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ABSTRACT

Up to unitary equivalence, there are a finite number of tight frames of n vectors
for Cd which can be obtained as the orbit of a single vector under the unitary action of
an abelian group G (for nonabelian groups there may be uncountably many). These so
called harmonic frames (or geometrically uniform tight frames) have recently been used in
applications including signal processing (where G is the cyclic group).

In an effort to find optimal harmonic frames for such applications, we seek a simple
way to describe the unitary equivalence classes of harmonic frames. By using Pontryagin
duality, we show that all harmonic frames of n vectors for Cd can be constructed from
d–element subsets of G (|G| = n). We then show that in most, but not all cases, unitary
equivalence preserves the group structure, and thus can be described in a simple way. This
considerably reduces the complexity of determining whether harmonic frames are unitarily
equivalent. We then give extensive examples, and make some steps towards a classification
of all harmonic frames obtained from a cyclic group.
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1. Introduction

Recently, equal–norm (uniform) finite tight frames of n distinct vectors for Cd have
found diverse applications (cf. [CK07]), including signal analysis, quantum information
theory and multivariate orthogonal polynomials. A prominent class of such frames occurs
in a number of guises:

• Geometrically uniform tight frames – which are the orbit of a single vector under the
action of an abelian group of n unitary matrices [BE03].

• Harmonic frames – which are obtained as projections of the columns of the Fourier
matrix of an abelian group of order n (cf. [GVT98], [CK03] for G cyclic).

• Tight G–frames for an abelian group G of order n [H07].

In [VW05] it was shown that these notions are equivalent – we will call such frames
harmonic frames. Similar constructions have also appeared earlier in other contexts, e.g.,
as the vertices of polyhedra [H40] and as group codes [S68].

Since there are a finite number of abelian groups of order n, and a finite number of
ways of selecting d rows of the character table of such a group, it follows there are a finite

number of harmonic frames of n vectors for Cd. The number of harmonic frames given by
this construction is

(

n
d

)

≈ nd, n→ ∞, times the number of abelian groups of order n. This
is only an upper bound for the number of harmonic frames, since some of these may be
unitarily equivalent. Further, it is reasonable to consider only those with distinct vectors,
since those with repeated vectors are simply harmonic frames (for a smaller n) repeated a
fixed number of times.

Computations in [HW06] indicate that the number of unitarily inequivalent harmonic
frames of n distinct vectors for Cd grows like nd−1 (for d fixed). It also appears that the
majority of these come from the cyclic group – we call these cyclic harmonic frames (cf.
[K06]). The same harmonic frame may come from several nonisomorphic abelian groups.

It is the purpose of this paper to shed light on precisely when and why harmonic frames
obtained from a character table are unitarily equivalent. The key idea is to use Pontryagin
duality to observe that harmonic frames can be constructed by taking d–element subsets
of an abelian group G (rather than by taking subsets of characters). Thus determining
whether two harmonic frames from the same group are unitarily equivalent becomes a
question about the relationship between d–element subsets of the group G. For most, but
not all unitary equivalences there is a simple description in terms of subsets of G. This
considerably reduces the complexity of determining which harmonic frames are unitarily
equivalent. The exceptional cases are when the unitary equivalence does not preserve the
group structure. We give extensive examples, and make some steps towards a classification
of all cyclic harmonic frames. Ultimately, a full classification depends on knowing which
sums of n–th roots of unity add to zero. This is an active area of research in number
theory, e.g., the sum of all primitive n–th roots of unity is the Möbius function µ(n).

The rest of this paper is set out as follows. At the end of this section, we give the
definitions required. Next we describe two equivalent ways of constructing all harmonic
frames from the characters of an abelian group G. In Section 3, we describe the unitary
equivalence of harmonic frames in terms of the subsets of G defining them. Then we give a
complete description of the harmonic frames for C1 and C2. In Section 5, we consider C3,
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and the first examples of unitary equivalences which do not preserve the group structure.
This is followed by some more general results motivated by these examples.

Basic definitions

A finite sequence of n vectors (fj)
n
j=1 for a d–dimensional Hilbert space H over the

field IF = C, IR is a tight frame if it has a Parseval type expansion

f =
1

A

n
∑

j=1

〈f, fj〉fj , ∀f ∈ H,

where A > 0. By the polarisation identity, this is equivalent to the more familiar definition

A‖f‖2 =

n
∑

j=1

|〈f, fj〉|
2, ∀f ∈ H.

The Gramian of such a sequence Φ = (fj)j∈J is the matrix

Gram(Φ) := [〈fk, fj〉]j,k∈J .

Tight frames Φ = (φj)j∈J and Ψ = (ψk)k∈K for H are unitarily equivalent if there
is a bijection σ : J → K, a unitary map U , and a c > 0 such that

φj = cUψσj , ∀j ∈ J, (1.1)

i.e., up to a reordering and rescaling of the vectors they have the same Gramian matrices

Gram(Φ) = |c|2P ∗
σ Gram(Ψ)Pσ, (1.2)

where Pσ : IFJ → IFK is the K×J permutation matrix given by Pσej := eσj . Our counting
of harmonic frames will be up to this unitary equivalence, which is an equivalence relation.
There are a number of other coarser notions of equivalence in the literature, e.g., where c
in (1.1) is replaced by cj of constant modulus (cf. [F01], [GKK01] and [HP04]).

A tight frame Φ = (fj) for IFd is real if all the entries of its Gramian are real. This

is equivalent to the existence of a unitary map U with UΦ = (Ufj) ⊂ IRd.

