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There is a finite number hn,d of tight frames of n distinct vectors for Cd which are 
the orbit of a vector under a unitary action of the cyclic group Zn. These cyclic 
harmonic frames (or geometrically uniform tight frames) are used in signal analysis 
and quantum information theory, and provide many tight frames of particular 
interest. Here we investigate the conjecture that hn,d grows like nd−1. By using 
a result of Laurent which describes the set of solutions of algebraic equations in 
roots of unity, we prove the asymptotic estimate

hn,d ≈ nd

ϕ(n)
≥ nd−1, n → ∞.

By using a group theoretic approach, we also give some exact formulas for hn,d, and 
estimate the number of cyclic harmonic frames up to projective unitary equivalence.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Tight frames of n vectors for Cd have numerous applications (see the surveys [4], [5]). These include 
signal transmission with erasures [10], [14], [2] and quantum information theory [16], [20].

Many tight frames of practical and theoretical interest are G-frames (the orbit of a unitary action of a 
group G) [22]. Most notable are the harmonic frames (G is abelian) and SICs, i.e., d2 equiangular lines 
in Cd (for a projective action of the abelian group Z2

d). The main result of this paper is a precise statement 
about how numerous the harmonic frames of n vectors for Cd are (Theorem 3.1). By way of comparison, 
SICs are known to exist only for certain values of d, and there is strong evidence for Zauner’s conjecture
that they exist for all values of d (see [20], [25]).
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We now provide some background on harmonic frames, and then detail our approach (precise definitions 
are given in §2). What we will call a cyclic harmonic frame for Cd was first introduced as a d ×n submatrix 
[v1, . . . , vn] of the Fourier matrix (character table for Zn)

⎡⎢⎢⎢⎢⎣
1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

⎤⎥⎥⎥⎥⎦ , ω := e
2πi
n , (1.1)

obtained by selecting d of the rows (characters of Zn). See [11], [13], [3] (who use the term harmonic frame
for when the first d rows are taken), [6] (who use the term a Fourier ensemble), and [19] (who show a 
matrix with its columns given by a random cyclic harmonic frame is a RIP (restricted isometry property) 
matrix with high probability). These tight frames can be viewed as Zn-frames (called geometrically uniform 
frames in [9]). This construction generalises, with Zn replaced by an abelian group G of order n [21], to 
give what we call a harmonic frame (it is cyclic if G can be taken to be Zn). It follows from the character 
table construction (and the fact there are a finite number of abelian groups of order n) that there is a finite 
number of harmonic frames of n vectors for Cd.

A computer study [24] of the harmonic frames of n vectors for Cd suggested the following behaviour:

• The number of harmonic frames (up to unitary equivalence) grows like nd−1, and it is influenced by the 
prime factors of n.

• The majority of harmonic frames are cyclic.

In this paper, we show that for fixed d the number hn,d of cyclic harmonic frames grows like

hn,d ≈ nd

ϕ(n) ≥ nd−1, n → ∞.

The key points of our argument are

• Cyclic harmonic frames correspond to d-element subsets J ⊂ Zn.
• When cyclic harmonic frames given by J, K ⊂ Zn are unitarily equivalent, usually K = σJ for some 

automorphism. When this is not the case, we say they are exceptional.
• The automorphisms of Zn are easy to describe (as the units Z∗

n).
• A pair of unitarily equivalent cyclic harmonic frames determines a torsion point on the (2d)-torus T2d.
• By using results about the torsion point solutions of algebraic equations, we show that the number of 

exceptional harmonic frames grows slower than the number which aren’t.
• The nonexceptional cyclic harmonic frames are counted by Burnside enumeration.

We carry out this argument in §4–§5. We give examples and some numerical data in §6. In §7 we show 
that there are no exceptional equivalences when n is prime, and together with Burnside enumeration this 
allows us to give an exact formula for hn,d in this case, which we break down into lifted and unlifted, and 
into real and complex harmonic frames.

In the final section, we use our techniques to investigate the number pn,d of harmonic frames of n vectors 
for Cd up to projective unitary equivalence. For d ≥ 4, this gives the lower estimate

pn,d ≈ nd−1

ϕ(n) ≥ nd−2, n → ∞.
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2. Harmonic frames

A sequence of n vectors (vj) in Cd is a tight frame for Cd if for some A > 0

A‖f‖2 =
n∑

j=1
|〈f, vj〉|2, ∀f ∈ Cd.

By the polarisation identity, this is equivalent to the redundant “orthogonal expansion”

f = 1
A

n∑
j=1

〈f, vj〉vj , ∀f ∈ Cd. (2.2)

We say that tight frames (vj) and (wk) are unitarily equivalent (up to a reindexing) if there is a unitary 
map U and a bijection σ : j → k (a reindexing) between their index sets for which

vj = Uwσj , ∀j. (2.3)

If (vj) is unitarily equivalent to a frame (wj) ⊂ Rd, then we say it is a real frame.
A tight frame (gv)g∈G which is the orbit of a vector v under the unitary action of a finite group G is 

called a G-frame (or group frame) [22]. For G abelian, there are finitely many G-frames for Cd up to unitary 
equivalence, which we call the harmonic frames. For G nonabelian, there are uncountably many G-frames 
for Cd, d ≥ 2. We now give the basic theory of harmonic frames required (see [7], [22], [8], [23] for details).

Let G be a finite abelian group (written additively). The (irreducible) characters of G are the group 
homomorphisms ξ : G → C \{0}, where C \{0} is a group under multiplication. Here we think of characters 
as vectors ξ ∈ CG (with the Euclidean inner product), which satisfy

ξ(g + h) = ξ(g)ξ(h), ∀g, h ∈ G. (2.4)

The set of irreducible characters of the abelian group G is denoted by Ĝ.
The characters Ĝ form a group under the multiplication (ξη)(g) := ξ(g)η(g), which is called the character 

group. The character group Ĝ is isomorphic to G. For χ ∈ Ĝ, (2.4) implies that χ(g) is a |G|-th root of 
unity, and so the inverse of χ satisfies

χ−1(g) = 1
χ(g) = χ(g). (2.5)

The square matrix with the irreducible characters of G as rows is referred to as the character table of G. 
For example, if G = 〈a〉 is the cyclic group of order n, with its elements ordered 1, a, . . . , an−1, then its 
character table is given by (1.1).

