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ABSTRACT

Many “highly symmetric” configurations of vectors in Cd, such as the vertices of the
platonic solids and the regular complex polytopes, are equal–norm tight frames by virtue of
being the orbit of the irreducible unitary action of their symmetry group. For nonabelian
groups there are uncountably many such tight frames up to unitary equivalence. The aim
of this paper is to single out those orbits which are particularly nice, such as those which
are the vertices of a complex polytope. This is done by defining a finite class of tight
frames of n vectors for Cd (n and d fixed) which we call the highly symmetric tight frames.
We outline how these frames can be calculated from the representations of abstract groups
using a computer algebra package. We give numerous examples, with a special emphasis on
those obtained from the (Shephard–Todd) finite reflection groups. The interrelationships
between these frames with complex polytopes, harmonic frames, equiangular tight frames,
and Heisenberg frames (maximal sets of equiangular lines) are explored in detail.

Key Words: (unitary) reflection, pseudoreflection, (Shephard–Todd) finite reflection
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1. Introduction

It was observed as early as [BC40] (cf. [VW04]) that (effectively) the orbit of a nonzero
vector v ∈ Cd under the irreducible unitary action of a finite group G is tight frame for
Cd, i.e., provides the “generalised orthogonal expansion”

f =
d

|G|
1

‖v‖2

∑

g∈G

〈f, gv〉gv, ∀f ∈ Cd.

This explains why “highly symmetric” configurations of vectors tend to be tight frames.
For finite abelian groups, and possibly reducible actions, there are a finite number of tight
frames which can be obtained in this way (see [VW05]), the so called harmonic frames.
However, for nonabelian groups, there are uncountably many tight frames (up to unitary
equivalence) which can be constructed in this way (see [VW05], [H07]). This is easily seen
for the unitary action of the dihedral group D3 = 〈a, b〉 (the smallest nonabelian group) on
IR2 given by a acting as rotation through 2π

3 and b as reflection across the x–axis. For each
vector v = (cos θ, sin θ), 0 ≤ θ ≤ π

6 , the tight frames (gv)g∈D3
are unitarily inequivalent

(see Fig. 1).

Fig 1. The unitarily inequivalent tight frames for v = (cos θ, sin θ), θ = {0, π
12 ,

π
6 }.

We single out the first tight frame in Fig. 1 of three vectors as being “highly symmetric”
since the vector v is fixed by the subgroup of generated by reflection across the x–axis, and
so has a small orbit under the symmetry group D3. In the same way, the third tight frame
of six equally spaced vectors is also highly symmetric (in relation to a larger symmetry
group). In this paper, we formalise these ideas. The key features of the class of highly

symmetric tight frames that we define are:

• There is a finite number of highly symmetric tight frames of n vectors in Cd.

• They can be computed from the representations of abstract groups of order ≤ n!
(n−d)! .

• It is possible to determine whether or not a given tight frame is highly symmetric.

• The vertices of the regular complex polytopes are highly symmetric tight frames.

• Some harmonic frames are highly symmetric tight frames.

• All finite reflection groups give highly symmetric tight frames.

The rest of the paper is set out as follows. Next, we give the basic frame theory and
representation theory we require, being mindful that our audience is likely to know only
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one of these fields well. In Sections 3 and 4, we define highly symmetric tight frames, and
outline their construction. In essence, we start with the symmetry group as an abstract
group, and look for orbits (given by irreducible representations) with a small number of
vectors. In Section 5, we show that the vertices of the regular complex polytopes are indeed
highly symmetric tight frames. In Sections 6 and 7, we describe the highly symmetric
tight frames which can be obtained from the imprimitive and primitive (Shephard–Todd)
reflection groups. Finally, we consider the connection with Heisenberg frames (sets of
equiangular lines), and an example given by the Monster group.

2. Frames and representations

A sequence of vectors Φ = (fj)j∈J is a frame for a (real or complex) Hilbert space H
if there exist (frame bounds) A,B > 0, such that

A‖f‖2 ≤
∑

j∈J

|〈f, fj〉|2 ≤ B‖f‖2, ∀f ∈ H, (2.1)

and Φ is tight if one can choose A = B. A tight frame is normalised if A = B = 1 (which
can be achieved by a unique positive scaling). If (fj) is finite then (2.1) is equivalent to
(fj) spanning H, which in turn is equivalent to to the “generalised orthogonal expansion”

f =
1

A

∑

j∈J

〈f, fj〉fj , ∀f ∈ H,

when (fj) is tight (by the polarisation identity), which of course is the point of interest.
Finite frames, particularly tight frames, have recently found numerous applications, which
include quantum information theory, signal analysis, and orthogonal polynomials of several
variables (cf. [RBSC04], [CK07], [W09]). Our motivation is find tight frames which are
distinguished by having a high degree of symmetry, which is known to be advantageous for
such applications. Henceforth, we will consider only finite frames (spanning sequences),
and, without loss of generality, suppose that H = IFd, where IF is IR or C.

We now list the basic definitions and results from frame theory (cf. [C03], [HKLW07],
[W11]) and representation theory (cf. [JL93], [LT09]) that we require.

