 3)- (0 )
whilst the order two reflections corresponding to b € L give orbits of the form nCj.
For the base group G = Gk (L, L), the orbit of a nondiagonal reflection is given by

<591 8)G:{(091 C):cEOrb(L,b)}, bel,

where the orbit of b € L is
Orb(L, b) := the closure of {b} under x — aox =azx 'a, a € L,

and the reflection type is mCy, m = | Orb(L,b)|. The orbits give a partition of L, and
if L is generated by by, ..., by, then its orbits are Orb(L, b;),...,Orb(L, b,,) (with some
possibly being equal to each other). The orbit of a nondiagonal matrix under a higher
group for L is given by a union of the orbits for the base group.

Table 1: The imprimitive reflection groups Gk (L, H) = G(L,H) obtained from the
reflection systems L for K = T,0,Z. The base groups have H = {}, and the £ given
is a generating set for the corresponding reflection system. The only isomorphism is
Gr(L],,Cy) = Go(LS,,1), and so there are 14 groups in total.

K | |L| | H | order | refs | reflection orbits L ey

T |24 | T | 1152 |70 | 27,24C, {1,4} {Lrititky
T 24 | Q]384 |38 | 20Qs24C, {14, , Leitithy 0
T112 ¢ |96 |14 | 20,120, (1,0, Lriithy (—1)
T |12 |1 |48 12 | 120y (1,4, Tty !

O] 48 | O | 4608 | 142 | 20,48C, (1, iitithy 1y
O | 48 | T |2304 | 94 27 ,24C,, 24C, {1, 1}217 1\;%37 1+z+J+k} {}

O | 32 | Qs | 768 |46 | 2Qs,8Cs,24C, {1, L j itaiky 0

O] 20 | Cy | 192 22 | 20,,20,,6C,, 12C, {1 1+z 1+z+]+k i= k} 0
O] 18 |1 96 18 | 6Cy, 120, {1 1“ 1+I+J+’f} 0
o111 |96 |14 |20,120 ,i, 1+Z+ﬂ+k ik 0
7 112072 28800 | 358 | 27,120C% {1,1, 1+“£J+k’ T+02Z ]} 0

T | 32 | Cy | 480 34 2C5, 205,300, {1, 1+”]+k TJ“; J’J Ti— Uk} 0O
T30 |1 |240 |30 |30C, {1, 1idiek zadion It

T |20 |Cy|480 |22 |2C,,200, (1,7, LEitith, zmm} iy
A 20 1 240 20 2002 {172" 1+Z+J+k z+0]+’rk} {}
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Figure 1: The inclusions between the reflection systems for 7,0, Z, and the inclusions
between the reflection groups that correspond to them.

L%
. | L
24
i | L% L
12
L
/ \ L
L% LS,
GO(O7 O)
GT(Ta T)
Gz(T,7)

Gr(T, Qs) Go©.7) VAN

Gr(L%,,Cy)  Gz(L%,, Cy)
G(’) (Li’%a Q8)

Gr(L],, Cs) . .
GI(L3O7 1) GI<L2O7 1)

GO L207 02

Gr(LT, 1) / \

Go(Liz1)  Go(Lf),1)

5 The dicyclic (binary dihedral) groups

We now consider the dicyclic (binary dihedral) groups

s

Dy :=(w,j), w=Cn=¢€r, n2>2
where w is a primitive 2n-th root of unity. This group has 4n has elements, of two types
w™, w'j = jw™, 1<m, ¢ <2n. (5.20)

We observe that w — w, j — wj defines an automorphism of D,,.
The group D, is the quaternion group (Js, which has a slightly special structure,
since w = 1, so that ¢, 7, k play the same role. For n > 2, the normal subgroups of D,

are )
C.={(w™r), r|2n, D,, (5.21)
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and, for n # 2 even, there are two additional nonabelian normal subgroups of order 2n
Dn/Q = <w2aj>7 <w27wj>' (522)

In view of the automorphism w — w, j +— w7y, which maps the first group of to
the second, it suffices to consider just D,, /. For Dy = ()5, the normal subgroups are
those of and (j), (k) (which are abelian).

To understand what subsets of might generate reflection systems, we will use
Lemma [2.1} and the following general property.

Lemma 5.1 For x,y € K, their closure under o contains the following elements
(zy )"z € L({z,y}), n=0,1,2,.... (5.23)
Proof: We prove this by strong induction on n. The n = 0,1 cases are immediate
ror=gxxr ‘x=uz, roy=ay ‘'z = (vy ')r.

Since n = 2k or n = 2k + 1, with k£ < n, we have

(wy™) wor = (zy™") wa™ (ay™") e = (ay™") ",
(ZL“y l)kl‘ oy = (a:y l)kl’y_l(l‘y l)kx — (:L‘y_l)%+ll‘,
which completes the induction. O

Since the elements of the two types (5.20) are closed under o, i.e.,

w® Owb — waw—bwa — w2a—b’ waj owbj — w“j(—wbj)waj — w2a—bj’

a generating set for a reflection system for K = D,, must contain at least one of each.