The harmonic frames for Cd given by G can all be described (up to unitary equivalence) in two equivalent 
ways:

1. By a choice of d characters {ξ1, . . . , ξd} ⊂ Ĝ (d rows of the character table), i.e.,

Ψ{ξ1,...,ξd} = (vg)g∈G, vg := (ξj(g))dj=1 ∈ Cd. (2.6)

2. By a choice of d group elements J ⊂ G (d columns of the character table), i.e.,

ΦJ = (ξ|J)ξ∈Ĝ, ξ|J ∈ CJ ∼= Cd. (2.7)
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Many properties of harmonic frames are easy to describe in the second presentation. In particular:

• ΦJ has distinct vectors if and only if J generates G.
• ΦJ is a real frame if and only if J is closed under taking inverses.
• ΦJ is an ETF (equiangular tight frame) if and only if J is a difference set.
• If σ is an automorphism of G and K = σJ , then ΦJ and ΦK are unitarily equivalent.

In this case we say that ΦJ and ΦK are unitarily equivalent via an automorphism.

Note that if J does not generate G, then ΦJ has |〈J〉| distinct vectors (where 〈J〉 is the group generated 
by J), each occurring |G : 〈J〉| times. Moreover, the frame obtained by taking one of each of the distinct 
vectors is a harmonic frame associated to 〈J〉.

We now focus on the harmonic frames for G = Zn, which are said to be cyclic (harmonic) frames. In 
this case, the automorphism group of G (and hence Ĝ) has a particularly simple form: each automorphism 
corresponds to a unit a ∈ Z∗

n via

σg = ag, ∀g ∈ G, σ ∈ Aut(G),
τχ = χa, ∀χ ∈ Ĝ, τ ∈ Aut(Ĝ).

We say that d-element subsets {ξ1, . . . , ξd} and {η1, . . . , ηd} of Ẑn, or d-elements subsets K and J of Zn, 
are multiplicatively equivalent if there is an automorphism mapping one to the other, i.e.,

{ξ1, . . . , ξd} = {η1, . . . , ηd}a = {ηa1 , . . . , ηad}, K = aJ.

This holds if and only if the cyclic harmonic frames they determine are unitarily equivalent via an au-
tomorphism. Because of this, we shall sometimes apply the term ‘multiplicatively equivalent’ to a pair of 
frames to mean they are unitarily equivalent via an automorphism. An exceptional equivalence is a unitary 
equivalence between cyclic harmonic frames given by sets of characters (or group elements) which are not 
multiplicatively equivalent. An exceptional frame is one having an exceptional equivalence with another 
frame.

3. The number of cyclic harmonic frames

Calculations of [7] indicate that most cyclic harmonic frames are not exceptional, i.e., unitarily equivalent 
cyclic harmonic frames usually come from multiplicatively equivalent subsets (this is proved in Proposi-
tion 4.6). This is the basic principle underlying our results.

Let hn,d be the number of unitarily inequivalent cyclic harmonic frames of n distinct vectors for Cd. We 
recall that Euler’s totient function is given by

ϕ(n) = |Z∗
n| = n

∏
p|n

(
1 − 1

p

)
.

The main result is the following, which gives the growth of hn,d (for d fixed).

Theorem 3.1. If d = 1, then hn,d = 1 for all n. If d ≥ 2, then for all ε > 0, we have

hn,d = nd

d!ϕ(n)
∏
p|n

(1 − p−d)
(
1 + Oε(n−1+ε)

)
, n → ∞, (3.8)

where ϕ is Euler’s totient function, and the product is over the prime factors p of n.
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Throughout, we use asymptotic notation, e.g., an = Oε(bn) means |an| ≤ Cbn as n → ∞, where bn ≥ 0
and C is a constant depending only on ε. For an ≥ 0, bn ≥ 0, we write

an � bn ⇐⇒ an = O(bn),

an ≈ bn ⇐⇒ an = O(bn), bn = O(an).

The Euler product formula for the Riemann zeta function gives

0 <
1

ζ(d) =
∏

p prime
(1 − p−d) <

∏
p|n

(1 − p−d) ≤ 1, d = 2, 3, . . . . (3.9)

Thus (3.8) gives the asymptotic estimate

hn,d ≈ nd

ϕ(n) ≥ nd−1, n → ∞.

There are various upper bounds for the factor n/ϕ(n) above, e.g., [18] (Theorem 15) gives

n

ϕ(n) < eC log logn + 2.51
log logn, n ≥ 3,

where C is Euler’s constant.
The proof of Theorem 3.1 (see the comments after Proposition 5.4) consists of two parts:

1. We think of cyclic harmonic frames as being given by subsets (or sequences) of d characters of Zn, and 
hence by n-th roots of unity. This allows us to show that a pair of unitarily equivalent frames gives 
a torsion point on the torus T2d that satisfies certain algebraic equations. By using results about the 
solutions of algebraic equation in roots of unity, we show that the number exceptional cyclic harmonic 
frames grows slower than those which aren’t (Proposition 4.6).

2. In view of Proposition 4.6, it suffices to count the cyclic harmonic frames up to unitary equivalence via 
an automorphism. This we do by (Burnside) counting the d-element subsets of Zn up to multiplicative 
equivalence (Proposition 5.4).

We now give the arguments for each part (§4 and §5).

4. Torsion points and exceptional cyclic frames

Since any character ξ of Zn satisfies

ξ(k) = ξ(1)k, ∀k,

choosing ξ is equivalent to choosing the n-th root of unity ξ(1). Thus a choice of characters (giving a cyclic 
frame) corresponds to a choice of n-th roots via

{ξ1, . . . , ξd} ⇐⇒ {ξ1(1), . . . , ξd(1)}.