Finite spanning sequences (fj) and (gj) for vector spaces V and W are similar if there
is an invertible linear transformation Q : V → W with Qfj = gj , ∀j. If (fj) and (gj) are
finite normalised tight frames (for some Hilbert spaces), then they are similar if and only
if Q can be taken to unitary, in which case we say they are unitarily equivalent. Each
finite frame Φ = (fj) for a Hilbert space H is similar to a unique normalised tight frame
up to unitary equivalence, namely the canonical tight frame (f can

j ), which is defined by

f can
j := S− 1

2 fj , S : H → H : f 7→
∑

j

〈f, fj〉fj ,
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where the positive linear operator S = SΦ above is the frame operator. This normalised
tight frame is determined (up to unitary equivalence) by its Gramian matrix

PΦ = Gram(Φcan) := (〈f can
k , f can

j 〉)j,k = (〈fk, S
−1fj〉)j,k,

which is a projection matrix. Indeed, the sequence of columns of PΦ gives a canonical copy
of this frame (with the Euclidean inner product, and H the range of the Gramian).

A representation of a finite (abstract) group G on the vector space IFd is a group
homomorphism ρ : G→ GL(d, IF), where GL(d, IF) denotes the general linear group (of
all invertible linear transformations IFd → IFd). We say ρ1 and ρ2 on IFd are equivalent
representations of G if there is an invertible linear map T : IFd → IFd such that

ρ2(g) = Tρ1T
−1, ∀g ∈ G.

When the representation is clear from the context, e.g., if G is a subgroup of GL(d, IF),
then we will often abbreviate the linear action g · v := ρ(g)v it induces on IFd by gv. The
stabiliser (isotropy group) of a vector v under this action will be denoted by

Stab(v) = StabG(v) := {g ∈ G : gv = v}.

Moreover, to avoid confusion, we reserve the notation M∗ for the Hermitian transpose of
a linear map (or matrix) M with respect to the Euclidean inner product.

A representation ρ can be “made” to be unitary by defining an inner product on IFd

by

〈x, y〉ρ :=
∑

g∈G

〈gx, gy〉, (2.2)

where 〈gx, gy〉 is the Euclidean (or any other) inner product. We compute

〈x, hy〉ρ =
∑

g∈G

〈gh(h−1x), ghy〉 = 〈h−1x, y〉ρ, ∀h ∈ G,

so that ρ(h) : IFd → IFd is unitary with respect to 〈·, ·〉ρ. We say that ρ is a unitary

representation if IFd is understood to be an inner product space for which the action on
IFd is unitary, i.e., each ρ(g) is a unitary transformation.

It is easy to verify that 〈x, y〉ρ = 〈x,Ay〉, where A = Aρ : IFd → IFd is positive definite
with respect to the Euclidean inner product (henceforth denoted 〈·, ·〉), and given by

A = Aρ =
∑

g∈G

ρ(g)∗ρ(g), (2.3)

and that ρA := A
1

2 ρA− 1

2 is a unitary representation with respect to the Euclidean inner
product. In this way, each representation is similar to a unitary representation.

A group frame (or G–frame) for IFd (with 〈·, ·〉) is a frame Φ of the form

Φ = (gv)g∈G, gv := ρ(g)v,
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where ρ : G→ GL(d, IF) is a representation of a finite group G. The canonical tight frame

Φcan = (S− 1

2 gv)g∈G is a G–frame, which is given by an equivalent representation, i.e.,

Φcan = (ρS(g)w)g∈G, ρS(g) := S− 1

2 ρ(g)S
1

2 , w := S− 1

2 v.

A representation is irreducible if for every nonzero v ∈ IFd the orbit {gv}g∈G spans IFd

(i.e., (gv)g∈G is G–frame). Every orbit (gv)g∈G (v 6= 0) of an irreducible unitary action is a
tight frame, and this characterises irreducible unitary representations [VW04] (cf. [BC40]).

If a G–frame Φ is given by an irreducible representation, then the Gramian matrix of
its canonical tight frame (which defines Φcan up to unitary equivalence) can be computed
without inverting the frame operator S = SΦ.

Lemma 2.4. If Φ = (gv)g∈G is a group frame given by an irreducible representation
ρ : G→ GL(d, IF), then the canonical tight frame Φcan = (φcan

g )g∈G satisfies

〈φcan
h , φcan

g 〉 = 〈ρ(h)v, S−1ρ(g)v〉 =
d

|G|
〈v,Aρ(h−1g)v〉

〈v,Av〉 , A :=
∑

g∈G

ρ(g)∗ρ(g). (2.5)

Proof: We recall that 〈x, y〉ρ = 〈x,Ay〉, where A is given by (2.5). The G–frame

Ψ = A
1

2 Φ = (ρA(g)w)g∈G, ρA(g) := A
1

2 ρ(g)A− 1

2 , w := A
1

2 v is similar to Φ, and is
tight (since it is the orbit under an irreducible unitary action). Since similar frames have
canonical tight frames with the same Gramian, and the canonical tight frame of a tight
frame is just its normalisation, 〈φcan

h , φcan
g 〉 = 〈ρ(h)v, S−1ρ(g)v〉 is equal to

〈ψcan
h , ψcan

g 〉 =
d

|G|
〈A 1

2 ρ(h)v,A
1

2 ρ(g)v〉
〈A 1

2 v,A
1

2 v〉
=

d

|G|
〈ρ(h)v,Aρ(g)v〉

〈v,Av〉 .

Equivalently, one can directly verify the inversion formula: S−1 = d
|G|

1
〈v,Av〉A.