By taking = = 1 in ([5.23)), it follows that
L{l,w™, ... w*})

is the cyclic group generated by w®,...,w*", and so we can suppose, without loss of
generality, that a generating set for a reflection system has the form

A={1,w Wby, ... w5}
By Lemma [2.1] generators for an equivalent reflection system are

AW )™t = {—whrg, —w g 1wk bt

Y

and so, by the previous reasoning, one may suppose the generating set is
{—w"j, —w ], 1w w")) = {1, w" j, w5}
We now consider conjugation of the above set by w?. Since

2v+b

W (whw T = w?, W (W) w™ = w5,

16



we can suppose that the generating set for a reflection system for K = D,, has one of
the forms

{17wa7j7wbj}7 {17wa’wj7wb+lj}'

Since the automorphism w +— w, j — wj of D, maps the first to the second, it suffices
to consider just the first. The set of indices (a, b) giving the desired reflection systems is
Q,={(a,b): 1 <a<b<mn, a|n, b|n, ged(a,b) =1}
= {(ﬁ, ﬁ) 1<y <xz<n, lem(z,y) =n}. (5.24)

x

For example,
Q6 = {(171)7(1?2)7<173>7(176)7(273)}a ’96’ =5.

The size of this set |Q2,| is the sequence A018892 in on-line encyclopedia of integer
sequences, where several formulas for it are given, including

1 a; . o
1, = 5 (H(20éj +1) + 1), n= Hpjj (prime factorisation),
J j
Thus the size of €2, grows with the number of prime factors of n and their multiplicities.
We now have a key technical result.

Lemma 5.2 The reflection systems for the dicyclic group D,, are (up to equivalence)

L = L({1,w*, j,w"j})

= {w" " cmez U {0} cpcz, (a,b) € Q. (5.25)
Each of these has a different number of elements, which is given by

2n 2n
+

e - (5.26)

Proof: We start from our general observation that a reflection system must have the
form

L =L({1,0", j,w"5}),
for some a and b. Since z7!' € L({1,z}) = (x), it makes no difference if we take z or x~

as a generator, and so we may suppose that 1 < a,b < n. Further, since we can take
any generator of (w®), we can suppose that a | n, and similarly b | n. Since

1

L™t = L({—j, —w"j, 1,w"}) = L({j,w"), L,w"}) = L), (5.27)

so that L( and L ba) AL€ equivalent reflection systems, we may suppose (arbitrarily)
that a < b. We now consider the condition on a and b for {1,w?, j,w’j} to generate
D,, = (w, j). The subgroup of (w > contained within (w®, j,w’5) is that generated by the
products of w?® and w® = (w’j); 1, which is all of (w) if and only if ged(a,b) = 1. This
condition then implies D,, = (w?, j, wb5), and hence we arrive at the index set €,,.

17



Taking z =w? y=1and z = j, y = w’j in (5.23) gives

W e L{Lw, W € L{7,w'}),
so the elements listed in (5.25)) are in L = LEZ?b), and contain a generating set for L.
They give all of L, as claimed, since they are closed under o, i.e., by the calculations

Wmla o wmza — w(?ml—mg)a wélbj o wégbj — w(?él—fg)bj7
WMo w%j _ _wfbj _ w(g-ﬁ-ﬁ)b’ wﬁbj o WMt — — M — w(g—i-m)a.

In particular, the size of L is given by .

Finally, we show the reflection systems of have different numbers of elements,
and consequently are not isomorphic. This follows from the fact that (a,b) — + + § is
bijective on ordered pairs with a < b and ged(a,b) = 1, and hence on €,,. Suppose that

a<b, d <V, ged(a,b) = ged(d', V') =

Then
1 1 1 1 a—l—b_a’+b’

a b_a’+b’ — ab @b’
where the latter fractions are in reduced form. The sum and product uniquely determine
a pair {a, b}, since they are the roots of the quadratic (x —a)(x —b) = 2% — (a +b)z + ab,
so that {a,b} = {a’,V'}, and so (a,b) = (d’, V). O

The reflection systems for D,, satisfy the inclusions implied by their generators, i.e.,

Ly, c Ly, ald, bV, (5.28)
and, by (5.27)), also (at the level of equivalence)

Ly, c Ly, allb, bld. (5.29)

Figure 2: The reflection systems L for Dg, and their inclusions.

L24 -
Lig = L{Th, Lig = L7y,
Luy = Ly, Lip = Lizy)
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Theorem 5.1 (Base groups for D,,) The base reflection group for the reflection system
L=L{,. (a,b) € Qu, of (5.25) is

G = Gp, (L, Cryjab). (5.30)
where Hy, = Cpjap = (W) and
2 2 2 2
|G| :8n—, Ghas =+ 20 4 20 reflections.
ab ab  a b

Moreover, these groups are all different.

Proof: In view of our general method, it suffices to find H. Since |Hp| divides |L|,
where

2n  2n n
Ll=—+—=2 b)—
L= 2 oy
the cyclic group (w*®) of order 2, which is normal in D, could be contained in H.

This is seen to be the case by the direct calculation:

0 w™\ (0 j 0 Wi\ (0 1)  [wme® 0
wma _] 0 (wa’j)*l 1 0 - 0 wmaffb )

and choose m = b, { = a in the above, to obtain

—2ab
(“O ?) €Gp,(L,H) = w*"eH, = (v CHj.
By considering all the products of two reflections given by L, which are diagonal matrices,
it is easy to conclude that (w?®) = Hy, ie., w®™ & Hy.