2. Character tables and Pontryagin duality

A (finite) tight frame Φ for H is geometrically uniform [BE03] if its vectors are
the orbit of a single (nonzero) vector v ∈ H under the action of a finite abelian group
G of unitary matrices, i.e., Φ = (gv)g∈G. Necessarily, such a frame has distinct vectors.
More generally, Φ is a G–frame (cf. [H07]) if it has the form Φ = (ρ(g)v)g∈G, where
ρ : G→ U(H) is a unitary representation of a finite group G, i.e., a group homomorphism
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into the unitary maps on H (possibly not injective). There is also the unrelated notion of
a generalised frame or g–frame (for short), which generalise fusion frames (cf. [S06]).

The Gramian matrix of a G–frame Φ = (φg)g∈G has a special (G–matrix) structure

〈φh, φg〉 = 〈ρ(h)φ1, ρ(g)φ1〉 = 〈ρ(g)∗ρ(h)φ1, φ1〉 = 〈ρ(g−1h)φ1, φ1〉.

Thus each row and column of the Gramian has the same multiset of entries. We call this
multiset minus the diagonal entry the angle multiset of the G–frame, and denote it

Ang(Φ) : = {〈φg, φ1〉 : g ∈ G, g 6= 1}

= multiset of off diagonal entries of any row/column of Gram(Φ).

Fig. 1. The angle multisets of the inequivalent harmonic frames of 7 vectors in C3
.

Clearly, unitarily equivalent G–frames have the same angle multisets (up to a positive
scalar). Unfortunately, this is not enough to characterise them in general.

We now show how, for G abelian, all such G–frames can be constructed from the
character table of G. The character table (or Fourier matrix) of an abelian group G

of order n is the n× n matrix whose rows are the (irreducible) characters of G, i.e., maps
χ : G→ C \ {0} satisfying

χ(g + h) = χ(g)χ(h), ∀g, h ∈ G. (2.1)

It is well known (cf. [JL93]) that the set of characters, denoted by Ĝ, forms a group (under
pointwise multiplication) which is isomorphic to G, the values of a character are n–th roots
of unity, and the characters (rows of the character table) are orthogonal, i.e.,

〈ξ, η〉 :=
∑

g∈G

ξ(g)η(g) =

{

0, ξ 6= η;
n, ξ = η

ξ, η ∈ Ĝ. (2.2)
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By (2.2), the character table is (a scalar multiple of) a unitary matrix. Since the
projection of an orthonormal basis onto a subspace is a tight frame (Naimark’s theorem),
it follows that an equal–norm tight frame (vg)g∈G is obtained by taking the columns of

the submatrix of the character table given by a selection Ĵ ⊂ Ĝ of rows (characters), i.e.,

vg := (ξ(g))ξ∈Ĵ ,

This is a G–frame, since by (2.1),

vg = ρ(g)v1, ρ(g) := diag(ξ(g))ξ∈Ĵ , v1 := (ξ(1))ξ∈Ĵ .

A frame unitarily equivalent to one given by this construction is called a harmonic frame,
and a cyclic harmonic frame when G can be taken to be the cyclic group ZZn. Cyclic
harmonic frames appear in applications as early as [CK03]. It turns out that all G–frames
for abelian G are harmonic frames.

Theorem 2.3 ([VW05:Th. 5.4]). Let Φ be an equal–norm tight frame for H. Then the
following are equivalent
(a) Φ is a G–frame, where G is an abelian group.
(b) Φ is harmonic (obtained from the character table of G).
For each Φ, G can be taken to be the same in (a) and (b), but it need not be unique.

This implies that there is a finite number of harmonic frames of n vectors for Cd (up
to unitary equivalence). By way of comparison, there may be uncountably many G–frames
for G nonabelian (cf. [H07], [VW08]).

In the construction of harmonic frames, one might instead have selected columns of the
character table, i.e., a subset J ⊂ G (unitary matrices have orthogonal rows and columns)
to obtain an equal–norm tight frame (wξ)ξ∈Ĝ, where

wξ := ξ|J .

Again this is a G–frame, since Ĝ is isomorphic to G, and

wξ = ρ(ξ)w1, ρ(ξ) := diag(ξ|J), w1 := 1|J . (2.4)

Further, by the Pontryagin duality map (canonical group isomorphism)

G→
ˆ̂
G : g 7→ ˆ̂g, ˆ̂g(χ) := χ(g), ∀χ ∈ Ĝ, g ∈ G.

we may write
vg = (ξ(g))ξ∈Ĵ = (ˆ̂g(ξ))ξ∈Ĵ = ˆ̂g|Ĵ .

Thus (vg)g∈G is the restriction of the elements of the character group to a subset of the
group, and so the construction (2.4) gives all harmonic frames. This construction is the
most convenient for us here, as G–frames are determined by subsets J of G rather than
(the isomorphic group) Ĝ. We will refer to

Φ = (ξ|J)ξ∈Ĝ

as the harmonic frame given by the subset J of the group G.
A harmonic frame Φ = (fj) is said to be unlifted if

∑

j fj = 0, otherwise it is lifted.
The conditions on J for such a harmonic frame to have distinct vectors, to be real, and to
be lifted are as follows.
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Theorem 2.5. Let G be an abelian group of order n, and Φ = ΦJ = (ξ|J)ξ∈Ĝ be the

harmonic frame of n vectors for Cd given by a choice J ⊂ G, where |J | = d. Then
(a) Φ has distinct vectors if and only if J generates G.
(b) Φ is a real frame if and only J is closed under taking inverses.
(c) Φ is a lifted frame if and only if the identity is an element of J .