In this section, we shall often think of a choice of d characters (or n-th roots) as being an ordered subset
(ξ1, . . . , ξd). There are d! such orderings of a given subset {ξ1, . . . , ξd}.

Two sets of n-th roots determining unitarily equivalent harmonic frames satisfy the following.
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Lemma 4.1. Let G be a finite abelian group. If (vg)g∈G is a harmonic frame, then

〈va+c, vb+c〉 = 〈va, vb〉, ∀a, b, c ∈ G.

In particular, if {ξ1, . . . , ξd}, {η1, . . . , ηd} ⊂ Ẑn give unitarily equivalent cyclic harmonic frames, then for 
some a ∈ Zn, we have

d∑
j=1

ξj(1) =
d∑

j=1
ηj(a). (4.10)

Proof. Let (vg)g∈G and (wg)g∈G be the harmonic frames given by {ξj} and {ηj} via (2.6). Then we calculate

〈va+c, vb+c〉 =
∑
j

ξj(a + c)ξj(b + c) =
∑
j

ξj(a)ξj(c)ξj(b)ξj(c) =
∑
j

ξj(a)ξj(b) = 〈va, vb〉.

If (vg)g∈G and (wg)g∈G are unitarily equivalent via (2.3), then

〈vk, v�〉 = 〈Uwσk, Uwσ�〉 = 〈wσk, wσ�〉 = 〈wσk−σ�, w0〉.

For G = Zn, taking k = 1, � = 0 above, gives 〈v1, v0〉 = 〈wa, w0〉, a := σ1 − σ0, which is (4.10). �
Let V ⊂ C2d be the set of solutions to

d∑
j=1

zj −
2d∑

j=1+d

zj = 0. (4.11)

By Lemma 4.1, every unitary equivalence between cyclic harmonic frames of n vectors for Cd gives a solution

z = (ξ1(1), . . . , ξd(1), η1(a), . . . , ηd(a)) ∈ V (4.12)

in n-th roots of unity. Moreover, one may easily produce such solutions by letting zd+1, . . . , z2d be a per-
mutation of z1, . . . , zd. We call a solution to (4.11) in roots of unity exceptional if zd+1, . . . , z2d is not a 
permutation of z1, . . . , zd.

We shall prove (Lemma 4.2) that any exceptional equivalence between cyclic harmonic frames gives rise 
to an exceptional solution to (4.11). This allows us to prove that the number of exceptional cyclic harmonic 
frames is small (Proposition 4.6), i.e.,

Of the ≈ nd choices of d characters of Zn,� nd−1 give exceptional cyclic harmonic frames.

This reduces the proof of Theorem 3.1 to that of counting the number of nonexceptional cyclic harmonic 
frames, which is done by counting Z∗

n-orbits (see §5).
We will prove Proposition 4.6 by reducing it to a count of solutions to a linear equation in roots of unity. 

This is a well studied problem in the theory of Diophantine equations, and the set of solutions has a simple 
structure described by a theorem of Laurent [15], which is a special case of the Mordell–Lang conjecture. 
We now give the details.

Let Tk be the k-torus

Tk := {z ∈ Ck : |z1| = · · · = |zk| = 1},
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which is a compact abelian Lie group under the group operation

z · w := (z1w1, . . . , zkwk).

If z ∈ Tk and T ⊂ Tk is a subgroup, we use z · T to denote the translate of T by z. A point on the torus 
of finite order is called a torsion point. We denote the set of torsion points by Tk

tors. We let Tk[n] denote 
the set of n-torsion points (torsion points of order n), which is the same as k-tuples of n-th roots of unity. 
There is a bijection between d-tuples of characters of Zn and Td[n] sending (ξ1, . . . , ξd) to (ξ1(1), . . . , ξd(1)).

If the ordered subsets (ξ1, . . . , ξd) and (η1, . . . , ηd) give equivalent harmonic frames, then (4.12) gives a 
point z ∈ V ∩ T2d[n]. Note that z depends on the choice of unitary equivalence between the two frames 
made in the proof of Lemma 4.1.

The basic result that allows us to reduce from counting frames to counting solutions to equations in roots 
of unity is the following.

Lemma 4.2. If the cyclic harmonic frame given by (ξ1(1), . . . ξd(1)) ∈ Td[n] has distinct vectors and is 
exceptional, then there is an exceptional point

z = (ξ1(1), . . . , ξd(1), zd+1, . . . , z2d) ∈ V ∩ T2d[n].

Proof. By hypothesis, there is an ordered set (η1, . . . , ηd) of characters of Zn such that {ξ1, . . . , ξd} and 
{η1, . . . , ηd} are multiplicatively inequivalent, but the frames they give are unitarily equivalent (and hence 
both have distinct vectors). Then by Lemma 4.1, there is an a ∈ Zn satisfying (4.10), and so

z := (ξ1(1), . . . , ξd(1), η1(a), . . . , ηd(a)) ∈ V ∩ T2d[n].

Suppose (by way of contradiction) that z is not exceptional, i.e., zd+1, . . . , z2d is a permutation of z1, . . . , zd. 
Then after a reordering ξj(1) = ηj(a) = ηj(1)a, ∀j, so that {ξj} = {ηj}a. The frame given by {ξj} has 
distinct vectors, and so {ξj} generates Ẑn. Thus {ξj(1)} = {ηj(1)}a generates the n-th roots of unity, and 
a must be a unit. This implies that {ξj} and {ηj} are multiplicatively equivalent, a contradiction. Thus z
is an exceptional point. �

The set of solutions to (4.11) in torsion points is described by the Mordell–Lang conjecture for tori, 
proved by Laurent [15, Theorem 2] (see also the Conjecture on page 299). This states the following:

Theorem 4.3. Let Γ ⊂ (C∗)k be a subgroup of finite rank, i.e. so that the quotient of Γ by its torsion 
subgroup is finitely generated, and let X ⊂ (C∗)k be an algebraic subvariety. Then there is a finite collection 
of elements γi ∈ Γ and algebraic subgroups Hi ⊂ (C∗)k such that γi ·Hi ⊂ X for all i, and

X ∩ Γ =
⋃
i

γi · (Hi ∩ Γ).

