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Abstract

Many tight frames of interest are constructed via their Gramian matrix (which
determines the frame up to unitary equivalence). Given such a Gramian, it can
be determined whether or not the tight frame is projective group frame, i.e., is
the projective orbit of some group G (which may not be unique). On the other
hand, there is complete description of the projective group frames in terms of the
irreducible projective representations of G. Here we consider the inverse problem
of taking the Gramian of a projective group frame for a group G, and identifying
the cocycle and constructing the frame explicitly as the projective group orbit of
a vector v (decomposed in terms of the irreducibles). The key idea is to recognise
that the Gramian is a group matrix given by a vector f € C%, and to take the
Fourier transform of f to obtain the components of v as orthogonal projections.

This requires the development of a theory of group matrices and the Fourier
transform for projective representations. Of particular interest, we give a block
diagonalisation of (projective) group matrices. This leads to a unique Fourier
decomposition of the group matrices, and a further fine-scale decomposition into
low rank group matrices.
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1 Introduction

Let G be a finite abstract group. A map p : G — GL(C?) is said to be a projective
representation of G of dimension d = d, with cocycle (or multiplier) a: Gx G — C
if
p(g)p(h) = alg, h)p(gh),  Vg,h € G. (1.1)

Two projective representations p, « and p, & are equivalent if thereisamapc: G — C
with p = ¢T'pT~!. The theory of projective representations follows that of ordinary
representations (when o = 1), and will be introduced as needed. The key point for now,
is that for certain groups there are representations which are not ordinary representations
(the possible « are indexed by the Schur multiplier group).

For a nonzero vector v € C? and a projective unitary representation p, o, we define
a projective group frame or (G, a)-frame to be the projective G-orbit of v, i.e., the
sequence of vectors

(6g) = (9v) = (p(9)V)gec:  gv:= p(g)v.
By (1.1), this satisfies

9n = p(g)p(h)v = a(g, h)dgh, (1.2)
and if the representation is unitary, i.e., p(g)* = p(g)~!, then
(0ns) = ol plale) = {pla) ol o) = (B B0 0 (1)

These generalise group frames (also known as G-frames), which are the case when a = 1.
A sequence of vectors (v;) in C? is a (normalised) tight frame for C? if it satisfies

f=Y (fvv;,  Vfecw (1.4)
j=1

The term Parseval frame is also commonly used. Normalised tight G-frames, which
are natural generalisations of orthonormal bases, have numerous applications [CK13],
[BS11], [FJMP15] [TH17], and their structure is now well understood [Wall8|.

On the other hand, tight (G, a)-frames are of great interest also [HL00], [GHO3].
These are sometimes referred to as projective frame representations or group-like systems.
As an example, SICs (sets of d? equiangular lines in C%) come as a tight projective group
frame for Zg x Zq [ACFW17], as do MUBs (mutually unbiased bases) [WF89], [GR09],
and many real and complex spherical t-designs [GKMSo16], [Wall7].

Until recently, such tight frames have been studied by considering them as G-frames
for a larger group for which p(G) contains scalar matrices, and by accounting for the
scalar multiples of a given vector. One such approach is to consider a canonical abstract
error group (the enlarged group) with index group G [CW17]. Recent calculations, most
notably [CH18| (which uses the term twisted group frame), suggest that they can be
viewed as projective group frames, with the theory of group frames following with little
extra work (a twist if you like). Our contribution to this burgeoning theory of projective
group frames is to study them via their Gramian matrix V*V € C9*¢ V = [¢/],eq,
which has (g, h)-entry given by (1.3). The key points and results are the following:
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e The Gramian determines a projective group frame up to unitary equivalence. If
the representation p is unitary (as must be the case for a tight frame), then the
Gramian is a (G, «)-matrix (see definition 3.1).

e Each (G, a)-matrix is determined by a v € CY, and they form a C*-algebra MG a)-
e The tight (G, a)-frames correspond to the orthogonal projections in Mg ).

e Bach tight (G, o)-frame (gv),ec can be decomposed v = @,;v;, v; € V;, where the
action of p on Vj is irreducible.

e Given the Gramian of tight projective group frame for G, i.e., a (G, «)-matrix P
which is an orthogonal projection, we find a vector v = @;v; and representations
p; € R, where R is a complete set of irreducible representations for «, such that
the projective group frame (3 _; p;(v;))gec has Gramian P. In other words, we give
a concrete construction of a projective group frame (known only from its Gramian)
in terms of the irreducibles involved (Theorem 8.2).