Proof: (a) Let H be the subgroup generated by J . Then Φ has distinct vectors
if and only if the composition of maps Ĝ 7→ Ĥ 7→ CJ : ξ 7→ ξ|H 7→ ξ|J is 1–1. Since each
h ∈ H can be written as a sum of elements in J , and ξ is a character, ξ(h) is determined by
ξ|J , and so ξ|H 7→ ξ|J is 1–1. Hence ξ 7→ ξ|J is 1–1 if and only if the group homomorphism
given by Ĝ 7→ Ĥ : ξ 7→ ξ|H is 1–1, i.e., Ĝ = Ĥ, and so G = H = 〈J〉.

(b) The frame Φ is real if and only if its multiset of angles is real, i.e.,

∑

j∈J

ξ(j) =
∑

j∈J

ˆ̂
j(ξ) ∈ IR, ∀ξ ∈ Ĝ ⇐⇒ ψ :=

∑

j∈J

ˆ̂
j ∈ IRĜ.

Suppose that J is closed under taking inverses, and j ∈ J . Then either j is its own inverse,
so ξ(j) = ξ(−j) = ξ(j) ∈ IR, or j,−j ∈ J , so they contribute ξ(j)+ξ(−j) = ξ(j)+ξ(j) ∈ IR
to the sum for the angle. Thus we conclude each angle is real. Conversely, suppose the

multiset of angles is real, so that ψ = ψ. Let 〈ζ, χ〉 be the inner product on CĜ for which
the characters of Ĝ are orthogonal, i.e., 〈ζ, χ〉 := 1

|Ĝ|

∑

ξ∈Ĝ ζ(ξ)χ(ξ). Then

j ∈ J ⇐⇒ 〈ψ, jˆ̂〉 = 1 ⇐⇒ 〈ψ, jˆ̂〉 = 〈ψ, (−j )̂̂ 〉 = 1 ⇐⇒ −j ∈ J.

(c) By the orthogonality relations for characters, Φ is unlifted if and only if

∑

ξ∈Ĝ

ξ|J = 0 ⇐⇒
∑

ξ∈Ĝ

ξ(j) =
∑

ξ∈Ĝ

ξ(j)ξ(1) = 0, ∀j ∈ J ⇐⇒ j 6= 1, ∀j ∈ J.

Corollary 2.6. Let G be a finite abelian group, and d∗ be the minimum number of
generators for G. Then there is a G–frame of distinct vectors for Cd if and only if d ≥ d∗.

Example 2.7. Let G be an elementary abelian group, i.e., G = ZZp × · · · × ZZp (k times),

where p is prime. Then G gives harmonic frames of distinct vectors for Cd only for d ≥ k

(d∗ = k since 0 6= g ∈ G has order p).

Example 2.8. In G = ZZ2 × · · · × ZZ2 all nonzero elements have order 2, and so are equal
to their inverse. Thus all harmonic frames given by this group are real. Alternatively,
observe this condition on the group element orders implies that all the characters are real.
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3. Unitary equivalence and preservation of the group structure

Let Aut(G) denote the group of automorphisms of G, i.e., isomorphisms σ : G→ G.

Definition 3.1. We say G–frames Φ = (φg)g∈G, Ψ = (ψg)g∈G are unitarily equivalent
via an automorphism if the map σ : G→ G in (1.1) can be taken to be in Aut(G).

In most, but not all cases (see §5) unitary equivalence of G–frames occurs via an
automorphism.

Example 3.2. If G–frames Φ and Ψ are equal, then the set of permutations σ in the
unitary equivalences (1.1) between them form a group called the symmetry group of Φ
[VW10]. This group, denoted by Sym(Φ), contains a subgroup of order |G| consisting of
the permutations

σ : g 7→ hg, h ∈ G,

with only the identity being an automorphism of G. From this, it follows that if σ can be
chosen to be an automorphism, then there are also choices which are not in Aut(σ).

We now give a simple condition which ensures harmonic frames are unitarily equivalent
via an automorphism.

Definition 3.3. We say subsets J and K of a finite abelian group G are multiplicatively
equivalent if there is an automorphism σ : G→ G for which K = σJ .

Example 3.4. For G = ZZn, each σ ∈ Aut(G) has the form g 7→ ag, with a ∈ ZZ∗
n a unit,

and hence J and K are multiplicatively equivalent if and only if K = aJ for some a ∈ ZZ∗
n.

Multiplicative equivalence is an equivalence relation, with the equivalence classes being
the orbits of the natural action of Aut(G) on the d–element subsets of G.

Theorem 3.5. Suppose J and K are subsets of a finite abelian group G. Then the
following are equivalent
(a) The subsets J and K are multiplicatively equivalent.
(b) The harmonic frames given by J and K are unitarily equivalent via an automorphism.

Proof: (a)=⇒(b): Suppose that K = σJ , where σ ∈ Aut(G). The natural action
of Aut(G) on Ĝ, which is given by

σχ = σ̂χ := χ ◦ σ−1, σ ∈ Aut(G), χ ∈ Ĝ,

induces automorphisms of Ĝ, since

σ̂(ξη) = (ξη) ◦ σ−1 = (ξ ◦ σ−1)(η ◦ σ−1) = (σ̂ξ)(σ̂η), ξ, η ∈ Ĝ.

Using χ(j) = (χ ◦ σ−1)(σj) = σ̂χ(σj), we calculate

〈ξ|J , η|J〉 =
∑

j∈J

ξ(j)η(j) =
∑

j∈J

σ̂ξ(σj)σ̂η(σj) =
∑

k∈K

σ̂ξ(k)σ̂η(k) = 〈σ̂ξ|K , σ̂η|K〉.
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Hence, by the condition (1.2), the Ĝ–frames (ξ|J)ξ∈Ĝ and (ξ|K)ξ∈Ĝ are unitarily equivalent

via the automorphism σ̂ : Ĝ→ Ĝ : χ 7→ χ ◦ σ−1.
(b)=⇒(a): Suppose the harmonic frames given by J,K ⊂ G are unitarily equivalent

via an isomorphism σ̂ : Ĝ→ Ĝ, i.e.,

〈ξ|J , η|J〉 = 〈σ̂ξ|K , σ̂η|K〉, ∀ξ, η ∈ Ĝ.