The following consequence of Theorem 4.3 will be useful for us.

Corollary 4.4. Let f be a (holomorphic) polynomial on Ck with zero set

Z(f) := {z ∈ Ck : f(z) = 0}.
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Then there is a finite number of (topologically) closed, connected subgroups T1, . . . , Tm of Tk, and points 
p1, . . . , pm in Tk

tors, such that

Tk
tors ∩ Z(f) = Tk

tors ∩
m⋃
j=1

(pj · Tj), pj · Tj ⊂ Z(f), ∀j. (4.13)

Proof. We apply Theorem 4.3 with Γ = Tk
tors and X = Z(f) ∩ (C∗)k to produce pi ∈ Tk

tors and algebraic 
subgroups Hi ⊂ (C∗)k such that pi ·Hi ⊂ Z(f) for all i, and

Tk
tors ∩ Z(f) =

⋃
i

pi · (Hi ∩ Tk
tors). (4.14)

We have Hi ∩ Tk
tors = (Hi ∩ Tk) ∩ Tk

tors, and Hi ∩ Tk = ∪jqij · Ti where qij ∈ Tk
tors and Ti is the identity 

component of Hi ∩ Tk, which is a (topologically) closed connected subgroup of Tk. Combining this with 
(4.14) gives

Tk
tors ∩ Z(f) =

⋃
i

⋃
j

pi · qij · (Ti ∩ Tk
tors) = Tk

tors ∩
⋃
i

⋃
j

pi · qij · Ti.

We have qij · Ti ⊂ Hi for all i and j, and so pi · qij · Ti ⊂ pi ·Hi ⊂ Z(f). This completes the proof. �
We now apply Corollary 4.4 to V ∩T2d

tors. Let π be the projection of T2d onto the first d components, i.e.,

π : T2d = Td × Td → Td : (z, w) �→ z.

For any σ ∈ Sd, let Tσ = {(z1, . . . , zd, zσ1, . . . , zσd) : |zj | = 1} ⊂ T2d, so that

T2d
tors ∩

⋃
σ∈Sd

Tσ

is the set of solutions to (4.11) in roots of unity that are not exceptional.

Lemma 4.5. There are a finite number of (topologically) closed, connected subgroups T1, . . . , Tm of T2d

satisfying dim π(Tj) < d for all j, and points p1, . . . , pm in T2d
tors, such that

T2d
tors ∩ V =

⋃
σ∈Sd

(T2d
tors ∩ Tσ) ∪

m⋃
j=1

(T2d
tors ∩ pj · Tj). (4.15)

Proof. We apply Corollary 4.4 with Z(f) = V . We now determine the possible tori Tj in (4.13) that can 
satisfy pj · Tj ⊂ V . For α ∈ Zk and z ∈ Tk, we define zα := zα1

1 . . . zαk

k .
A connected subgroup T ⊂ T2d of dimension k is the image of a map

Tk → T2d : z = (z1, . . . , zk) �→ (zα1 , . . . , zα2d), αj ∈ Zk,

where the αj must span Rk, since the map has a discrete kernel. If p = (ω1, . . . , ω2d) ∈ T2d, then p · T is 
the image of the map z �→ (ω1z

α1 , . . . , ω2dz
α2d). Thus for the linear polynomial (4.11) to vanish on p ·T , we 

must have

d∑
ωjz

αj −
2d∑

ωjz
αj = 0, ∀z ∈ Tk.
j=1 j=d+1
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For any exponent β, the sum of the coefficients of zβ above must be 0. It follows that any β occurring as 
an αj must occur at least twice, and so there can be at most d distinct exponents. Thus the αj can span 
Rk only if k ≤ d. If k < d, then clearly dim π(T ) < d.

If k = d, then every exponent occurs exactly twice. If some exponent occurs twice in the first sum, i.e., 
αj = αk for some 1 ≤ j �= k ≤ d, then the function zj/zk is constant on T , which implies that dim π(T ) < d. 
If no exponent occurs twice in the first sum, then each exponent occurs once in each sum, i.e., αd+j = ασj , 
1 ≤ j ≤ d, for some σ ∈ Sd. This implies that T ⊂ Tσ, and as both are d-dimensional and connected, we 
have that T = Tσ. We must also have ωd+j = ωσj , 1 ≤ j ≤ d, so that p ∈ T and p · T = Tσ.

We have shown that

T2d
tors ∩ V =

⋃
σ∈X

(T2d
tors ∩ Tσ) ∪

m⋃
j=1

(T2d
tors ∩ pj · Tj),

where X ⊂ Sd and dim π(Tj) < d for all j. The inclusion⋃
σ∈Sd

(T2d
tors ∩ Tσ) ⊂ T2d

tors ∩ V

means that we can take X = Sd, which completes the proof. �
Proposition 4.6. For d fixed, the number of choices of d characters of Zn which lead to exceptional cyclic 
harmonic frames with distinct vectors is � nd−1 as n → ∞.

Proof. Let E ⊂ Td[n] be the set of d-tuples of characters of Zn (viewed as n-th roots) that give exceptional 
cyclic harmonic frames with distinct vectors, and let Ẽ ⊂ V ∩ T2d[n] be the set of exceptional points. By 
Lemma 4.2 and Lemma 4.5, we have

E ⊂ π(Ẽ) ⊂ Td[n] ∩
m⋃
j=1

π(pj · Tj),

with dim π(Tj) < d for all j, which implies that |Td[n] ∩π(pj ·Tj)| � nd−1. Since the collection of translates 
pj · Tj only depends on d, we obtain |E| � nd−1 as required. �
5. Counting the nonexceptional cyclic harmonic frames

Let mn,d be the number of cyclic harmonic frames of n distinct vectors for Cd, up to unitary equivalence 
via an automorphism, i.e., the number of d-element subsets which generate Zn, up to multiplicative equiv-
alence. (In this section, it will be convenient to work with group elements rather than characters.) We will 
prove Theorem 3.1 by calculating mn,d, then using Proposition 4.6 to conclude

hn,d ≈ mn,d, n → ∞.