Since ρ is unitary with respect to 〈·, ·〉ρ, we have

〈ρ(h)v,Aρ(g)v〉 = 〈ρ(h)v, ρ(g)v〉ρ = 〈v, ρ(h−1g)v〉ρ = 〈v,Aρ(h−1g)v〉,

which completes the proof.

Lemma 2.4 shows that if Φ is a G–frame given by an irreducible representation, then
the canonical tight frame Φcan is a G–matrix, i.e., has the form

〈φcan
g , φcan

h 〉 = ν(g−1h), ∀g, h ∈ G, ν : G 7→ IF. (2.6)

This is also true if the representation is reducible (cf. [VW05]). Thus, for Φ a G–frame,
each row (or column) of Gram(Φcan) is a permutation of the “angle” sequence (ν(g))g∈G.
This motivates the following definition.

The angles (or angle multiset) of a G–frame Φ for IFd is the multiset

Ang(Φ) :=
|G|
d

{〈φcan
1 , φcan

g 〉 : g ∈ G, g 6= 1} = {〈v,Aρ(g)v〉〈v,Av〉 : g ∈ G, g 6= 1},
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where A is given by (2.3). The angle multiset of a group frame, which is easily calculated,
is an invariant of its similarity class, though it need not define it. The set of angles of the
line system associated with Φ (cf. [LT09]) is

Θ(Φ) := {|z| : z ∈ Ang(Φ), |z| 6= 1}.

If s is the cardinality of Θ(Φ), i.e., the number of different moduli of the angles in Ang(Φ),
then we say Φ is s–angular (or equiangular when s = 1). Let n be the number of vectors
in Φ, and k be the order of the group of scalar matrices which map Φ to Φ. The estimate
for the number of angles in a line system (cf. [LT09]) implies that

n ≤ b := k

{
(

d+s−1
s

)(

d+s−2
s−1

)

, 0 ∈ Ang(Φ);
(

d+s−1
s

)2
, 0 6∈ Ang(Φ).

(2.7)

If G is abelian, then a tight G–frame is called a harmonic frame (whether of not its
elements are explicitly indexed by G, of which there may be more than one possibility up
to group isomorphism). There is a finite number of harmonic frames of n vectors for Cd

up to unitary equivalence, and these can be constructed from the character tables of the
abelian groups of order n (see [HW06], [CW10]).

3. Highly symmetric tight frames

Our definition of a frame being “highly symmetric” is closely tied to the notion of a
“symmetry” of a spanning sequence.

The symmetry group of a finite spanning sequence Φ = (fj)j∈J for a vector space
X (see [VW10]) is the group of permutations on its index set J given by

Sym(Φ) := {σ ∈ SJ : ∃Lσ ∈ GL(X) with Lσfj = fσj ,∀j ∈ J}.

Since linear maps are determined by their action on a spanning sequence, it follows that
each Lσ above is unique (and can be computed), so that

πΦ : Sym(Φ) → GL(X) : σ 7→ Lσ (3.1)

is a representation, which is unitary if Φ is a tight frame for X = IFd. Clearly, similar
frames have the same symmetry group. We call (3.1) and the associated action

Sym(Φ) ×X → X : (σ, v) 7→ Lσv

the representation (action) induced by (the symmetries of) Φ.
We will be interested in frames of distinct vectors, which will be presented as the set

obtained from a G–orbit. We will not labour the point that these must be thought of as
a finite sequence to define the symmetry group, as above (or even to be a frame by our
formal definition). However, we do observe that in this case the action of the symmetry
group Sym(Φ) on Φ is faithful, and so can (and will) be thought of as a subgroup of GL(X).

If Φ is aG–frame, then its symmetry group containsG (via the regular representation),
so that |Sym(Φ)| ≥ |G| = |Φ|. The following definition ensures |Sym(Φ)| > |Φ|.
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Definition 3.2. A finite frame Φ of distinct vectors is highly symmetric if the action of
its symmetry group Sym(Φ) is irreducible, transitive, and the stabiliser of any one vector
(and hence all) is a nontrivial subgroup which fixes a space of dimension exactly one.

As discussed in the introduction, the “Mercedez–Benz” frame of three equally spaced
vectors in IR2 (the first frame of Fig. 1) is a highly symmetric tight frame, by virtue of the
fact that each of the reflections in its (dihedral) symmetry group fixes a vector.

The definition implies that there are no highly symmetric frames for 1–dimensional
spaces (cf. Example 7). Thus we now suppose d > 1.

Example 1. The standard orthonormal basis {e1, . . . , ed} for IFd is not a highly symmetric
tight frame, since its symmetry group fixes the vector e1 + · · ·+ ed. However, the vertices
of the regular simplex always are (the Mercedez–Benz frame is the case d = 2). Since both
of these frames are harmonic, we conclude that a highly symmetric tight frame may or
may not be harmonic. Moreover, for many harmonic frames of n vectors the symmetry
group has order n (cf. [HW06]), which implies that they are not highly symmetric.

If Φ is a highly symmetric frame, then |Sym(Φ)| > |Φ| (by the orbit size theorem). As
defined, a highly symmetric frame has distinct vectors, and so it may not be group frame
(cf. Example 10). Of course, Φ is a Sym(Φ)–frame where each of the vectors is repeated a
fixed number of times. Since a frame is highly symmetric if and only if the canonical tight
frame is, it suffices to consider only the tight highly symmetric frames. Before detailing
their construction, we observe that the class of highly symmetric tight frames is finite:

Theorem 3.3. Fix n,d (n ≥ d). There is a finite number of highly symmetric normalised
tight frames of n vectors for IFd (up to unitary equivalence).