Taking η = 1, the trivial character, above, gives

∑

j∈J

ξ(j) =
∑

k∈K

(σ̂ξ)(k), ∀ξ ∈ Ĝ. (3.6)

We now seek to define an automorphism σ = τ−1 : G→ G satisfying

(σ̂χ)(g) = (χ ◦ σ−1)(g), ∀χ ∈ Ĝ, ∀g ∈ G.

Since σ̂ : Ĝ → Ĝ is an automorphism, χ 7→ σ̂χ(g) belongs to
ˆ̂
G, and so we can use

Pontryagin duality to define τg by

(τg)̂̂ (χ) := σ̂χ(g), ∀χ ∈ Ĝ.

This map τ : G→ G is a bijection, since

τg = τh ⇐⇒ σ̂χ(g) = σ̂χ(h), ∀χ ∈ Ĝ ⇐⇒ ˆ̂g(σ̂χ) =
ˆ̂
h(σ̂χ), ∀χ ∈ Ĝ

⇐⇒ ˆ̂g(ξ) =
ˆ̂
h(ξ), ∀ξ ∈ Ĝ ⇐⇒ ˆ̂g =

ˆ̂
h ⇐⇒ g = h,

and it is a homomorphism since

σ̂ξ ∈ Ĝ =⇒ (σ̂ξ)(g + h) = (σ̂ξ)(g)(σ̂ξ)(h), ∀ξ ∈ Ĝ

⇐⇒ (τ(g + h))̂̂ (ξ) = (τg)̂̂ (ξ)(τh)̂̂ (ξ), ∀ξ ∈ Ĝ

⇐⇒ (τ(g + h))̂̂ = (τg)̂̂ (τh)̂̂ ⇐⇒ τ(g + h) = τg + τh

(where we write the group operation in
ˆ̂
G as ·). Thus σ := τ−1 ∈ Aut(G), which satisfies

(σ̂ξ)(k) = (σ−1k)̂̂ (ξ),

Hence, by Pontryagin duality, (3.6) gives

∑

j∈J

ˆ̂
j(ξ) =

∑

k∈K

(σ−1k)̂̂ (ξ), ∀ξ ∈ Ĝ =⇒
∑

j∈J

ˆ̂
j =

∑

k∈K

(σ−1k)̂̂ .

Since characters of a finite abelian group are linearly independent, we conclude

{ˆ̂j : j ∈ J} = {(σ−1k)̂̂ : k ∈ K} =⇒ {j : j ∈ J} = {σ−1k : k ∈ K} =⇒ K = σJ,

i.e., J and K are multiplicatively equivalent subsets of G.
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The number of multiplicative equivalence classes of d–element subsets of a group G

which generate G is essentially Hall’s Eulerian function Φd(G), which counts the ordered
d–element generating subsets of G [H36].

A simple instance where multiplicative inequivalence of subsets implies the unitary
inequivalence of the harmonic frames they give is when their angle multisets differ (see
§6). These observations, together with Theorem 3.5, considerably reduce the calculations
required to determine whether harmonic frames are unitarily equivalent (cf. [HW06]).

Example 3.7. Four vectors in C2. First consider G = ZZ4. The automorphism group
has order 2, generated by σ : g 7→ 3g (ZZ∗

4 = {1, 3}). Thus the multiplicative equivalence
classes of 2–element subsets of G, which are the orbits under the action of Aut(G), are

{{0, 1}, {0, 3}}, {{1, 2}, {2, 3}}, {{1, 3}}, {{0, 2}}.

The first three give cyclic harmonic frames with distinct vectors (since 1 generates G), while
the last does not. None are unitarily equivalent, since the (respective) angle multisets are

{−i+ 1, 0, i+ 1}, {0,−i− 1, i− 1}, {0, 0,−2}, {0, 0, 2}.

Now consider G = ZZ2 × ZZ2, which is generated by any two of its three elements
{a, b, a + b} of order 2. The automorphism group has order 6, with an automorphism
corresponding to each permutation of {a, b, a + b}. Thus the multiplicative equivalence
classes are

{{a, b}, {a, a+ b}, {b, a+ b}}, {{0, a}, {0, b}, {0, a+ b}}.

Only the first gives a harmonic frame with distinct vectors. This real frame has angles
{0, 0,−2}, and is unitarily equivalent to the cyclic harmonic frame with these angles.

Example 3.8. Seven vectors in C3. For G = ZZ7, the seven multiplicative equivalence
classes have representatives

{1, 2, 6}, {1, 2, 3}, {0, 1, 2}, {0, 1, 3}, {1, 2, 5} (size 6)

{0, 1, 6} (size 3) {1, 2, 4} (size 2).

Each gives a cyclic harmonic frame of distinct vectors (as nonzero elements generate G).
None of these are unitarily equivalent since their angle multisets are different (see Fig. 1).

A finite abelian group G can be written as a direct sum of p–groups

Gp = ZZpe1 ⊕ ZZpe2 ⊕ · · · ⊕ ZZpem

where p are the prime divisors of |G|. The automorphism group of Gp has order

|Aut(Gp)| =
m
∏

k=1

(pdk − pk−1)
m
∏

j=1

(pej )m−dj

m
∏

i=1

(pei−1)m−ci+1, (3.9)
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where
ck := min{r : er = ek} ≤ k, dk := max{r : er = ek} ≥ k,

and so the order of Aut(G) is the product of these orders (cf. [HR07]). In effect, the
less cyclic an abelian group is, the larger its automorphism group becomes. This gives a
heuristic explanation for the observation of [HW06] that most harmonic frames are cyclic,
with increasingly fewer as G becomes less cyclic, via the following mechanisms:

• AsG becomes less cyclic, |Aut(G)| becomes larger, and so the number of multiplicative
equivalence classes becomes smaller.