Since all elements which generate Zn are multiplicatively equivalent, we have hn,1 = mn,1 = 1. We may 
therefore assume that d ≥ 2 for the rest of this section.

Let Ygen be the set of all d-element subsets which generate Zn (i.e. give cyclic harmonic frames with 
distinct vectors), and Yex ⊂ Ygen be the subset which gives exceptional frames. Then mn,d is the number 
of Z∗

n-orbits of Ygen under the multiplicative action of Z∗
n.

If S is a collection of d-element subsets of Zn, and S is stable under the action of Z∗
n, we denote the set 

of its orbits by S/Z∗
n, and the set of its elements fixed by a ∈ Z∗

n by Fix(a) = Fix(a, S).
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Lemma 5.1. We have the bounds

|(Ygen \ Yex)/Z∗
n| ≤ hn,d ≤ mn,d = |Ygen/Z

∗
n|.

Proof. We observe hn,d is the number of equivalence classes in Ygen under the equivalence relation given 
by unitary equivalence of the corresponding frames. Since each equivalence class is stable under the action 
of Z∗

n, the number of such classes is at most the number of Z∗
n-orbits, which gives the upper bound. By 

definition of Yex, the unitary equivalence classes in Ygen \ Yex are exactly the Z∗
n-orbits, which gives the 

lower bound. �
We now estimate the sizes of Ygen and Ygen \ Yex.

Lemma 5.2. We have

|Ygen|, |Ygen \ Yex| = nd

d!
∏
p|n

(1 − p−d) + O(nd−1), n → ∞, (5.16)

where the product is over the prime factors p of n.

Proof. It is convenient to work with the ordered subsets of Zn. Let X = Zd
n be the set of d-tuples of 

elements of Zn, Xgen be the subset of those whose elements generate Zn, and Xdist be the subset of those 
whose elements are all distinct. Clearly,

|Ygen| = |Xdist ∩ Xgen|/d!.

The size of Xgen is Hall’s d-th Eulerian function (d = 1 gives Euler’s totient function ϕ(n)). We now 
calculate |Xgen| by using inclusion–exclusion counting. Let X (m) ⊂ X be the collection of d-tuples all of 
whose elements lie in mZn. If some d-tuple does not generate Zn, then its elements must be contained in 
some maximal proper subgroup pZn, p|n, and so we have

Xgen = X \
⋃
p|n

X (p).

It is easy to see that if p1, . . . , pk are distinct primes dividing n, then

∣∣∣ k⋂
j=1

X (pj)
∣∣∣ = |X (p1p2 · · · pk)| =

(
n/(p1p2 · · · pk)

)d
.

Thus, inclusion–exclusion counting gives

|Xgen| = |X | −
∑
p|n

|X (p)| +
∑

p1,p2|n
p1 �=p2

|X (p1) ∩ X (p2)| − · · ·

= nd
∏
p|n

(1 − p−d).

Since |X \ Xdist| = nd − n(n − 1) · · · (n − d + 1) � nd−1, we have

d!|Ygen| = |Xgen ∩ Xdist| = nd
∏

(1 − p−d) + O(nd−1)

p|n
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which gives the estimate for |Ygen|. Because |Yex| � nd−1 by Proposition 4.6, we also have the estimate for 
|Ygen \ Yex|. �

We now count the number of orbits for the action of Z∗
n on Ygen and Ygen\Yex. Recall Burnside’s Theorem 

(see [17]), which states that if G is a finite group acting on a finite set S then the number of orbits is

|S/G| = 1
|G|

∑
a∈G

|Fix(a, S)|. (5.17)

We shall combine Burnside’s Theorem with the following bound for | Fix(a, Ygen)|.

Lemma 5.3. Let a ∈ Z∗
n. Then

1. | Fix(a, Ygen)| ≤ nd−1 for a �= 1.
2. | Fix(a, Ygen)| ≤ nd−2 for a2 �= 1.

Proof. Let A ∈ Fix(a, Ygen). We note that the elements of A ∈ Ygen generate Zn.
If a �= 1, then H = {b ∈ Zn : ab = b} is a proper subgroup of Zn, and so there is some b ∈ A, b /∈ H. As 

the choice of b determines a second element ab ∈ A, the number of choices for A is less than n ·nd−2 = nd−1. 
Similarly, if a2 �= 1 (so a �= 1), then H = {b ∈ Zn : a2b = b} is a proper subgroup of Zn, so that {b, ab, a2b}
are distinct elements of A for b ∈ A, b /∈ H. It follows that if d = 2 then Fix(a, Ygen) = ∅, and if d ≥ 3 the 
number of choices for A is less than n · nd−3 = nd−2. �
Proposition 5.4. For each ε > 0, we have

|Ygen/Z
∗
n|, |(Ygen \ Yex)/Z∗

n| = 1
d!ϕ(n)

(
nd

∏
p|n

(1 − p−d) + Oε(nd−1+ε)
)
, n → ∞. (5.18)

Proof. Since |Z∗
n| = ϕ(n), counting the Z∗

n-orbits of Ygen by Burnside’s Theorem (5.17) gives

|Ygen/Z
∗
n| = 1

ϕ(n)
∑
a∈Z∗

n

|Fix(a,Ygen)|.

Partition Z∗
n into {1}, B = {a : a2 = 1, a �= 1} and {a : a2 �= 1}, and apply Lemma 5.3 to the last two sets 

to obtain

|Ygen/Z
∗
n| ≤

1
ϕ(n)

(
|Ygen| + |B|nd−1 + ϕ(n)nd−2).