e The construction above relies on a simultaneous unitary block diagonalisation of
the (G, «)-matrices (Theorem 7.2), related to an appropriately defined Fourier
transform for projective representations of a finite group. The blocks preserve
the spectral structure of the (G, a)-matrix. In particular, the tight (G, a)-frames
correspond to the case when all of the blocks are orthogonal projections. This
characterisation of the tight (G, «)-frames, gives the usual characterisation (in
terms of the decomposition of v into irreducibles), and gives a natural description of
the central (G, a)-frames (as those where the blocks are 0 or ). The decomposition
of (G, a)-matrices given by our Fourier transform is of independent interest, e.g.,
it allows the determinant of a general (G, «)-matrix to be factored. There is also
a fine-scale decomposition into low rank (G, «)-matrices, which is not unique.

We now proceed, following the above outline.

2 The Schur multiplier

We first consider the functions o : G x G — C which can be cocycles of a projective

representation of G. Given (1.1), multiplying out {p(z)p(y)}p(2) = p(x){p(v)p(2)},
leads to the following multiplication rule for cocycles

a(z,y)a(ry, z) = a(z,yz)a(y, 2). (2.5)

Every « satisfying (2.5) does come from a projective representation. Indeed, with (e,) e
being the standard basis vectors for C%, we can define p : G — GL(C%) by

p(g)en == alg, h)egn, (2.6)

and use (2.5) to verify that it is such a representation:

p(g)p(h)ex = p(g)alh, k)enr = alh, k)a(g, hk)egnk
= a(g, h)a(gh, k)egn. = (g, h)p(gh)ex.



Henceforth a map a : G x G — C satisfying (2.5) will be called a cocycle (more
properly a 2-cocycle) or multiplier of G. The set of cocycles is an abelian group
under pointwise multiplication, which is commonly denoted by Z%(G,C*). If projective
representations p,« and p, @ are are equivalent, i.e., p = ¢I'pT !, where ¢ : G — C,
then

- - _ _ _ CqC .
p(9)p(h) = c,Tp(g) T i Tp(h) T~ = c,enTalg, h)p(gh)T ™" = g—:a(g, h)p(gh),
g
so that

a9, h) = Blg, Malg. h),  Bloh) ="

The function 8 above is a cocycle, called a coboundary (or 2-coboundary), since

CyCy CoyCs CpCyCs  CpCys CyCa
Bz, y)B(ay, z) = —2 = = =42 = 2202 = B(x,y2)(y, 2).

Coy Coyz Coyz Coyz Cyz

The coboundaries form a subgroup B?(G,C*) of Z%(G,C*). The quotient group
M(G) = H*(G,C*) := Z*(G,C*)/B*(G,C*)

is called the Schur multiplier (or second homology group H»(G,Z) of G). The
Schur multiplier is a finite abelian group whose exponent divides the order of G. If
G has a nontrivial cyclic Sylow p-subgroup, then p does not divide |M(G)|. There do
exist finite groups with nontrivial Schur multipliers, and hence projective representations
which are not ordinary. The first few cases of nontrivial Schur multipliers are for certain
groups of order 4,8,9,12.

Every projective representation p, « is equivalent to one p, &, where the p is unitary.
For a unitary representation, |det(p(g))| = 1, and so by taking determinants of (1.1),
we have

la(g, W)l =1, g heG. (2.7)

Consequently, a cocycle satisfying (2.7) is said to be a unitary cocycle. For the purpose
of defining the Schur multiplier, one can suppose that all of the cocycles are unitary,
and satisfy the normalisation condition that «(1,1) = 1.

We now list some properties of cocycles that we will often use. Since

p(1)? =a(1,1)p(1),  plg)p(g™") = alg, g "p(1),

we have p(1) = «(1,1)I, and

o)t = (2.9

Similarly, p(g)p(1) = a(g,1)p(g) and p(1)p(g) = a(1, g)p(g), give

a(l,g) =alg,1) =a(l,1), alg.g ) =alglg), Vged. (2.9)



3 The C*-algebra of (G, a)-matrices

Motivated by the formula (1.3) for the Gramian of a (G, «)-frame, we have:

Definition 3.1 We say that A = [a, 1), nec € C9*C is a (G, a)-matrix if

v(g~'h)
o =M g gy

for some v : G — C. We denote the set of (G, o)-matrices by Mg a).-

(3.10)

Other variations are discussed in §10, e.g., [CH18]| consider the matrices M (v) = M o (v).
Given a (G, o)-matrix A € M(¢,q), the cocycle o (or part of it) can be recovered via
Oé(g, h) ain V(h) Of(g, h)

a(LD) " agy aLh) vy YWFO

alg,h)  aghy v(h™Y)  a(h,h™t)

al,1)  apn1 algh,h V) v(h 1)’ v(h™") # 0.