The order and number of reflections follow from Lemma 2.2 by the calculation

n n 2n  2n
G| =2|D,||H| = 2(4n)—, 2|H Ll —2=2— ( >—2.
G| = 2Dal| ol = 2(4n) ", 2AHy|+ || -2 =22+ (T + 5

It follows from the general theory that the base groups for different reflection systems
are different reflection groups. This can also be seen directly here, by considering the
orders and number of reflections. Suppose that the orders were equal, i.e.,

8n2 _g n? . 2n 2n
ab  a'lf ab  a'b’
then from the number of reflections being equal, we have

2n+2n+2n 2_2n+2n+2n 5 1+1_1+1
ab  a b Cdy b a b o UV

and since the map (a,b) — £ + 1 is bijective on €, we conclude that (a,b) = (¢/,V'). O
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Since the order of any normal subgroup H which gives a reflection group Gp, (LEZ?b), H)

(in canonical form) must divide
2n  2n

(n) | _ _ n
Loy = Tt 2(a+ b)%,

we can only have H = D,,, when (a,b) = (1,1), i.e., L = LE;L’)D =D, Hy = (w?), giving
the higher order group

Gp,(Dn, Dn) = G({1,w, j,wji}, {w, j}), (5.31)

for the base group Gp, (D,,C,). For n even, and (a,b) = (1,1), there is the second
higher order group

Gp,(Dn, Dnj2) = G{1,w, j,wji}t, {w? j}). (5.32)

for the base group Gp,(D,,C,). It is not possible to have H = D, , for any other

reflection system LEZ}b), (a,b) # 1, since |D,, /5| = 2n would need to divide

n 2n  2n _2n  2n
Ly ==+ 5 < Tl

a ?_T_FQ 3n.

These two cases withstanding, there can possibly be only one other higher order group
GDn (LEZ?b)v CZn/ab) .

Theorem 5.2 (Higher order groups for D,,) If ab is odd, then there is one higher order
reflection group for the reflection system L = LEZ?b), (a,b) € Q,, of (5.25) given by

G = GDn (LEZ,)b)a C2n/ab)7 (533)

where Hy, = Copjap = (W), and otherwise G(D,, LEZ?b), Canjab) is mot in the canonical
form. For this G,

2 dn 2 2
n*, G has — + =+ 2% 9 reflections.
ab ab a b

Moreover, these groups are all different from each other and the base groups.

G| = 16

Proof: We first observe that since ged(a,b) = 1, it is not possible to have a and b
both be even. If a is even (so b is odd), then G(D,, LEZ?b), Con/ab) contains the reflection

S 1 O [ R G O

and hence is not in the canonical form. Similarly, for b even, we have

[t )= (IR O ST ) (e 9N (5 9)
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and again G(D,, LEZ?b), Coan/qp) is not in the canonical form.

For ab is odd, in can be shown that G(DH,LEZ?b),CQn/ab) is in canonical form, by
considering all the diagonal matrices which are given by a product of reflections.

Since a higher order group corresponds to a unique reflection system L, the higher
order groups (if there is one) are not isomorphic to each other, or a base group, which
completes the proof. O

Example 5.1 For the quaternion group Qs = Ds, there are two reflection systems

2 S 2 L
Lgl?l) :QS = {1,—172,—2,],—j,k,—]€}, Lgl)g = ({LZ)J}> { 7_17]a_.]}7
of size 8 and 6, giving the base groups

Gos(Qs, Ca), |G| =32, 10 reflections,
GQS(LE??Q), 1), |G| =16, 6 reflections,

and one higher order group

Gos(Qs, Cy), |G| =64, 14 reflections.
The final reflection group is given by , i€
Gos(Qs, Qs), |G| =128, 22 reflections.

The reflection groups Gp, (LEZ}b), C,) of Theorems|5.1/and |5.2|are given by the unique
index [n,a,b,r] € A, where

A= U lnab sy U {nab 2], (5.34)

,b)EQ (a,b)eQ
(a )E " abisod(?

We will use the notation
Ghla,b,1) = G(n,a,b,7) = Gp, (L), Cr) = G{1,w", j,w’j}, {w™}), (5.35)

for these groups (the H above not being required for the base group). We observe that

o abr = n for the base group.

o abr = 2n for the higher order group (when ab is odd).

o Gy(a,b,r) has order 8nr.

« Gn(a,b,r) has 2r + 22 4+ 2% — 2 reflections.
The size of A,, depends on the number of divisors of 2n?, which we denote 7(2n?), i.e.,

7(2n?)

|An| = 9

+ 1
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Figure 3: Summary of the reflection groups for K = D,,, as they evolve from the base
group G(n,a,b, %), (a,b) € Q,, for the cases (a,b) =1 and (a,b) # 1, respectively.