We recall that Z∗
pm is cyclic for p an odd prime, and Z∗

2m is a product of at most two cyclic groups. By the 
Chinese Remainder Theorem and the structure of Z∗

pm for p prime, we have

|B| < |{a ∈ Z∗
n : a2 = 1}| ≤ 2ω(n)+1

where ω(n) is the number of prime factors of n. We see that 2ω(n) is at most the number of divisors d(n) of 
n, and it is known that d(n) �ε n

ε, see for instance [1, Thm 13.12]. Applying this and ϕ(n) ≤ n gives

|Ygen/Z
∗
n| ≤

1 (
|Ygen| + Oε(nd−1+ε)

)
.

ϕ(n)
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Combining this with the estimate (5.16) for |Ygen| gives the upper bound

|Ygen/Z
∗
n| ≤

1
d!ϕ(n)

(
nd

∏
p|n

(1 − p−d) + Oε(nd−1+ε)
)
. (5.19)

We estimate |(Ygen \ Yex)/Z∗
n| in the same way. Let S = Ygen \ Yex in (5.17) and take only the a = 1

term to obtain

|(Ygen \ Yex)/Z∗
n| ≥

1
ϕ(n) |Ygen \ Yex|.

Combining this with the estimate (5.16) for |Ygen \ Yex| gives the lower bound

|(Ygen \ Yex)/Z∗
n| ≥

1
d!ϕ(n)

(
nd

∏
p|n

(1 − p−d) + Oε(nd−1+ε)
)
. (5.20)

Since |(Ygen \ Yex)/Z∗
n| ≤ |Ygen/Z

∗
n|, the bounds (5.19) and (5.20) give (5.18). �

By Lemma 5.1, Proposition 5.4 and (3.9), we have

hn,d,mn,d = 1
d!ϕ(n)

(
nd

∏
p|n

(1 − p−d) + Oε(nd−1+ε)
)

= nd

d!ϕ(n)
∏
p|n

(1 − p−d)
(
1 + Oε(n−1+ε)

)
, n → ∞,

which completes the proof of Theorem 3.1 (we already observed that hn,1 = mn,1 = 1).

6. Some examples

The number of cyclic harmonic frames up to multiplicative equivalence can be calculated exactly by 
Burnside counting (this can be done by a computer algebra package):

mn,d = |Ygen/Z
∗
n| = 1

ϕ(n)

(
|Ygen| +

∑
a∈Z

∗
n

a�=1

|Fix(a,Ygen)|
)
. (6.21)

This slightly over counts hn,d when there are exceptional frames. Theorem 3.1 gives the approximation

hn,d ≈ an,d := nd

d!ϕ(n)
∏
p|n

(1 − p−d), n → ∞. (6.22)

This appears to give a good fit to hn,d and mn,d (even for small values of n), see Fig. 1.
Since ϕ(n) is multiplicative, with

ϕ(pm) = pm
(
1 − 1

p

)
,

it follows that

an,1 = 1, an,2 = n

2
∏
p|n

(
1 + 1

p

)
∈ Z, n > 2.

For d > 2, an,d may not be an integer.
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Fig. 1. The number of harmonic frames of n distinct vectors for C3 (including noncyclic frames) as calculated by [24] together 
with an,3.

Example 6.1. For d = 2, unitary equivalence and multiplicative equivalence are the same [7], i.e., hn,2 = mn,2. 
Despite an,2 being an integer, it does not always equal mn,2. They first differ for n = 8, when the units 
group has three elements of order 2, i.e., 3, 5, 7 ∈ Z∗

8 with

Fix(3) =
{
{1, 3}, {5, 7}

}
, Fix(5) =

{
{1, 5}, {3, 7}

}
Fix(7) =

{
{3, 5}, {1, 7}

}
.

Since Ygen has 22 elements, (6.21) gives a8,2 = 6 < 7 = 1
4(22 + 2 + 2 + 2) = m8,2.

Example 6.2. For d > 2 there exist exceptional cyclic frames, e.g., for n = 8 vectors in C3, there are 17
multiplicative equivalence classes of 3-element subsets that generate Z8. The classes{

{1, 2, 5}, {3, 6, 7}
}
,

{
{1, 5, 6}, {2, 3, 7}

}
give exceptional frames (a frame from each class gives an exceptional pair), and it is easy to show that 
h8,3 = 16 < 17 = m8,3.

7. Harmonic frames with a prime number of vectors

When n is prime, then the n − 1 primitive n-th roots of unity are a Q-basis for the cyclotomic field Q[ω]
that they generate. As a consequence, many of the inner products between vectors of the (cyclic) harmonic 
frames are distinct, and so there are no exceptional frames:

Proposition 7.1. If n = p is prime, then all harmonic frames of n distinct vectors for Cd are cyclic, and 
multiplicative and unitary equivalence are the same for these frames, i.e., hp,d = mp,d.

Proof. Let {ξ1, . . . , ξd} and {η1, . . . , ηd} be characters of Zp giving unitarily equivalent harmonic frames 
with distinct vectors. By Lemma 4.1 there is some a ∈ Zp with

d∑
ξj(1) =

d∑
ηj(a). (7.23)
j=1 j=1
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We will show that after a reordering ξj(1) = ηj(a), ∀j. The argument of Lemma 4.2 then implies that the 
frames are multiplicatively equivalent.

Let ω be a primitive p-th root of unity, and aj and bj be the number of times that ωj occurs as a 
summand on the left hand and right hand sides of (7.23). Then

a0 + · · · + ap−1 = b0 + · · · + bp−1 = d. (7.24)

Since 1 +ω+ · · ·+ωp−1 = 0, we may replace each appearance of 1 in (7.23) by −ω−· · ·−ωp−1, and equate 
coefficients of the resulting Q-linear combinations of primitive roots to obtain

aj − a0 = bj − b0, j = 1, 2, . . . , p− 1. (7.25)

Solving the system (7.24) and (7.25) of p linear equations in a0, . . . , ap−1 gives aj = bj , ∀j. �
The above argument shows that harmonic frames that are unitarily inequivalent have no inner product 

between distinct vectors in common.
For n = p prime we are able to give an explicit formula for the count (6.21) of mp,d = hp,d. It is convenient 

to split this into the lifted and unlifted harmonic frames. We say that a harmonic frame given by J ⊂ Zn is
lifted if 0 ∈ J , equivalently, the subset of characters defining it contains the trivial character 1 ∈ Ẑn, or its 
vectors have a nonzero sum.