Proof: Suppose that Φ is a highly symmetric normalised tight frame of n vectors
for IFd. Then it is determined, up to unitary equivalence, by the representation induced by
Sym(Φ), and a subgroup H which fixes only the one–dimesional subspace spanned by some
vector in Φ. There are a finite number of choices for Sym(Φ) since its order is ≤ |Sn| = n!,
and hence (by Maschke’s theorem) a finite number of possible representations. As there is
only a finite number of choices for H, it follows that the class of such frames is finite.

The only other finite class of tight frames that can be constructed from nonabelian
groups which is known is the central G–frames. A G–frame Φ = (gv)g∈G is said to be
central if the function ν : G → IF of (2.6) is a class function, i.e., is constant on the
conjugacy classes of G, which is equivalent to the “symmetry condition”

〈gφ, hφ〉 = 〈gψ, hψ〉, ∀g, h ∈ G, ∀φ, ψ ∈ Φ.

These frames generalise the harmonic frames (when G is abelian). In [VW08], it was shown
how all central G–frames could be constructed from the irreducible representations of G.

4. The construction of highly symmetric tight frames

The proof of Theorem 3.3 can be implemented in a computer algebra package such
as Magma and GAP (cf. [BCP97], [BEO02]) to calculate all highly symmetric tight frames
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(n, d fixed). The calculations here (results to follow) were done in Magma. Henceforth,
typewriter font will refer to Magma commands. For those unfamiliar with these packages,
we now outline the key features which make this possible:

• All (abstract) groups G of a given small order can be accessed from a list.

For example, A5, the icosahedron’s symmetry group, is the group <120,35> (number
35 on the list of groups of order 120), which can be accessed by G:=SmallGroup(120,35).

• All representations of G over IF can be computed.

For example, AbsolutelyIrreducibleModules(G,Rationals()) calculates all of the
irreducible modules (representations) of G for IF = C. So far, it is only implemented
for G a soluble (solvable) group, where Schur’s algorithm is used. The documentation
indicates that the Burnside algorithm may be implemented at some time in the future for
G nonsoluble. At present IrreducibleModules(G,K) is defined only when K is certain
cyclotomic fields (in addition to finite fields).

Since IrreducibleModules(G,K) presently does not cover all the cases of interest to
us, we focus on those frames coming from the specific (and available) representations given
by the finite reflection groups – our original point of interest. The construction of all highly
symmetric tight frames for small n, d must wait.

We now outline our algorithm, followed by an instructive worked example.

Algorithm: To construct all highly symmetric tight frames Φ of n vectors in IFd.

1. Start with an abstract group G (this will be Sym(Φ) or an appropriate subgroup).
Since n < |Sym(Φ)| ≤ n(n− 1) · · · (n− d+ 1), there is a finite number of possibilities.

2. Take all faithful irreducible representations ρ : G→ GL(d, IF).
There are a finite number of these, and we have discussed how they may be computed.

3. Find, up to conjugacy, all subgroups H of ρ(G) which fix a subspace span{v}, v 6= 0.
The command Subgroups(G) gives all such subgroups, each with generators H = 〈hj〉.
The linear system hjv = v, ∀j, is easily solved for v. Then {gv}g∈G is a highly symmetric
tight frame of |G|/Stab(v) vectors. No other subgroups of Stab(v) need be considered.

4. Determine which of the highly symmetric tight frames obtained are unitarily equivalent.

A necessary (but not sufficient) condition for unitary equivalence is that the angles be
equal. All other cases can be resolved by considering permutations of the Gram matrices.

We observe that G acts faithfully on the (distinct) vectors of such a highly symmetric
tight frame Φ, and so is (isomorphic to) a subgroup of Sym(Φ).

Example 2. Let G be the soluble group <18,3>, for which Magma gives the presentation

G = 〈g1, g2, g3 : g2
1 = g3

2 = g3
3 = 1, g−1

1 g3g1 = g2
3〉.

The representations of G over C can be computed:

G:=SmallGroup(18,3);

r:=AbsolutelyIrreducibleModules(G,Rationals());

There are six 1–dimensional representations, and three of dimension 2, the first given by
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rho:=Representation(r[7]); rG:=ActionGroup(r[7]);

a:=rG.1=rho(G.1); b:=rG.2; c:=rG.3; sg:=Subgroups(rG);

a = ρ(g1) =

(

0 1
1 0

)

, b = ρ(g2) =

(

ω2 0
0 ω2

)

, c = ρ(g3) =

(

ω2 0
0 ω

)

, ω := e
2πi

3 .

The subspace fixed by a (nontrivial) subgroupH given by sg can be found by the command
NullspaceMatrix(M-Id), where M is a block matrix of generators for H and Id is the
corresponding identity block matrix. Thus, we obtain two highly symmetric tight frames:

6 vectors: v = v1 = (1, 0), Stab(v1) = 〈bc〉,
9 vectors: v = v2 = (1, 1), Stab(v2) = 〈a〉,

which are a cross and a cube (cf. Example 6). These are the only highly symmetric tight
frames we obtain, since the eighth representation is not faithful, and ρ(G) is the same for
the seventh and ninth.