• As G becomes less cyclic, the orders of its elements become smaller, so J ⊂ G is less
likely to generate G, and hence give a harmonic frame with distinct vectors.

4. Cyclic frames in C1 and C2

There is just one harmonic frame of n distinct vectors for C1.

Proposition 4.1. There is a unique harmonic frame of n distinct vectors for C1, namely
the cyclic harmonic frame given by the n–th roots of unity.

Proof: Use Theorems 2.5 and 3.5. If g generates an abelian group G of order n,
then G must be ZZn. If g1,g2 generate ZZn, then {g1},{g2} are multiplicatively equivalent
(as g1 7→ g2 gives an automorphism of G), and so give unitarily equivalent frames.

From this, we deduce there is a unique lifted harmonic frame of n vectors for C2,
namely the cyclic harmonic frame given by the subset J = {0, g}, where ZZn = 〈g〉.

The angle multiset of the cyclic harmonic frame for C2 given by {j1, j2} ⊂ ZZn is

{ωaj1 + ωaj2 : a ∈ ZZn, a 6= 0}, ω := e
2πi
n .

We now show that if 2–element subsets of ZZn are multiplicatively inequivalent, then the
angle multisets of the harmonic frames that they give are not equal, and hence give unitarily
inequivalent cyclic harmonic frames. To find an angle in one but not the other, we need
to understand which sums of n–th roots of unity are zero.

Lemma 4.2. Suppose that z1, z2, w1, w2 are unit modulus complex numbers. Then

z1 + z2 = w1 + w2 6= 0 =⇒ {z1, z2} = {w1, w2}.

Lemma 4.3. Let ω = e
2πi
n . If ωj1 + ωj2 = 0, j1, j2 ∈ ZZn, then n is even, and

ωaj1 + ωaj2 =

{

0, a odd;
2ωaj1 , a even.

Recall the cyclic group ZZn has a unique cyclic subgroup of each order dividing n,
and no other subgroups. Thus, if j1, j2 ∈ ZZn have the same order, then they generate the
same subgroup, i.e.,

ord(j1) = ord(j2) ⇐⇒ 〈j1〉 = 〈j2〉.
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We will also repeatedly use the facts

ord(aj) ≤ ord(j), ∀a ∈ ZZ, j ∈ ZZn, ord(b) = n⇐⇒ b ∈ ZZ∗
n. (4.4)

Theorem 4.5. Cyclic frames of n distinct vectors for C2 are unitarily equivalent if and
only if the subsets of ZZn that give them are multiplicatively equivalent.

Proof: Suppose the subsets {j1, j2} and {k1, k2} of ZZn are not multiplicatively
equivalent, and give harmonic frames of distinct vectors, i.e., 〈j1, j2〉 = 〈k1, k2〉 = ZZn. We
will show that the cyclic harmonic frames they give have different angle multisets, and so
are not unitarily equivalent. Since multiplicatively equivalent subsets give the same angle
multisets, it suffices to consider the following cases.

Case (a): ωj1 + ωj2 6= 0. By Lemma 4.2, if this angle is appears in the second
frame as ωbk1 + ωbk2 , b ∈ ZZn, then {j1, j2} = {bk1, bk2}. Since the frames are not
multiplicatively equivalent, we must have b 6∈ ZZ∗

n, and hence 〈b〉 6= ZZn. But this implies
〈j1, j2〉 = 〈bk1, bk2〉 ⊂ 〈b〉 6= ZZn, and so ωj1 + ωj2 cannot be an angle in the second frame.

Case (b): ωaj1 +ωaj2 = ωbk1 +ωbk2 = 0, ∀a, b ∈ ZZ∗
n. Suppose first that there is a unit

in each of the subsets. Then by going to multiplicatively equivalent subsets, we may assume
that j1 = k1 = 1, and thus obtain ω + ωj2 = 0 = ω + ωk2 , which gives j2 = k2, and so the
two subsets are equal. Thus we may assume that j1, j2 6∈ ZZ∗

n. By Lemma 4.3, n is even,
and the nonzero angles of the first frame are {2ω2kj1 : 1 ≤ k ≤ n

2 } = {2ω2kj2 : 1 ≤ k ≤ n
2 },

and we conclude 〈2j1〉 = 〈2j2〉. Since j1, j2 are not units, they cannot have the same order
(and generate ZZn), and so we can assume that ord(j1) < ord(j2). The group 〈2j1〉 is
either equal to 〈j1〉, or has half its order, and similarly for 〈j2〉. Thus the only way to have
〈2j1〉 = 〈2j2〉 is for 〈j1〉 = 〈2j1〉, in which case j1 ∈ 〈2j2〉 ⊂ 〈j2〉, and 〈j1, j2〉 = 〈j2〉 6= ZZn.
We conclude that case (b) can never occur.

A careful reading of the proof shows that if ωj1 + ωj2 6= 0, then

{ωaj1 + ωaj2 6= 0 : a ∈ ZZ∗
n} (4.6)

is a set of nonzero angles, which is unique to frame given by {j1, j2} (or any multiplicatively
equivalent subset), and that for n even, there is a unique frame in which the angles given
by (4.6) are all zero, namely that given by {1, 1 + n

2 }.

Not all harmonic frames for C2 are cyclic. We now give a detailed description of the
first example: a complex frame of n = 8 vectors obtained from G = ZZ4 × ZZ2. This also
serves to illustrate the angle set (4.6).