Theorem 7.2. Let p be a prime, and hu
p,d and hl

p,d be the number of unlifted and lifted harmonic frames of 
p distinct vectors for Cd up to unitary equivalence. For d > 1, we have

hu
p,d = 1

p− 1
∑

j| gcd(p−1,d)

(p−1
j

d
j

)
ϕ(j), (7.26)

hl
p,d = 1

p− 1
∑

j| gcd(p−1,d−1)

(p−1
j

d−1
j

)
ϕ(j). (7.27)

Proof. For d = 1, the unique harmonic frame (with distinct vectors) is unlifted, so that hu
p,1 = 1, hl

p,1 = 0. 
We observe that the formula (7.26) also holds for d = 1. For d > 1, all d-element subsets of Zp generate Zp, 
and so all harmonic frames have distinct vectors.

We first count the unitarily inequivalent unlifted harmonic frames, i.e., the number of d-element subsets 
of Zp \ {0} up to multiplicative equivalence. If a ∈ Z∗

p has order j, then its action on Zp \ {0} gives p−1
j

orbits of size j. In order for there to be a d-element subset J of Zp \ {0} fixed by a, we must have j|d, and 

the number of such subsets is | Fix(a)| =
( p−1

j
d
j

)
. There are ϕ(j) elements in Z∗

p of order j, and so Burnside’s 
theorem (5.17) applied to S the collection of d-element subsets of Zp \ {0} gives the first formula:

hu
p,d = 1

|Z∗
p|

∑
j| gcd(p−1,d)

∑
a∈Z

∗
p

ord(a)=j

|Fix(a, S)| = 1
p− 1

∑
j| gcd(p−1,d)

(p−1
j

d
j

)
ϕ(j).

We now count the lifted frames. These are given by the d-element subsets J ⊂ Zp with 0 ∈ J , which are 
multiplicatively equivalent if and only if the (d − 1)-element subsets J \ {0} are. Thus hl

p,d = hu
p,d−1, which 

gives (7.27) since the formula for hu
p,d holds for d ≥ 1. �

A backwards recursive formula for hp,d based on orbit counting is given in [12].
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Example 7.3. For d = 2 and p > 2, we have hp,2 = 1
2 (p + 1), since

hu
p,1 = hl

p,2 = 1, hu
p,2 = hl

p,3 = 1
p− 1

{(p− 1
2

)
+

(p−1
2
1

)}
= 1

2(p− 1).

Example 7.4. For d = 3 and p > 2, we have

hu
p,3 = hl

p,4 = 1
p− 1

{(
p−1
3
)
, p �≡ 1 (mod 3);(

p−1
3
)

+ 2
( p−1

3
1
)
, p ≡ 1 (mod 3).

Hence

hp,3 =
{

1
6(p2 − 2p + 3), p �≡ 1 (mod 3);
1
6(p2 − 2p + 7), p ≡ 1 (mod 3).

The above formulas for p ≡ 1 (mod 3) and p ≡ 2 (mod 3) appear in [12] (Prop. 4.2).

Example 7.5. For d = 4 and p > 2, we have

hu
p,4 = hl

p,5 = 1
p− 1

{(
p−1
4
)

+
( p−1

2
2
)
, p �≡ 1 (mod 4);(

p−1
4
)

+
( p−1

2
2
)

+ 2
( p−1

4
1
)
, p ≡ 1 (mod 4).

As indicated, we can construct formulas for hp,d depending on p modulo d and d − 1, e.g.,

hp,4 = hu
p,4 + hl

p,4 = 1
24(p3 − 5p2 + 9p + 19), p ≡ 1 (mod 12).

It is also possible to count the number of real harmonic frames. We recall that J ⊂ Zn gives a real 
harmonic frame if and only if it is closed under taking inverses, i.e., J = −J . For n = p an odd prime, 
−j = j if and only if j = 0, and so the J giving real frames have 0 /∈ J when d is even, and 0 ∈ J when d
is odd. Burnside counting gives the following.

Proposition 7.6. Let p be an odd prime and d > 1. For d even, the number of real harmonic (unlifted) frames 
of p distinct vectors for Rd (up to unitary equivalence) is

hR

p,d = 1
p− 1

{ ∑
j| gcd(p−1,d)

j even

(p−1
j

d
j

)
ϕ(j) +

∑
j| gcd(p−1, d2 )

j odd

(p−1
2j
d
2j

)
ϕ(j)

}
.

For d odd, the number of real harmonic (lifted) frames of p distinct vectors for Rd is

hR

p,d = 1
p− 1

{ ∑
j| gcd(p−1,d−1)

j even

(p−1
j

d−1
j

)
ϕ(j) +

∑
j| gcd(p−1, d−1

2 )
j odd

(p−1
2j
d−1
2j

)
ϕ(j)

}
.

Proof. We first consider the case when d is even. The unit group Z∗
p is cyclic of even order p − 1, and we 

let a ∈ Z∗
p have order j. We wish to count the number of d-element sets J ⊂ Zp \ {0} that are invariant 

under multiplication by a and −1. If j is even, then −1 = a
j
2 , and so this is equal to the number of subsets 

invariant under multiplication by a. This is 
( p−1

j
d

)
as in the proof of Theorem 7.2. If j is odd, then the 
j
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subgroup of Z∗
p generated by −1 and a is cyclic with generator −a. We therefore wish to find the number 

of subsets invariant under multiplication by −a, and as this element has order 2j, this is 
(p−1

2j
d
2j

)
.

Thus Burnside orbit counting gives

hR

p,d = 1
p− 1

{ ∑
j| gcd(p−1,d)

j even

(p−1
j

d
j

)
ϕ(j) +

∑
j| gcd(p−1, d2 )

j odd

(p−1
2j
d
2j

)
ϕ(j)

}
.