Example 3. There are no highly symmetric tight frames of five vectors in C3. Such a tight
frame would have a symmetry group of order a multiple of 5, which is at most 5 ·4 ·3 = 60.
A computer search over all groups in this range shows there is no such frame. By way
of contrast, the tight frame of five vectors in C3 with the largest symmetry group is the
vertices of a trigonal bipyramid, which has symmetry group of order 12 (see [VW10]).

5. Complex polytopes and finite reflection groups

The notion of a (regular) complex polytope has evolved from the original “conceptual
definition” of [S52] (cf. [C91]) to today where they are mostly studied in an abstract
combinatorial setting (cf. [MS02]). We will follow [S04]. The main thrust of the classical
theory is that as soon as enough regularity is imposed, the symmetry group is generated
by (complex) reflections, which leads to a complete classification via the symmetry group.
In this setting, there are interesting recent developments, such as the construction of d2

equiangular lines in Cd whose symmetry group is not a reflection group (cf. Section 8).
A transformation g ∈ GL(d, IF) is a (complex) reflection (or pseudoreflection) if

it has finite order m and rank(g − I) = 1, i.e., g fixes a hyperplane H, and maps v 7→ ωv
where v 6∈ H is nonzero and ω is a primitive m–th root of unity. The terminology and
geometric motivation comes from IRd with ω = −1.

A finite subgroup of GL(d, IF) is a reflection group if it is generated by its reflections.
We have already observed that finite subgroups of GL(d, IF) are unitary for the inner
product (2.2). Thus, reflection groups are also called unitary reflection groups.

Frames are sequences of vectors (points), whereas polytopes, such as the platonic
solids, have points, lines (through points), and faces, etc. The technical definition (to
follow), specifies these j-faces (j = 0, 1, . . .) as affine subspaces of IFd, together with some
combinatorial properties motivated by the case IR3. Of course, such a face is the affine
hull of the vertices it contains, and it is convenient to move between the two. For complex
spaces, a line (1–face) may contain more than two points, which challenges ones intuition.
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Definition 5.1 (see [S04]). A d–polytope–configuration is a finite family P of affine
subspaces of IFd of dimensions j = −1, 0, 1, . . . , d, called elements or j–faces, ordered by
inclusion ⊂, which form lattice with the properties
(i) If Fj−1 ⊂ Fj+1 are j − 1 and j + 1 faces, then there are at least two j–faces contained

between them. (Modified diamond condition)
(ii) If F ⊂ G are faces, then there is a sequence of faces F = H0 ⊂ H1 ⊂ · · · ⊂ Hk = G

with dim(Hj) = dim(F ) + j, ∀j. (Connectedness)

For brevity, we call such a P a complex polytope. We now follow the usual practice
and translate P so that the barycentre (average of the vertices) is zero. This allows the
vertices to be thought of as vectors, and ensures that the affine maps of the vertices to
themselves are linear (and ultimately unitary).

Definition 5.2. The symmetry group Sym(P) of a d–polytope–configuration P (with
barycentre 0) is the group of g ∈ GL(d, IF) which map the elements of P to themselves.

In particular, if ΦP is the points (vectors) of P, then Sym(P) is a subgroup of Sym(ΦP)
(viewed as linear transformations of IFd).

Definition 5.3. A flag of d–polytope–configuration P is a sequence F of faces with

F = (F−1, F0, F1, . . . , Fd), F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fd, dim(Fj) = j, ∀j,

and P is regular if Sym(P) is transitive on the flags of P.

Shephard [S52],[S53] showed the symmetry group of a regular complex polytope is an
irreducible reflection group, and classified all such polytopes via their symmetry groups.
More precisely, let F be a flag of a regular complex polytope P, and cj be the centre
of the j–face Fj , i.e., the average of its vertices. Then there are generating reflections
r0, . . . , rd−1 for Sym(P) where rj fixes c0, . . . , cj−1, cj+1, . . . , cd and maps Fj to another
j–face, i.e., rj maps F to a flag which differs only in the j–face. The symmetry group of
a regular complex polytope is encoded in the (generalised) Schläfli symbol (cf. [S04])

p0{q1}p1{q2}p2 · · · pd−2{qd−1}pd−1.

Theorem 5.4. The vertices of the regular complex polytopes are highly symmetric tight
frames. In particular, the vertices of the regular complex polytopes can be constructed
from their abstract symmetry groups (which contains the corresponding reflection group).

Proof: Let P be a regular complex polytope, and Φ = ΦP be its vertices. View
G = Sym(Φ) as a subgroup of GL(d, IF). Then H = Sym(P) is a subgroup of G, which
is irreducible and transitive on the flags, and in particular is transitive on the vertices Φ.
Thus, Φ will be a highly symmetric (tight) frame provided that StabH(v) ⊂ StabG(v) fixes
a space of dimension exactly one for each v ∈ Φ.

Fix a vertex v ∈ Φ. Since H is a reflection group, Steinberg’s fixed point theorem
([S64]) implies that StabH(v) is the group generated by all the reflections which fix v. If
F is a flag with F0 = {v}, then the d − 1 generating reflections r1, . . . , rd−1 fix v, so the
subspace fixed by them all is one dimensional (and equal to span{v}). Thus StabG(v) fixes
only span{v}.
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Remark: It is an open question whether the symmetry group of the points of a (regular)
complex polytope P can be larger than Sym(P), i.e., are there symmetries of the points,
which do not map flags to flags (cf. Example 11). For real polytopes these are equal, since
the j–faces can be uniquely determined by considering the convex hull of the points.