From now on, we let n = |G|, and refer to matrices indexed by the elements of G as
n X n matrices or G x GG matrices.

Lemma 3.1 The (G, a)-matrices are an n—dimensional subspace of the n x n matrices
which s closed under matriz multiplication, i.e.,

M, (av + bu) = aM,(v) + bM, (1), a,b e C,

M) = Mol 5ap). Orrale) = M )
teG ’

When « is unitary, i.e., || = 1, then they are also closed under the Hermitian transpose
(Mu(v))" = My (v5?), v*(a) := v(a=Ya(a,a Ha(l,1). (3.12)

Proof: Since a(g,g 'a)a(a,a™h) = a(g,g 'h)a(g a,a " h), we have

(Mal0)Mal1)) 5, = 3 M)y Maithn = 3 7 HE

1 3 v(g~—th(a™th) (" h) _ (v*a p)(g~'h)
a(g,g7'h) = a(g~'h(a~'h)~1,a'h) alg,g7'h)

Since a(h, h"1g)a(g, g7 h) = a(h,)a(h™g, g~ h), we have

(Mo (v))gn = Mo(v)ng = v(h~Lg)a(h,h™'g)
_ v({g~ ') Dalg"h, (97 h) (1, 1)
a(g, g1h)

We will call v %, p the a-convolution (of v and pu). O

= Ma<1/*’a)g’h.



Example 3.1 A calculation gives

€g *Xq Ep = Coh
T alg,h)
so that Maeon)
a\€gh
Ma(eg)Ma(€h> = W!;L)

In particular, taking g = h = 1, gives I = a(1,1)M,(e1), so the identity matriz is a
(G, a)-matriz, hence (by Cayley-Hamilton) the inverse of a nonsingular (G, «)-matriz
is a (G, «)-matriz. Further, for a unitary, the limit formulas

AT = lim (A*A+61)'A* = lim A*(AA* +61)7*
5—0t 5—0t
for the pseudoinverse, shows that Mg o) is closed under the pseudoinverse.

Example 3.2 For o unitary, the matrizc P = M,(v) is an orthogonal projection, i.e.,
satisfies P> = P, P* = P, if and only if v %, v = v and v = v.

Example 3.3 For p (and hence «) unitary, we have ,o;;ca = prj, L < j,k < dp, e,

Ma(pjr)" = Ma(prj)-
This follows from (2.8), by taking the (k,j)-entry of p(g) = a(g, g Ha(1,1)p(g~1)*.

4 The twisted group algebra

We now describe how the basic theory of representations extends to the projective case.
Let p : G — GL(V) be a projective representation of G for a cocycle  on V. This gives
a “projective group action” of G on the C-vector space V'

g-v=gv:=p(g)v, Yo e V. (4.13)
This is not a group action in the usual sense, since

g-(h-v)=alg,h)(gh-v).

Nevertheless, we will talk about G-invariant subspaces of V', etc. As in the ordinary case,
we say that a representation p, @ on V is irreducible if the only G-invariant subspaces
of V are 0 and V, i.e., for any nonzero vector v the G-orbit (g - v)sec spans V.

Let CG denote the set of formal C-linear combinations of the elements of G. This
becomes are ring, which we denote by (CG),, under the multiplication

g-ah:=alg,h)gh,

extended linearly. We note that the cocycle multiplication rule (2.5) is equivalent to the
associativity of the multiplication, since

(9ah) ak=alg,h)(gh-k)=alg,h)a(gh, k)ghk
9o (h-ak)=g-o(ah k)hk)=alh,k)a(g, hk)ghk.



Moreover, (CG), is an algebra, which generalises the group algebra CG (the case a = 1),
and is called the a-twisted group algebra (over C). The vector space V' becomes an
(CG)4-module under the operation (CG), x V' — V given by extending (4.13) linearly.
Conversely, if V' is a (CG),-module, then

plgv:=g-v, geG veYV,
defines a projective representation p : G — GL(V') for a. In the language of modules:
The G-invariant subspaces V' are precisely the (CG),-submodules of V.

Since (CG), is semisimple, it follows that if p, a is a projective representation on V,
then V' decomposes as direct sum V' = @;V; of irreducible (CG),-submodules, i.e., each
plv, is an irreducible projective representation for the cocycle . When p is unitary, the
decomposition of V' can be taken to be an orthogonal direct sum. There are finitely
many such irreducible representations of G up to equivalence, which we now describe.