» ab

We now consider when the G, (a, b, r) for different indices can give the same group.
Since isomorphic groups have the same reflection orbits, we first consider these. We
recall that since {1,w?, j,w’} generates L = LEZ)b), we have

LM, = Orb(L, 1) U Orb(L,w") U Orb(L, j) U Orb(L,w"j),
where

Orb(L,1) UOrb(L,w?) = {wm“}lgmg%n, Orb(L, 7) U Orb(L,w"j) = {webj}lgg%.

Lemma 5.3 (LEZ?b) orbits) The orbits of L = Lg:}b), (a,b) € Q,, satisfy
(i) Orb(L,w®) = Orb(L,1) if and only if % is odd.
(ii) Orb(L,w’j) = Orb(L, j) if and only if % is odd.

In particular, L can have two, three or four orbits.

Proof: We first consider the orbit of w®. We observe that Orb(L,w®) = Orb(L, 1) if
and only if 1 € Orb(L,w®). Since

WM ot = w(2m—1)a, wﬁbj ow® = —wt = wa-ﬁ-n’

the orbit Orb(L,w®) consists of all elements of the form w®mYe and w@m=Yatnr  Sych
elements can be equal to 1 if and only if (2m — 1)a = 2n or (2m — 1)a = n, with the

latter condition able to be satisfied when 2 is odd (m = %), which gives

n+aa a n+a

W 2a o w :wn:—l —— 1:jo<w2a

“ow®) € Orb(L,w?).

The argument for the orbit of w’;j follows similarly. Since

wma Owbj — —ij _ wb+nj, wfbj Owbj — w(?ﬁ—l)b .

J
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the elements of Orb(L, w’;) have the form w® =15 or W=D+ and this can be equal
to 7 only in the second case, when % is odd and 2¢ — 1 = %, which gives
ntby . b o . - ntby . b - b -
w'jowj=w'j=—j = j=1lo(w="jow’j) e Orb(L,w’j).
It is easy enough to choose n,a,b so that there are all possibilities of equality and
inequality in (i) and (ii), e.g., L has exactly two orbits if and only if n is odd. 0

From the proof of Lemma [5.3] it follows that Orb(L,w®) and Orb(L, 1) have the
same size (whether or not they are equal), and similarly for the other pair of orbits, so
we conclude

20 s odd;
|orb(L,wa)y:\orb(L,1)y:{;’ a 00 (5.36)

) glseven,

2 n s odd;
|0rb<L,wbj>|=|0rb<L,j>|={:’ p o (5.37)

> 1seven,

Theorem 5.3 (Isomorphisms) The only reflection groups G = G(n,a,b,r) for different
indices which are isomorphic are given by the infinite family of index pairs

n,1,n,2], [2n,2,n,1], n odd, (5.38)

with an isomorphism G(n,1,n,2) — G(2n,2,n,1) given by

10\ _ (0 & 0 By (0 0 by we o
0 —1 —k 0)° bt 0 bt 0) WhJy, Wimen

Proof: Suppose that G = G(n,a,b,r) and G’ = G(n/,d',V/,r") are isomorphic, then
all their reflections have order 2, and by Lemma (3.1, we have

H=Cy,, H =1 |G=2G = n =2n,

so that r = 2, and ' = 1, i.e., a’,‘—l;, = 1. There are two possibilities, depending on
whether GG is a higher order group, or a base group, respectively, i.e.,

% =1, lb =1 = ab =n'=2n=2a, (5.39)
a a
/!
% =2, % =1 = db=n"=2n=4ab. (5.40)
a a
From |L'| = |L| 4 2, these give
"+ b
2n/aajl_)/ :2na; +2 = d+V=a+b+1, (5.41)
"+ b
2n’aa7Lb, - 2na:b +2 = d+V=20a+b)+1 (5.42)
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Since a'l’ = 2n, either o’ or 0’ is even (they have no common factors), with the other
being odd. In the first case, implies a + b =a’ + b — 1 is even. But a and b have
no common factors, so they must both be odd, and hence n = ab is odd.

The reflection system L(fﬂ/) for G(2n,a’,b',1) must have an orbit of size 2. Since
2 < 28 Lemma [5.3/and

4n
F =2 (QZTT,Z Odd)7

give two possibilities
2n
? =

2 (2 even),

ie.,
a=1, UV =2n, a=2UV=n.
Consider the case: o’ =1, ' = 2n. From (5.39), and (5.40), (5.42), we have
a+b=2n, ab=n = a=n—+vVn®—n,
n n—+v/n?—2n

e a =
2 2
Since n and n — 1 have no common factors, the square root of n* —n = n(n — 1) above
cannot be an integer, and similarly n? — 2n = n(n — 2) cannot be a perfect square for

n # 2. Thus an isomorphism with @’ = 1, b’ = 2n is not possible.
For the other case: o' =2, V' =n, (5.39), (5.41)) and (5.40)), (5.42)), give

a+b=n+1, ab=n =— a=1, b=n,

n+1 n _n+1—\/n2—6n—|—1

a+b=n, ab=

a+ 5 a 5 a 1
The latter case is not possible, since for n?—6n+1, n # 0, to be a perfect square, we must
have n = 6, which gives a = 711 = g For the first case, we obtain the indices [n, 1,n, 2],

[2n,2,n, 1], where n is odd (as previously observed), and corresponding groups
G=G(n,1,n,2), G =G(2n,2,n,1).
Let w be a primitive 4n = 2(2n) root of unity, so the reflection systems are
L=L{)y = L{LW j (*)'7)) = L({L.e? 5, —5}) = LHLw* 5),

L'=LE" = L({1,w% j,w"j}) = L{1,w? j,ij}) = L({1,w?, 5. k}),
where |L'| = |L| + 2, gives
L'=LU{k,—k}.