Example 4.7. A noncyclic harmonic frame in C2. There a seven unitarily inequiva-
lent cyclic harmonic frames of n = 8 distinct vectors for C2. We now list them, giving
a representative of the multiplicative equivalence class they correspond to, followed by
the 4 angles given by (4.6) – note these are unique, and then the remaining 3 angles.
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{0, 1} 1 + ω, 1 + ω3, 1 + ω5, 1 + ω7 1 + ω2, 1 + ω4 = 0, 1 + ω6

{1, 2} ω + ω2, ω3 + ω6, ω5 + ω2, ω7 + ω6 ω2 + ω4, ω4 + 1 = 0, ω6 + ω4

{1, 3} ω + ω3, ω5 + ω7 (twice) ω2 + ω6 = 0, ω4 + ω4, ω6 + ω2 = 0

{1, 4} ω + ω4, ω3 + ω4, ω5 + ω4, ω7 + ω4 ω2 + 1, ω4 + 1 = 0, ω6 + 1

{1, 5} ω + ω5 = ω3 + ω7 = 0 (twice) ω2 + ω2, ω4 + ω4, ω6 + ω6

{1, 6} ω + ω6, ω3 + ω2, ω5 + ω6, ω7 + ω2 ω2 + ω4, ω4 + 1 = 0, ω6 + ω4

{1, 7} ω + ω7, ω3 + ω5 (twice) ω2 + ω6 = 0, ω4 + ω4, ω6 + ω2

There are two harmonic frames of distinct vectors given by the group G = ZZ4 ×ZZ2. Here
is a representative subset giving them, followed by the angle multiset.

{(0, 1), (1, 0)} 0, 0, 1 + ω2, 1 + ω6, ω2 + ω4, ω4 + ω4, ω6 + ω4

{(1, 0), (1, 1)} 0, 0, 0, 0, ω2 + ω2, ω4 + ω4, ω6 + ω6

The last of these has the same angles as the cyclic harmonic frame given by {1, 5},
and it is easy to check that it is unitarily equivalent to it. The angle multiset of the first
is not shared by any cyclic harmonic frame, and so is an example of a noncyclic harmonic
frame. This noncyclic harmonic frame (ξ|J)ξ∈Ĝ for J = {(0, 1), (1, 0)} is

{

[

1
1

]

,

[

1
−1

]

,

[

i

1

]

,

[

i

−1

]

,

[

−1
1

]

,

[

−1
−1

]

,

[

−i
1

]

,

[

−i
−1

]

}

.

Here is a list of the numbers noncyclic harmonic frames determined by our calculations.

n non cyc

4 0 3

8 1 7

9 1 6

12 2 13

16 4 13

18 2 18

20 3 19

24 6 27

25 1 15

27 3 18

28 4 25

32 9 25

n non cyc

4 0 3

8 5 16

9 3 15

12 11 57

16 28 74

18 19 121

20 29 137

24 89 241

25 8 115

27 33 159

28 57 255

32 158 278

n non cyc

4 0 1

8 8 21

9 5 23

12 30 141

16 139 228

18 80 494

20 154 622

24 604 1349

25 37 636

27 202 973

28 443 1697

32 1379 2152
Table 1. The numbers of inequivalent noncyclic, cyclic harmonic frames of n ≤ 35
distinct vectors for Cd

, d = 2, 3, 4 when a nonabelian group of order n exists.
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5. Unitary equivalence without preserving the group structure

Theorem 4.5 implies that unitary and multiplicative equivalence are the same for cyclic
harmonic frames for C3, except if both frames are unlifted. In this case, there are subsets
of ZZn which are multiplicatively inequivalent, and do give unitarily equivalent frames.

Example 5.1. (n = 8, d = 3). For ZZ8 there are 17 multiplicative equivalence classes of
3–element subsets which generate it. Only two of these give frames with the same angles,
namely

{

{1, 2, 5}, {3, 6, 7}
}

,
{

{1, 5, 6}, {2, 3, 7}
}

.

The common angle multiset is

{−1, i, i,−i,−i,−2i− 1, 2i− 1} (ω2 = i, ω4 = −1, ω6 = −i, ω := e
2πi
8 ).

Notice here that in many of the angles ωaj1 + ωaj2 + ωaj2 , a 6= 0 there is cancellation,
as outlined in Lemma 4.3. This explains why the angles multisets for multiplicatively
inequivalent subsets can be the same. These frames are unitarily equivalent (to be proved
next), but not via an automorphism.

Definition 5.2. Let p be prime with p2 | n, and define

Bp,n := ZZ∗
n{b : 1 ≤ b < n, p2b divides n in ZZ} ⊂ ZZn.

We observe that the subsets Bn,p and n
p
ZZn of ZZn are invariant under multiplication

by units (by construction, and since mZZn = ZZn, m ∈ ZZ∗
n).

Lemma 5.3. Let p be prime, d = p+ 1, n ≥ d with p2 | n, and

A :=
n

p
ZZn + a =

{

a,
n

p
+ a,

2n

p
+ a, . . . , (p− 1)

n

p
+ a

}

, a ∈ ZZn.

Then the cyclic harmonic frames for Cd given by the subsets J,K ⊂ G = ZZn, defined by

J := A ∪ {b}, K := A ∪
{

b+ r
n

p

}

, b ∈ Bp,n, b 6∈ A

are unitarily equivalent.