In [ST54] (cf. [LT09]) all finite reflection groups were classified. Essentially, they
appear as the symmetry groups of “semi–regular” complex polytopes. In the next sections
we outline the highly symmetric tight frames which can be obtained from the (imprimitive
and primitive) finite reflection groups and the (discrete) Heisenberg group, as determined
by our Magma calculations.

6. Imprimitive groups (ST 1-3)

A representation of G on IFd is imprimitive if IFd is a direct sum IFd = V1⊕· · ·⊕Vm

of nonzero subspaces, such that the action of G on IFd permutes the Vj , otherwise it is
primitive.

The Shephard–Todd classification of the imprimitive irreducible complex reflection
groups consists of three infinite families (ST 1–3) given by the groups G(m, p, d), p|m,

|G(m, p, d)| = mdd!/p.

These are available in Magma via the command ImprimitiveReflectionGroup(m,p,d),
and can be constructed (cf. [LT09]) as a group of unitary transformations

G(1, 1, d) = 〈r1, r2, . . . , rd−1〉,
G(m,m, d) = 〈s, r1, r2, . . . , rd−1〉,
G(m, 1, d) = 〈t, r1, r2, . . . , rd−1〉,
G(m, p, d) = 〈s, tp, r1, r2, . . . , rd−1〉, 1 < p < m, p|m

where rj interchanges ej and ej+1, t is the reflection e1 7→ ωe1, ω = e
2πi

m , and s = t−1r1t,
i.e.,

r1 =





0 1
1 0

I



 , t =





ω
1

I



 , s =





0 ω
ω 0

I



 , (6.1)

where I is the identity matrix of size d− 2. The three infinite families are:

ST 1: G(1, 1, d+ 1) ≈ Sd+1 acting on the d–dimensional subspace of vectors x ∈ IFd+1 with
x1 + · · · + xd+1 = 0, i.e., the orthogonal complement of e1 + · · · + ed+1.

ST 2: G(m, p, d), m, d > 1, p|m, (m, p, d) 6= (2, 2, 2) acting on Cd.
ST 3: G(m, 1, 1) ≈ ZZm acting on C.

We now give some indicative examples from each family (see [B10] for more detail).
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Example 4. (The simplex). Let G = G(1, 1, d+1) ≈ Sd+1 act on H = (e1 + · · ·+ ed+1)
⊥,

the orthogonal complement of e1 + · · · + ed+1 in IFd+1, and

wk := e1 + · · · + ek − k

d+ 1 − k
(ek+1 + · · · + ed+1), 1 ≤ k ≤ d.

Then |Stab(wk)| = k!(d+1−k)!, so that Φk = {gwk}g∈G is a highly symmetric tight frame

of
(

d+1
k

)

vectors for the d–dimensional space H, with symmetry group G. Our calculations
indicate that these are the only possibilities. For k = 1 we can interpret G as the symmetry
group of the simplex with vertices given by Φ1. The other cases are the barycentres of the
(k − 1)–faces of this simplex (so k = d also gives a simplex). In particular, k = 2, d = 3
gives the six vertices of the octahedron, and k = 2, d = 4 gives ten vectors vectors in IR4

which is not a harmonic frame and has a symmetry group of order 120.

Example 5. (28 equiangular lines in IR7). The special case of Ex. 4 where G = G(1, 1, 8)
acts on the vector

v = 3w2 = (3, 3,−1,−1,−1,−1,−1,−1).

gives an orbit of 28 vectors which is an equiangular tight frame for a 7–dimensional space.

Example 6. (The generalised “cross” and “cube”). Let G = G(m, 1, d), |G| = d!md, and

vk := e1 + · · · + ek, 1 ≤ k ≤ d.

Then vk has |Stab(vk)| = k!(d− k)!md−k, and so its orbit gives a highly symmetric tight
frame of

(

d
k

)

mk vectors. Our calculations suggest that these are all.

The extreme cases are the (generalised) cross (k = 1) and cube (k = d), which
are regular complex polytopes. These terms originate from the case m = 2, d = 3, where
(see Fig. 2) we have the octahedron (6 vertices), cuboctahedron (12 vertices), and cube (8
vertices), respectively, and G = G(2, 1, 3) is Oh, the full octohedral group. For m = 2,
d = 4 (see Fig. 2), the polytopes are the hexadecachoron (16–cell) (8 vertices), octaplex

(24–cell) (24 vertices), rectified tesseract (32 vertices), and tesseract (16 vertices).

The cross and cube are harmonic, generated by the cyclic subgroup 〈r1r2 · · · rd−1t〉,
and 〈q1, · · · , qd〉, where qj = (r1r2 · · · rj−1)

−1t(r1r2 · · · rj−1) is the reflection ej 7→ ωej . The
tight frame of 12 vectors for IR3 given by the vertices of the cuboctahedron is not harmonic,
since it is not generated by any abelian subgroup of its symmetry group Oh, of order 48.
According to the list of [HW06], the only harmonic frames of 12 vectors for IF3 with a
symmetry group larger than 36 are three with order 72 and one with symmetry group
<384,5557>, which we recognise as the generalised cross {ikej : 1 ≤ j ≤ 3, 0 ≤ k ≤ 3}
given by G(4, 1, 3).
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Fig 2. Symbolic projections of the cross (hexadecachoron) and cube (tesseract) in IR4.