Both reflection groups have three orbits of reflections (of order 2), respectively

(o )G 4% 0) 6 dn 1 o) eervi

L N s Y (S Y ) R ( (LA R AN P!

It is easy to verify that

1 0 0 k 0 b 0 b ()
R N I G

gives an isomorphism G — G’ (which is defined by its action on generators). 0
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Table 2: The imprimitve reflection groups for the dicyclic group D,,, n > 2, including
the particular case Dy = Q)s. Those for which H is cyclic are of the form G,(a,b, ).
The base groups have H = {}, and the £ given is a generating set for the corresponding
reflection system. The only isomorphism is GDTL(L§?7)n), Cy) = GD%(Lg%, 1), n odd.

K L || H order | reflections L H
Qs | Qs |38 Qs 128 | 22 {11} {i, 7}
Qs | Qs |8 Cy 64 | 14 {1,1} {4}
QS QS 8 CQ 32 10 {17i7j7 k} {}
2 .
Qs | LY, | 6 1 16 |6 {1,i,5} {
D, | D, |4n D, 32n% | 12n — 2 {Lw,j,wi} | {w,j}
Dn Dn 4n Dn/2 = <w27.j> 16n 8n —2 {vaja wj} {WZaj}
Do | Ligy | 2245 | Oy =) 165 | B2+ 2 2] {Lo'ju'} | {w")
n n n a n? n n n a 5 e
Do | Ligy | 25 | Cq= ™) |85 | B+ 45 -2 {Letjwl} | {)

The stipulation of the orbit size being 2 is necessary in the above proof.

Corollary 5.1 Reflection groups G(n,a,b,r) and G(n',a’, V', 1), n < n', with reflections
of order only two, have the same order and the same number of reflections, but are not
isomorphic, in the following cases

(1) n=ab is odd, a # 1, and

(a+b+1)% —8ab = c?, ce{1,3,5,...},

. : a+b+l4c atbtl—c
with the groups being G(n,a,b,2) and G(2n, “=5=¢, “252=¢ 1),

(i) n = 2ab is even, and

(2(a +b) +1)* — 8ab = ¢, ce{l,3,5,...},

. . 2(a+b)+1+c 2(a+b)+1—c
with the groups being G(n,a,b,2) and G(2n, 5 , 5 1).

Proof: The assertion that the groups have reflections of order only two, the same
order and number of reflections, with » = 2, 7/ = 1, in the proof of Theorem [5.3] leads
to the necessary and sufficient conditions (5.39)), (5.41)) and (5.40), (5.42).

For the first pair, n = ab is odd, n’ = 2n, and

atl =2ab, o +V =a-+b+1.

The condition a # 1 excludes the isomorphism of Theorem [5.3] Using o'+ = a+b+1
to eliminate a’ (equivalently ') from a'b’ = 2ab gives the quadratic equation

> — (a+b+ 1)z +2ab =0,
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which has @’ and V' as roots. The descriminant of this equation is (a + b + 1)* — 8ab,
which therefore must be a square, say ¢?, giving the formulas
, a+b+1—-c

= V- b/:
a 5 s

a+b+1+c
5 )

Since ¢ = b’ — a’, of integers with different parity, we conclude that ¢ must be odd.
The argument for the second pair is similar, with @’ and &’ being the roots of

2% — (2(a + b) + 1)z + 4ab = 0,

ie.,

a,_2(a—|—b)—|—1—c b,_2(a—i—b)+1—|—c
n 2 ’ B 2 '

where
(2(a +b) +1)* — 16ab = c*.

a

Example 5.2 There appear to be infinitely many type (i) index pairs of C’orollary
with the first few being

[273,7,39,2], [546,21,26,1],  [315,7,45,2], [630,18,35, 1],

357,7,51,2], [714,17,42,1],  [975,13,75,2], [1950, 39,50, 1],
[1001,11,91,2], [2002,26,77,1],  [1105,13,85,2], [2210, 34,65, 1],
(1365, 15,91,2], [2730,42,65,1],  [1885,13,145,2], [3770,29,130, 1].

Y

There are infinitely many of type (ii), including the family
2m(2m —1),m,2m —1,2], [4m(2m —1),2m — 1,2m, 1], m=1,23,...,
which may in fact be all of them.

We now consider how our reflection groups for D,, relate those of Cohen [Coh80)].
No isomorphisms were found in [Coh80], since the Lemma 2.3 (stated without proof
there) says that one must have K = K’ to obtain isomorphic groups. This is false (our
Theorem , and also Example .