Proof: Since multiplicative equivalence of subsets implies the unitary equivalence
of the frames they give (Theorem 3.5), we can multiply these subsets by some unitm ∈ ZZ∗

n.
This gives subsets of the same form since mA = n

p
ZZn +ma and mBp,n = Bp,n. Hence, by

the definition of Bp,n, we can suppose without loss of generality that p2b | n (in ZZ).
We now show the harmonic frames (ξ|J)ξ∈Ĝ and (ξ|K)ξ∈Ĝ are unitarily equivalent.

Let

ω := e
2πi
n , ζ = ω

n
p = e

2πi
p (p–th root of unity), χ(ℓ) := ωℓ.

12



Then χ is a generator of Ĝ, so ξ, η ∈ Ĝ can be written ξ = χj , η = χk, and we compute

〈ξ|J , η|J〉 =
∑

α∈A

ξ(α)η(α) + ξ(b)η(b)

= ωajωak + . . .+ ω(a+(p−1) n
p
)jω(a+(p−1) n

p
)k + ωbjωbk

= ωa(j−k){1 + ζj−k + . . .+ ζ(p−1)(j−k)} + ωb(j−k),

(5.4)

and similarly

〈ξ|K , η|K〉 = ωa(j−k){1 + ζj−k + . . .+ ζ(p−1)(j−k)} + ω(b+r n
p
)(j−k). (5.5)

Since p2b | n, we can define a permutation σ of ZZn by

σj := j − r
n

pb
j∗, j∗ := j mod p,

and an associated permutation σ̂ of Ĝ by

σ̂(χj) := χσj .

This σ is clearly a well defined map G→ G, and it is 1–1

σj = σk =⇒ j − r
n

pb
j∗ = k − r

n

pb
k∗ =⇒ j ≡ k mod p (since p divides r n

pb
)

=⇒ j∗ = k∗ =⇒ j = k.

We now show that σ̂ gives a unitary equivalence, i.e., 〈σ̂ξ|K , σ̂η|K〉 = 〈ξ|J , η|J〉, ∀ξ, η ∈ Ĝ.
If j − k ≡ 0 mod p, then σj − σk = j − k, so that (5.4) and (5.5) give

〈ξ|J , η|J〉 = pωa(j−k) + ωb(j−k), 〈σ̂ξ|K , σ̂η|K〉 = pωa(j−k) + ω(b+r n
p
)(j−k),

which are equal, since ωr n
p
(j−k) = ζr(j−k) = ζ0 = 1.

Now consider j − k 6≡ 0 mod p. Since ζj−k 6= 1 is a primitive p–th root of unity, the
sums of p–th roots of unity in (5.4) and (5.5) vanish, and we obtain

〈ξ|J , η|J〉 = ωb(j−k), 〈σ̂ξ|K , σ̂η|K〉 = ω(b+r n
p
)(σj−σk) = ω(b+r n

p
)(j−k−r n

pb
(j∗−k∗)) =: ωc.

Since bp2 | n, and j∗ − k∗ = j − k + pℓ, ℓ ∈ ZZ, we have

c = (b+ r
n

p
)(j − k − r

n

pb
(j∗ − k∗)) ≡ b(j − k − r

n

pb
(j∗ − k∗)) + r

n

p
(j − k)

≡ b(j − k − r
n

pb
(j − k + pℓ)) + r

n

p
(j − k) ≡ (j − k){b− r

n

p
+ r

n

p
} ≡ b(j − k) mod n.

Hence 〈σ̂ξ|K , σ̂η|K〉 = ωc = ωb(j−k) = 〈ξ|J , η|J〉.
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Lemma 5.6. Let p be prime, d = p + 1, n ≥ d with p2 | n, A = n
p
ZZn + a, where

a ∈ {1, . . . , p− 1}, and b ∈ ZZ with p | b. Then the cyclic harmonic frames for Cd given by
the subsets

Jr := A ∪ {b+ r
n

p
}, r ∈ {0, 1, . . . , p− 1}

are not multiplicatively equivalent.

Proof: Suppose, by way of contradiction, that the subsets Jr1
and Jr2

, r1 6= r2
are multiplicatively equivalent. i.e., mJr1

= Jr2
, m ∈ ZZ∗

n. Since mA = n
p
ZZn +ma, this

implies

ma = a+ s
n

p
, m(b+ r1

n

p
) = b+ r2

n

p
.

Thus

(a+ s
n

p
)(b+ r1

n

p
) = ma(b+ r1

n

p
) = a(m(b+ r1

n

p
)) = a(b+ r2

n

p
)

which gives

s
b

p
n = a(r2 − r1)

n

p
− s

n

p2
r1n =⇒ 0 ≡ a(r2 − r1)

n

p
6≡ 0 mod n,

a contradiction. Therefore Jr1
and Jr2

are not multiplicatively equivalent.

We can now prove a very general form of Example 5.1.

Theorem 5.7. Suppose p3 | n, where p is prime. Then the p subsets of ZZn

Jr := {1,
n

p
+ 1, . . . (p− 1)

n

p
+ 1} ∪ {p+ r

n

p
}, r ∈ {0, 1, . . . , p− 1}

give cyclic harmonic frames of n distinct vectors for Cp+1 which are unitarily equivalent,
but not via an automorphism.

Proof: Let a = 1, b = p in Lemmas 5.3 and 5.6. Since p2b = p3 | n, b ∈ Bpn, and
Lemma 5.3 implies the subsets Jr give unitarily equivalent frames. Since p | b, Lemma 5.6
implies these subsets are not multiplicatively equivalent, and so the cyclic harmonic frames
they give are not unitarily equivalent via an automorphism (Theorem 3.5). Finally, since
1 ∈ Jr generates ZZn, the frame given by Jr has distinct vectors (Theorem 2.5).