Example 7. (The m–th roots of unity). Let G = G(m, 1, 1) ≈ ZZn acting on C. Since
only the identity stablises a nonzero vector, no highly symmetric tight frames are obtained
from the third Shephard–Todd family.

The imprimitive reflection groups of the ST 2 family can be nested (cf. [LT09:p.31]),
e.g.,

G(m, p, d) ⊳ G(m, 1, d), G(m, p, 2) ⊳ G(2m, 2, 2).

As a consequence:

• The symmetry group of highly symmetric tight frame obtained from an imprimitive
reflection group G may be larger than G.

• A highly symmetric tight frame obtained from an imprimitive reflection group G may
be a subset of one obtained for a larger imprimitive reflection group.

Example 8. (Nested irreducible reflection groups). Let

G = G(2, 2, d), d > 2, |G| = 2d−1d! (Coxeter group Dd).

There are highly symmetric tight frames given by the orbits of e1 and e1 + · · · + ed. The
first of these is the cross, which has a symmetry group larger than G, namely G(2, 1, d).
The second is the demicube, a subset of half the vertices of the cube, which has symmetry
group G(2, 1, d).

7. Primitive reflection groups (ST 4-37)

There are 34 (exceptional) finite reflection groups in the Shephard–Todd classification.
Their numbers and rank (the dimension of the space they act on) are

ST 4–22 (rank 2), ST 23–27 (rank 3), ST 28–32 (rank 4),

ST 33 (rank 5), ST 34–35 (rank 6), ST 36 (rank 7), ST 37 (rank 8).

Our Magma calculations (see Appendix) indicate the following behaviour:
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• There are highly symmetric tight frames given by each primitive reflection group.
In particular, there are ones which are not the vertices of a regular complex polytope.

• These highly symmetric tight frames are not harmonic.

• They may or may not be G–frames (of distinct vectors).

• They have a small number of angle moduli.

The search for highly symmetric tight frames was exhaustive, except for three groups,
namely ST 34, 36 and 37, which have large orders (39191040, 2903040, 696729600) and
high rank (6, 7, 8). We now highlight a few examples.

Example 10. (ST 23). All highly symmetric tight frames obtained from rank 2 reflection
groups are group frames (of distinct vectors). This is not the case in higher dimensions.
Let G be the Shephard–Todd group 23, |G| = 120, for which Magma gives the generators

g1 =





−1 0 0
1
2 (
√

5 + 1) 1 0
0 0 1



 , g2 =





1 1
2 (
√

5 + 1) 0
0 −1 0
0 1 1



 , g3 =





1 0 0
0 1 1
0 0 −1



 ,

which are not unitary matrices. The corresponding matrix A of (2.3) is

A = 10





16
√

5 + 52 −17
√

5 − 33 0
−17

√
5 − 33 16

√
5 + 52 −8

√
5 − 26

0 −8
√

5 − 26 16
√

5 + 52





We obtain three highly symmetric tight frames:

12 vectors: v = (
√

5 − 1, 0, 2),

20 vectors: v = (
√

5 + 3, 0, 2),

30 vectors: v = (1, 1, 1),

which are the vertices of the icosahedron, dodecahedron, and icosidodecahedron. The first
of these is a group frame (for <12,3>), and the other two are not.

Example 9. (24 vectors in C2). There are five regular complex polygons with 24 vertices.
Their Schläfli symbols and symmetry groups are

3{6}2 ShephardTodd(6)=<48,33>, 3{3}2 ShephardTodd(6)=<48,33>,

3{4}3 ShephardTodd(5)=<72,25>, 4{3}4 ShephardTodd(8)=<96,67>,

2{4}12 ImprimitiveReflectionGroup(12,1,2)=<288,239>.

The four obtained from the primitive groups are not harmonic, by comparison with the
symmetry groups of the 33 harmonic frames of 24 vectors (see [HW06]). The fifth frame
is a generalised cross, which is harmonic. In addition to these, there is a highly symmetric
tight frame of 24 vectors (which is not a polygon) that can be obtained from the group

G:=ShephardTodd(12)=<48,29>, G = 〈g1, g2, g3〉,
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g1 :=
1

2

(

ω3 − ω −ω3 + ω
−ω3 + ω −ω3 + ω

)

, g2 :=
1

2

(

ω3 − ω ω3 − ω
ω3 − ω −ω3 + ω

)

, g3 :=

(

0 −ω
ω3 0

)

.

and the vector v = (1, ω3), where ω = e
2πi

8 . Similarly, this frame is not harmonic.

Fig 3. Symbolic projections of the polygons 3{6}2, 3{3}2, 3{4}3, 4{3}4 with 24
vertices, which are obtained from primitive reflection groups.

8. Heisenberg frames

The (discrete) Heisenberg group H = 〈S,Ω〉 is the subgroup of the imprimitive
reflection group G(d, 1, d) generated by the (cyclic) shift and modulation operators

S =













0 1
1 0

1 0
. . .

. . .

1 0













, Ω =













1
ω

ω2

. . .

ωd−1













, ω := e
2πi

d .