When d is odd, the subsets J giving real frames are multiplicatively equivalent if and only if the sets 
J \ {0} are, and so we may apply the previous count (with d replaced by d − 1). �
Example 7.7. For d = 2, 3, there is a single real harmonic frame of p distinct vectors, i.e.,

hR

p,2 = hR

p,3 = 1.

For d even, d ≥ 4, we have the estimate

hR

p,d = hR

p,d+1 ≈ p
d
2−1, p → ∞.

8. Projective unitary equivalence of harmonic frames

Many applications of tight frames (vj) are based on the expansion (2.2), i.e., depend only on the vectors 
up to unit scalar multiples. We say that tight frames (vj) and (wk) are projectively unitarily equivalent (up 
to a reindexing) if there is a unitary map U , unit modulus scalars cj, and a bijection σ : j → k (a reindexing) 
between their index sets for which

vj = cjUwσj , ∀j.

In [8] it is shown that harmonic frames given by subsets J, K ⊂ G are projectively unitarily equivalent (with 
σ the identity) if J and K are translates, i.e., K = J − b, b ∈ G. Therefore the affine transformations L(σ,b)
given by

L(σ,b)g := σg + b, σ ∈ Aut(G), b ∈ G

map subsets J ⊂ G to subsets which give projectively unitarily equivalent harmonic frames (via an auto-
morphism). Calculations of [8] suggest that the majority of projective unitary equivalences occur in this 
way, via a reindexing which is an automorphism (indeed there is no known case where it does not). We 
observe that every d-element subset of Zn is a translate of one which generates Zn, and so every cyclic 
harmonic frame is projectively unitarily equivalent to one with distinct vectors.

We now count the number pn,d of cyclic harmonic frames ΦJ for Cd up to this projective unitary equiva-
lence via an affine transformation of the index set J . Since the affine group (group of affine transformations) 
has order nϕ(n) and there are 

(
n
d

)
subsets of Zn of size d, we have

pn,d ≥
(
n
d

)
nϕ(n) � nd−1

ϕ(n) ≥ nd−2, n → ∞.

For d ≥ 4, we can establish this rate of growth. Since Z∗
n gives the automorphisms of Zn, the group of affine 

transformations of Zn is isomorphic to Z∗
n � Zn, with (a, b) ∈ Z∗

n � Zn acting on Zn via x �→ ax + b.
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Theorem 8.1. Let pn,d be the number of orbits of the affine group acting on the d-element subsets of Zn. For 
d ≥ 4, we have

pn,d ≈ nd−1

ϕ(n) ≥ nd−2, n → ∞. (8.28)

Proof. To obtain an upper bound for pn,d, we estimate the terms in the Burnside orbit counting formula

pn,d = 1
nϕ(n)

∑
(a,b)∈Z∗

n�Zn

|Fix(a, b)|, (8.29)

where Fix(a, b) is the collection of d-element subsets A ⊂ Zn fixed by the action of (a, b). The orbit of x
under the action of (a, b) ∈ Z∗

n � Zn is

x, ax + b, a2x + ab + b, . . . .

Since ax + b = x + ((a − 1)x + b), all orbits will have at least two elements provided that b /∈ (a − 1)Zn. 
Thus, our assumption d ≥ 4 implies that any A fixed by (a, b) with b /∈ (a − 1)Zn will have at least two 
of its elements determined by the fact it is a union of orbits. This implies the contribution to the sum in 
(8.29) by these elements is at most nd−2|Z∗

n � Zn| ≤ nd. It therefore remains to show the contribution to 
the sum in (8.29) from the elements (a, b) with b ∈ (a − 1)Zn is � nd.

Suppose that b ∈ (a − 1)Zn. Conjugating (a, b) by (1, c) does not change the size of Fix(a, b). Since 
(1, c)(a, b)(1, c)−1 = (a, b +c(1 −a)) and b ∈ (a −1)Zn, we may choose a c so that (1, c)(a, b)(1, c)−1 = (a, 0). 
Thus | Fix(a, b)| = | Fix(a, 0)|. We observe the action of (a, 0) and a on Zn is the same. Let m := gcd(a −1, n). 
Then

(a− 1)Zn = mZn,

and the subgroup of Zn on which a acts trivially is

H = {x ∈ Zn : ax = x} = n

m
Zn.

We partition Fix(a, 0) = ∪jFj , where each A ∈ Fj has exactly j elements not in H, i.e.,

Fj := {A ∈ Fix(a, 0) : |A \H| = j}, j = 0, 1, . . . , d.

If x /∈ H, then ax �= x and ax /∈ H (otherwise ax = a−1a(ax) = a−1ax = x), so that

|F0| ≤ |H|d = md, |F1| = 0, |F2| ≤ |H|d−2n = md−2n,
∑
j≥3

|Fj | ≤ nd−2.

The last inequality holds because any A with at least 3 elements not in H has at least 2 elements determined 
by the fact it is a union of orbits. Using these, we have the estimate∑

(a,b)∈Z
∗
n�Zn

b∈(a−1)Zn

|Fix(a, b)| ≤
∑
m|n

∑
a∈Z

∗
n

m=gcd(a−1,n)

∑
b∈mZn

|Fix(a, 0)| ≤
∑
m|n

n

m

n

m

(
|F0| + |F2| +

∑
j≥3

|Fj |
)

≤ nd
∑
m|n

( n

m

)2−d

+ nd−1
∑
m|n

( n

m

)4−d

+ nd
∑
m|n

1
m2

≤ nd
∑
k

1
k2 + nd−1

∑
m|n

1 + nd
∑
m

1
m2 � nd,

which completes the proof. �
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Lemma 8.2. For n prime, (8.28) also holds for d = 3.

Proof. If n is prime, then for any 3-element subset A ⊂ Zn there is an affine transformation (a, b) so that 
(a, b)A contains 0 and 1. There are at most n choices for the third element, so that n ≥ pn,3. �
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