For p = 2, n = 8, J0 = {1, 5} ∪ {2}, J1 = {1, 5} ∪ {6}, and we have Example 5.1.
Our computations suggest that for C3 the only cases where multiplicatively inequivalent
subsets give unitarily equivalent cyclic harmonic frames are those of Theorem 5.7. For C4

there are examples not covered by Theorem 5.7. We now give indicative examples (see
[C10] for further detail).

Example 5.8. (n = 8, d = 4) We can ‘lift’ the Example 5.1, i.e., add 0 to each subset to
obtain

{

{0, 1, 2, 5}, {0, 3, 6, 7}
}

,
{

{0, 1, 5, 6}, {0, 2, 3, 7}
}

.
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These are still multiplicative equivalence classes, since m0 = 0, m ∈ ZZn, and by the same
reasoning are not multiplicatively equivalent. They still give the same angles, since the
angle θ = ωaj1 + ωaj2 + ωaj3 transforms to ω0 + ωaj1 + ωaj2 + ωaj3 = 1 + θ, and they are
unitarily equivalent since

〈ξ|J∪{0}, η|J∪{0}〉 =
∑

j∈J

ξ(j)η(j) + ξ(0)η(0) = 〈ξ|J , η|J〉 + 1.

Example 5.9. (n = 9, d = 4) For ZZ9, the following multiplicative equivalence classes of
4–element subsets give cyclic frames with the same angles

{

{1, 4, 6, 7}, {2, 3, 5, 8}
}

,
{

{1, 3, 4, 7}, {2, 5, 6, 8}
}

.

The common angle multiset is

{ω3, ω3, ω3, ω6, ω6, ω6, 1 + 3ω3, 1 + 3ω6}, ω := e
2πi
9 .

By a similar argument to that of Theorem 5.7, it can be verified that the frames these give
are unitarily equivalent (but not via an automorphism). Here the permutation σ is

σ =

(

1 2 3 4 5 6 7 8 0
1 3 2 4 6 5 7 0 8

)

(for {1, 4, 6, 7} and {1, 3, 4, 7}).

The exceptional cases given in this section, of multiplicatively inequivalent subsets
which give unitarily equivalent harmonic frames, hinge on certain sums of n–th roots of
unity vanishing. This question, the vanishing of sums of n–th roots, is an active area of
number theory research (cf. [M65], [CJ76], [LL00]). Clearly, a complete classification of
all cyclic harmonic frames using the techniques outlined here is intimately related to this
as yet unresolved question. More details are given in the thesis [C10].

6. A family of cyclic harmonic frames

We now describe a family of cyclic harmonic frames for which unitary equivalence is
the same as multiplicative equivalence of the subsets which give them. This is essentially
a general form of the argument of case (a) in the proof of Theorem 4.5.

Let θ be the angle map on d–element subsets of ZZn given by

θ(J) :=
∑

j∈J

ωj , ω = e
2πi
n .

Proposition 6.1. Let Cd be the collection of d–element subsets of ZZn given by

Cd := {J : θ−1(θ(J)) = J}.
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If J ∈ Cd, then J and K give unitarily equivalent cyclic harmonic frames of distinct vectors
if and only if they are multiplicatively equivalent subsets.

Proof: (=⇒) Suppose, by way of contradiction, that J and K are not multiplica-
tively equivalent. Then the angle θ(J) =

∑

j∈J ω
j in the frame given by J is in the frame

given by K if and only if

∑

j∈J

ωj =
∑

k∈K

ωbk =⇒ J = bK (since θ is 1–1 on Cd),

where b 6∈ ZZ∗
n (since the frames are not multiplicatively equivalent). Since the frame given

by J has distinct vectors, ZZn = 〈J〉, and we have

ZZn = 〈J〉 = 〈bK〉 ⊂ 〈b〉 6= ZZn,

a contradiction.
(⇐=) By Theorem 3.5.

The subsets in Cd are the analogue of the subsets of a normal basis for a cyctomic field.

Example 6.2. (d = 2, n odd). Here C2 is all 2–element subsets of ZZn, as in the case (a)
in the proof of Theorem 4.5.

Example 6.3. (n = p a prime). Here the p–th roots of unity are linearly independent over
QQ, so they form a normal basis, and thus Cd is all d–element subsets of ZZp. Moreover,
unitarily inequivalent frames share no angles. Thus the number of unitarily equivalent
harmonic frames of p vectors in Cd is the number of orbits of the d–element subsets of
ZZp under the (multiplicative) action of ZZ∗

p. A formula in terms of the Euler ϕ function is
given [MW10], a recursive formula in [H10] (cf. [H36], [S00]).

This example can be further generalised as follows:

Theorem 6.4 ([C10]). Let n be square free, i.e., be a product of distinct primes. Then
d–element subsets of ZZ∗

n give unitarly equivalent harmonic frames if and only if they are
multiplicatively equivalent.
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[GKK01] V. K. Goyal, J. Kovačević, and J. A. Kelner, Quantized Frame Expansions with

Erasures, Appl. Comput. Harmonic Anal. 10 (2001), 203–233.
[M65] H. B. Mann, On linear relations between roots of unity, Mathematika 12 (1965),

107–117.
[MW10] S. Marshall and S. Waldron, On the number of harmonic frames, Preprint, 2010.

[S68] D. Slepian, Group codes for the Gaussian channel, Bell System Tech. J. 47 (1968),
575–602.

[S06] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), 437–452.
[VW05] R. Vale and S. Waldron, Tight frames and their symmetries, Constr. Approx. 21

(2005), 83–112.
[VW08] R. Vale and S. Waldron, Tight frames generated by finite nonabelian groups, Numer.

Algorithms 48 (2008), 11–28.
[VW10] R. Vale and S. Waldron, The symmetry group of a finite frame, Linear Algebra Appl.

433 (2010), 248-262.

17