Since S and Ω have order d, and ΩkSj = ωjkSjΩk, H has order d3. For d > 3, H is not a
reflection group, indeed it contains no reflections. The unitary representation given by H
acting on Cd is irreducible, so that every nontrivial orbit is a tight frame for Cd.
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The Zauner conjecture (cf. [RBSC04], [BW07] [SG10]) is that (for all d) there exists
a v ∈ Cd whose H–orbit gives a set of d2–equiangular lines, i.e., (SjΩkv)0≤j,k<d is an

equiangular tight frame of d2 vectors for Cd, which is the maximal number allowed by
the bound (2.7). This is supported by numerical solutions, and analytic constructions for
some values of d. We refer to the resulting equiangular tight frames as Heisenberg frames.

We are unable to determine whether Heisenberg frames are highly symmetric, in a
projective sense, as there are no effective methods for calculating the (projective) symmetry
group of a set of lines (cf. [VW10]). More, precisely, the vectors v ∈ Cd known to give
an equiangular tight frame (analytically or numerically) are eigenvectors of a matrix M of
order 3 (the “strong” Zauner conjecture). This unitary matrix M normalises H (up to a
scalar), and so is a (projective) symmetry of the lines given by the H–orbit of v. However,
except for small d, the eigenspace of M which contains v is not 1–dimensional (otherwise
Zauner’s conjecture would be proved), and so we cannot conclude the equiangular tight
frame given by v is highly symmetric. It may be that there are symmetries other than
M which fix v. If one could find enough of these additional symmetries, so that only the
space spanned by v is fixed by them all, then the corresponding frame would be highly
symmetric (in a projective sense), and Zauner’s conjecture would be all but proved.

The case d = 3 is known to be exceptional. Here there are uncountably many (unitarily
inequivalent) Heisenberg frames, and it turns out one of these is highly symmetric.

Example 11. (Hessian polyhedron). The Hessian is the regular complex polytope with
27 vertices and Schläfli symbol 3{3}3{3}3. Its symmetry group ST 25 (<648,533>) is
generated by the following three reflections of order three

R1 =





ω
1

1



 , R2 =
1

3





ω + 2 ω − 1 ω − 1
ω − 1 ω + 2 ω − 1
ω − 1 ω − 1 ω + 2



 , R3 =





1
1

ω



 ,

and it has v = (1,−1, 0) as a vertex (cf. [C91:p.119]). These vertices are the H–orbit of v,
which is a Heisenberg frame. We observe that H is normal in G = 〈R1, R2, R3〉.

The second frame of 72 vectors provides the following point of interest. Multiplication
by −1 gives a symmetry which in not in the reflection group G. Thus the symmetry group
of this frame (which is not the vertices of a regular complex polytope) is strictly larger
than G. There is similar behaviour for the Shephard–Todd groups 13, 15, 25, 33 (third
roots), and 35.

We conclude with an example of highly symmetric tight frames with a large number
of vectors in a space of high dimension (courtesy of John Duncan).

Example 12. (The Monster). The finite simple groups have a similar classification to the
finite reflection groups: some infinite families, together with a finite number of exceptional
cases (the sporadic groups). Th largest sporadic group the Fischer-Griess Monster gives
rise to highly symmetric tight frames.

Let ρ be the irreducible representation of M in d = 196883 (the smallest nontrivial
dimension). There is a largest conjugacy class of elements of order 2, 3, 4 in M , which
in the ATLAS notation are labelled 2A, 3A, 4A. For any element a in one of these three
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classes the centraliser of g in M fixes a unique vector va (called the axis of a) under the
action of the 196883–representation (see [C85:§14]). Thus the orbit of va under the action
given by ρ is a highly symmetric tight frame of n = |M |/|CG(a)| vectors for C196883. Using
the ATLAS of Finite Group Representations, we calculate the sizes of these frames to be

n2A = 97239461142009186000,

n3A = 214577690036031541739520000000,

n4A = 97145685362919706207382495808000000.

One can only speculate how many angles these frames might have.

Future directions

For the points given by the vectors of the highly symmetric tight frames obtained
from the finite reflection groups, it would be natural to find lines, faces, etc, which give a
complex polytope. The class of highly symmetric tight frames presented here extends, in
the obvious way, to highly symmetric spanning sets for a finite dimensional vector space
over any field. To interpret these as tight frames, one would need to extend the theory of
frames (using classical groups).
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Appendix

Here are tables listing the highly symmetric tight frames of n vectors in Cd that can
obtained from the 34 primitive reflection groups. As already discussed, it is complete
except for the three groups with the largest orders, where only one frame is given. All
calculations were exact, except for the determination of the number of angles in a frame,
where for z ∈ Ang(Φ) the numerical approximations

C:=ComplexField(20); a:=Modulus(C!z); a:=ComplexField(17)!a;

to a = |z| were compared.
The first three columns of each table gives the Shephard–Todd number of the group, its

rank d, and its abstract group number (or order). The others give the following information
about each of the the highly symmetric tight frames which can be constructed from it:

• n: the number of vectors, (P) denotes that they are the vertices of a non–starry regular
complex polytope.
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• b: the bound of (2.7) on the number of vectors, (ℓ) denotes the number of lines when
it is sharp.

• s: the number of angles in the frame, s2 indicates there were two conjugacy classes
of subgroups giving frames with exactly the same angles (we did not try to resolve
whether these give unitarily equivalent frames or not).

• group frame: whether the frame is a group frame via a subgroup H of the primitive
group or not (−). If so, then the abstract group number of H is given. We note that
none of these groups are abelian.
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