Table I of [Coh80] has seven lines for the reflection groups for D,,. The lines 4,5

give the reflection groups Gp, (D,,Dy/2) and Gp, (D, D), respectively, and the lines
1,2,3,6,7 give groups of the form Gpn(L(Z?b ,Cy) = G(n,a,b,r). The parameters for

these groups are summarised in Table [3| (see Example . These do not account for
all the groups G(n,a,b,r) in our classification, with the first reflection groups missing
being given by the indices

6,1,3,4], [9,1,3,6], [10,1,5,4], [12,1,3,8], [15,1,5,6], [15,1,3,10], (5.43)

[18,1,3,12], [18,1,9,4], [20,1,5,8], [21,1,7,6], [21,1,3,14], [22,1,11,4],
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[24,1,3,16]), [25,1,5,10], [26,1,13,4], [27,1,9,6], [27,1,3,18], [28,1,7,8],
30,1,3,20], [30,3,5,4], [30,1,15,4], [30,1,5,12], [33,1,3,22], [33,1,11,6],

These are the indices [n,a,b,r] € A, with

(ab) £ (1,1, r#2  rin r|om,

and give higher order groups, with the base group appearing in either line 2 or 3.

Table 3: Cohen’s Table I (lines 1,2,3,6,7)

K H |L| a € Aut(K/H) |G| [n,a,b,r]f

D, Com | 4m 1 16m?2 [m,1,1,2m]

Daome Com | 2m{ged(26,r+1) Qy, 0<r<e, 7 odd 32m2¢ [2ml,ged (£, 251 ) ,ged (¢, ZEL ), 2m)
+ged(2¢,r—1)} Z:gcd([,%)gcd(@,%)

D(2m+1)€ 0277,+1 (2m+1){gecd(2¢,r—1) BTa 0<r<¢, r odd 8(2m + 1)2£ [(2m+1)l,gcd(€,%),gcd(l,%),2m+1]
+ ged(24,r+1)} L=gcd(¥, 7‘;1)gcd(£, rgl

D2m+1 Cy 2{ged(2m+1,r+1) Ay 0<r<m, 2m—+1= 16(2m + 1) [2m+1,gcd(2m+1,r—1),gcd(2m+1,r+1),2]
+ged(2m+1,r—1)} ged(2m+1,r+1) ged(2m+1,r—1)

D 1 ged(2m,r+1) BT? 0<r<m, r odd &m [m,gcd(m,Tgl),gcd(m,%ﬂ),l]
+ ged(2m,r—1) ngcd(m,rzl)gcd(m,Tgl)

1 The index given may not have a < b for all choices of m, ¢, r. Lines 2,3,5 are the base group (abr = n).

We consider the first of the new reflection groups given by the indices ([5.43]).

Example 5.3 (Groups of order 192) The previously unknown reflection group with index
6,1,3,4] has order 192. The collection of all reflection groups of this order is

G identifier | refs | |L| | H
6,1,3,4] (192,385) |22 |16 | Cy
[12,1,6,2] | (192,1312) | 30 | 28 | Cy
[12,2,3,2] | (192,1330) | 22 | 20 | Cy
[24,1,24,1] | (192,463) |50 |50 |1
[24,3,8,1] | (192,471) |22 |22 |1
Go(LS),Cy) | (192,1486) | 22 |20 | Oy
Gy (192,963) | 30

We observe that there are four groups with 22 reflections, each for a different group K,
including an example of type (ii) in C’omllary (reflections of order two only, ¢ =5).
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We now consider the possibility of an isomorphism between a reflection group G
given by a polyhedral group (see Table [1)) and a reflection group G’ given by a dicyclic
group (see Table . For such an isomorphism

e The H for the group G must be a normal subgroup of some dicyclic group, i.e.,
H =1,C5,Qs (T,0,T are not subgroups of a dicyclic group).

« The group G must have at least two reflection orbits (Lemma [5.3]).

In view of Table[l], this narrows down the possible orders of G to 48,96, 192, 384, 480, 768.
Since there are finitely many reflection groups of those orders, we can simply examine
the reflection structure of each group, or their isomorphism class (as in Example for
groups of order 192). This calculation, see Example , gives the following.

Proposition 5.1 There are no isomorphisms between the reflection groups given by the
polyhedral groups and those given by dicyclic groups.

Example 5.4 The reflection groups of orders 48,96, 384,480, 768 are the following

G identifier | refs | |L| | H G identifier refs | |L| | H
3,1,3,20« | (48,39) |10 |8 |Cy 12,1,3,4] | (384,12471) |38 |32 | ¢,
6,2,3, 1+ | (48,39) |10 |10 |1 24,1,12,2] | (384,14501) | 54 | 52 | Gy
6,1,6,1] (48,37) |14 |14 |1 24,3,4,2] | (384,14600) | 30 | 28 | Gy
Gr(LT, 1) | (48,20) |12 |12 |1 48,1,48,1] | (384,1945) |98 |98 |1
G (48,29) | 12 48,3,16,1] | (384,1952) |38 |38 |1
Gs (48,33) | 14 Gr(T,Qs) | (384,18130) | 38 |24 | Qs
6,1,3,2] (96,217) | 18 | 16 | Cy [30,1,15,2] | (480,1177) |66 |64 | Cy
[12,3,4,1] (96,119) |14 |14 |1 130,3,5,2] | (480,1077) |34 |32 | C,
[12,1,12,1] | (96,111) | 26 | 26 |1 60,3,20,1] | (480,349) |46 |46 |1
G (LIQ,CQ)* (96,190) | 14 | 12 | Cy 60,5,12,1] | (480,346) |34 |34 |1
Go(LO. 1) | (96,190) | 14 |14 |1 60,4,15,1] | (480,877) |38 |38 |1
Go(L9,1) | (96,192) | 18 |18 |1 60,1,60,1] | (480,869) | 122 | 122 | 1
Ghs (96,192) | 18 Gz(L3,,Cy) | (480,957) 34 |32 | Cy
Gs (96,67) | 18 Gr(LL,Cy) | (480,953) |22 |20 |y

Here, we include the primitive Shephard-Todd groups, with % indicating an isomorphism.

6 Computations and concluding remarks

Our results combine to give the following classification.

Theorem 6.1 (Classification) Every finite imprimitive irreducible rank two quaternionic
reflection group can be written uniquely in the canonical form, except for the following

GO( 14> )g GT(L£7C2)7

which have two canonical forms. Tables[1] and[g list all the possible canonical forms.

G(n,1,n,2) 2 G(2n,2,n,1), n odd, (6.44)
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There is an informal group (including Taylor, Bellamy, Schmitt, Thiel) working on a
systemic labelling and implementation of the quaternionic reflection groups in computer
algebra packages such as magma and gap. The classification of Theorem suggests a
unique label, except for the cases , where possible options are

o Choose the higher order group, so the group is defined over a smaller K.

o Choose the base group, so that every reflection system leads to a reflection group
in the classification.

o Live with the isomorphisms (/6.44]).

The £ and H listed in Tables|l|and , easily allow for the groups G (L, H), reflection
systems L(L) and orbits Orb(L, a) to be calculated. For example, in magma, the groups
G(n,a,b,r) are given by

Gn := function(n,a,b,r)
F:=CyclotomicField(4*n); z:=Root0fUnity(2#n); Z:=IntegerRing();
Q<i,j,k>:=QuaternionAlgebra<F|-1,-1>;
w:=Q! ((z+ComplexConjugate(z))/2+(z-ComplexConjugate(z))/(2xRoot0fUnity(4))*1i);
gensH:={Matrix(Q,2, [w (Z!(2%n/r)),0,0,11)};
gensL:={Matrix(Q,2, [0,c,c"-1,0]) : c in {1,w’a,j,w b*j}t};
return MatrixGroup< 2,Q | gensH join gensL >;

end function;

with the index set A,, being given by

Ln := function(n)
inds:={}; Z:=IntegerRing(Q);
for x in [1..n] do for y in [x.. n] do
if LCM(x,y) eq n then
a:=z!(n/y); b:=Z!(n/x);
Include(~inds, [n,a,b,Z! (n/(a*b))]);
if Is0dd(axb) then
Include(“inds, [n,a,b,Z! (2xn/(axb))]);
end if;
end if;
end for; end for;
return inds;
end function;

and L(L) can be recursively calculated from £ (similarly for Orb(L,a)) via

function GenerateL(elts)
eltsiterate:=elts join {a*b"-1*a: a in elts, b in elts};
if eltsiterate eq elts
then return elts;
else return GenerateL(eltsiterate);
end if;
end function;
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Finally, we consider the classification of the imprimitive quaternionic reflection
groups G C U(H") of rank n greater than two, in the context of our methods.
Just as we chose 1 € L, so that

0 1Y). .
(1 0) is a reflection in G,

leading to the canonical form , GG may be put in a canonical form where its elements
have the form BPF,, where B is an n x n diagonal matrix with entries in K, and P, a
permutation matrix given by o € S,. Here P, for a transposition o = (a ) is a
reflection which fixes the orthogonal complement V(jﬁ of V,, 5 = spang{en, ez}, and the
vector e, + eg. The (parabolic) subgroup of G generated by the reflections in G which
fix Vafﬁ pointwise, is a rank two imprimitive reflection group. This leads to the following
(Theorem 2.9 of [Coh80]).

Theorem 6.2 (Classification) Every finite imprimitive irreducible quaternionic reflec-
tion group G of rank n > 3 can be written uniquely in the canonical form

by

Gn(K,H)::{ P, : bl,...,bn_leK,heH,aeSn},

bnfl
(by+bp1)"th
(6.45)
where K is a finite subgroup of U(H), and H is a subgroup with [K, K] C H C K.
In particular, these groups have

|G (K, H)| =n!|H||K|"", Gn(K,H) has n(|H| — 1) + |K| reflections.

Proof: The key idea is that because G contains the subgroup {F, },es, = Sp, it acts
the same on any d-dimensional subspace of the form spang{e,,, ..., eq,}. If its restriction
to a two-dimensional subspace is given by ([2.11]), then on a three-dimensional subspace,
we have

-1

b 0 0 10 0y /b 0 0\ /0 0 1\ /b 0 O 010
0o 0l=[00 1[0 b, O[O 1T 0|0 by O 00 1|, bekK,
0 0 1 01 0/\0 0 1/\1 0 0/\0 O 1 1 00

so that on a two-dimensional subspace it acts as an imprimitive reflection group with
L = K, and hence by Lemma , [K,K] C HC K. Again, in view of (2.11)), G must
contain the diagonal elements

by 1 1
byt bibs
1 (biby) .
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and hence the elements of ((6.45)).
It remains to show that the set of matrices in (6.45) forms a group, as observed
(without proof) in [Coh80]. It is sufficient to show that a product of two diagonal

matrices from is another, i.e.,
(ay-+an_1) tha(br - bu_1) thy = (a1by - - - an_1by_1) " 'h, Jh € H,
or, equivalently,
(ar-+ap_1) (by-+ by 1) 'H = (arby -~ ap_1bp_1) " H. (6.46)

We can prove this by induction on n, using the fact that [K, K] C H implies the cosets
are permutation invariant, i.e., ajas---a,H = ay,1042 - - - aynH, for any permutation o.

Suppose that (6.46]) holds for n > 2 (it holds for n = 2 by Lemma [2.2). Then, we
calculate

(al”'an)71<bl"'bn)71H a’;l
1

aq - Qp— 1)71b71(b1 s bnfl)ilH
. ( 1) H(by---b,_1)"'H (permutation invariance)

(
=b,a
= (anbn)~ (a1b1 - Gp_1bp_1) *H (inductive hypothesis)
= (aiby - -~ apby) ' H,

which completes the induction. O

We observe, from Tables [1| and , that Go(K, H) = Gk (K, H), and for n > 3 either
» There is one imprimitive reflection group G, (K, K), when K =Z,D,, (n is even).
« There are two imprimitive reflection groups G, (K, H) (base group) and G, (K, K),
when K =7T,0,D, (nis odd), where H = Qg, T, C,, (respectively).
7 Acknowledgment
I wish to thank Don Taylor for sharing his extensive knowledge of reflection groups and
their implementation in magma, by answering my numerous questions over many years.
8 Appendix
We recall Stringham’s list of the elements of the binary polyhedral groups [Str81]
The Double-Tetrahedron Group
ie? j€7 ks?
(1—|—i+j+k)” (1—i—j+k’>’7 <1+i—j—k)77 (1—i+j—k:>”
2 ’ 2 ’ 2 ’ 2 ’
e=1,2,3,4 n=123456  N=24.
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(1+z—|—j+k> <1—Z—j+/{7> <1+z’—j—k)” (1—z'—|—j—
’ 2 ’ 2

(

The Double-Oktahedron Group

() GF) G5)

) ) G

(
(e () (A

k)”

£=1,2,3,4,5,6,7,8, n=1,23,456  (=1234  N=48.

The Double-Ikosahedron Group

i, I3 3
1+ 0]+ Thk\*® ]+0k;—|—72 k+oi+T7175\°
() %) )
1—0j +Tk\® ]—ak;—ﬂ € k+o0i— 17\
(=) (=) )
1+ 07 —1k\® j—ak—l—ﬂ k—oi—Tj\¢
(). (=) =)
(i—Uj—Tk)e (j+ak—72>5 (k—oi—l—m)g

2 ’ 2 ’

1+z’+j+k)n (1—i—j+k> <1+z—j—k)" (1—z'+j—

2 2
(1—I-Tj~|—0k:>’7 (1—1—7]{:—1—0@')’7
2 ’ 2

(=5
(1+Tj—ak) | (1+7’k—m)77’ (W])”

2

T—|—(7j+k? ¢ T—i-ak—l—z < T+oi+]
(=) =) )
7'+O']— ¢ T—l—ak i\©¢ T+ 0i—j\°¢
(=5=) () (2 )
521,2,3,4,; n:1,2,3,4,5,6; ¢ = N =120
_14+V5 0_1—\/5
2 2
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Example 8.1 We give an illustration of how we deduced the indices for the reflection
groups G = Gp, (L, H) in Table I of [Coh80]. The first entry has

n=m, H=Cy,, |Ll=4m, |G|=16m>

Since 5 5
n n
Ll=4m=— 4+ —

we must have (a,b) = (1,1), and the index is
(n,a,b,r] = [m,1,1,2m].

The base group with index [m, 1,1, m| appears in lines 2 and 3 for n = m even or odd.
The second entry has

n=2ml, H=Cy, |G]=32m?,

and
|L| = Qm(gcd(%,r — 1) + ged(26,r + 1)), 0<r<¥ r odd,

where
r+1 r—1

¢ =ged(l, ——) ged(¢ .
ged (6, =) ged (1, ")

By writing

_2n 2n 2(2ml)
L] = =+ 5 = =5 (ged (07 = 1) + ged (2,7 + 1)),

we deduce that

20

B 1 20 r+1
~ged(20,r + 1)

r —

a

).

Here, one can have a < b or a > b. Since n = 2ml, we have a | n, b | n, and we verify

r+1
=)

1 1
=35 ged(ged(26,r — 1), ged(20,r + 1)) = 52 =1,

-1
ged(a, b) = ged(ged(?, TT), ged(?,

which follows from ged(r — 1,r + 1) = 2, for r odd. Hence the index for this group is

—1 1
) L)a ng(ﬂ, T;—)? Qm]v

[n,a,b,r] = [2ml, ged (¢ 5

and in particular, we obtain the index [n,1,1,n] for n even, of the base group for line 1.
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