The representation p : G — GL(CY) for a given by (2.6) generalises the (left)
regular (ordinary) representation. It can also be thought of as a representation on
CG, via the indentification of C¢ with CG, i.e., p(g)h := a(g, h)gh. We will call it the
regular a-representation for G. As in the ordinary case, the regular a-representation
decomposes as a direct sum of irreducible representations (for the fixed cocycle o), with
each irreducible occuring with multiplicity given by its dimension. In particular, if
R = R, is a complete set of irreducible representations i.e., each representation
occurs exactly once in R up to equivalence, then we have

n = |G| = dim(C%) = Zd2 (4.14)
PER

We write [p] for the equivalence class of p (where « is fixed) and p ~ £ for the equivalence,
e.g., Xp = X|p) means that x, depends only on p up to equivalence. Schur’s lemma extends
(for (CG)4-homomorphisms between irreducibles), and from it (see [CH18]), one has

Theorem 4.1 Fiz . If p and & are irreducible projective representations of G on V;
and Vs, then

g ) Lp g)  trace(L) |0, p#E¢;
]G\ Zﬁ |G’ Z a(1,1)  dim(V}) {[ p=E,

geG ;

for all linear maps L : Vi — Vs. In particular, if p and & map to matrices, then

€em(g Dpinlg) _ |G O, DA€
Z Oz(g,g_l)a(L 1) N dp {5J€5km7 p=2E (4'15>

When p is unitary, by (2.8) we may write (4.15) as

|G| p#E;
(Pjks Eme) = i, {@m%b h—t. (4.16)

which we will refer to a the orthogonality of coordinates (of irreducible representations).
This leads to a character theory and Fourier transform for projective representations.
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5 Character theory for projective representations

Invariants of the equivalence class
[p] = {TpT~ " : T is invertible}
of a projective representation p : G — GL(C%) include its a-character x, = x|, € C“
dp
Xp(g) := trace(p(g)) = 22521 pij(9), 9 €G.
and the subspace of its coordinates
Upo = Ul :=span{p;r : 1 < j,k < d,}.

It follows from (4.14) and (4.15) that we have the orthogonal decomposition

C’ =P, (5.17)

pPER

Since x, € U, ., the a-characters of inequivalent irreducibles are orthogonal. From

i alhgh™ h i
p) = a1 plhgh) = “CE k) g)oi)
it follows that the a-characters satisfy
7 a(hgh™t,h)
Xp(1) = a(1,1)d,,  x,(hgh™") = WX;;(Q)- (5.18)

Furthermore, if p is unitary, then (2.8) gives

Xp(9™") = alg, g7 a(1,1)x,(9)- (5.19)
If p: G — GL(V) is a representation on V, and V' = &,V is a decomposition into

irreducibles, then
Xo =D Xoly, = D MeXe, (5.20)
J §ER

where m, is the multiplicity of the irreducible £. Since the a-characters of inequivalent
irreducibles are orthogonal, we may determine m, from x, via

G
(Xps Xe) = me(Xes Xe) = me g de = melG.

Applying this to the regular a-represention (2.6) gives mg = dg, and hence (4.14).
Motivated by (5.18), a function f : G — C is called an a-class function if

_ hgh=*, h)
hgh—1) = IV p oy e,
Jhgh™) = =205y 1) 9
and g € GG is a a-element of G if
hgh™*. h
% =1, VheClslg) <= alg,h)=a(hyg), VheCealg).

It can be shown that the subspace of a-class functions (which contains the a-characters)
has an orthogonal basis given by the irreducible a-characters, and its dimension, i.e., the
number of irreducible projective representations (up to equivalence), equals the number
of conjugacy classes of G which contain a a-element (see [CH18] for details).
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6 Fourier analysis

Let R = R, be a complete set of inequivalent irreducible projective representations of
a finite group G for a given cocycle a. We define the a-Fourier transform F, of
f:G — Cat p€ R to be the linear map given by

Fa0)0) = (Fuf)yi= 3 s
aceG ’ ’

When p is unitary, i.e., p(a)* = p(a)™!, this simplifies to

)p=_ fla)pla)™ = fla)p(a)” (6.22)

aeG aeG

(6.21)

We observe that the spectral structure of (F,f), depends only on p up to equivalence,
since

(Faf)TpT*1 = T(Faf)pT_l' (623)
To be able to compare with some presentations, we also define the following variant
f(a)p(a) 7 7 ~1
a = = Fa y = . .24
(Faf)s Eé o a ey ~ Eefle fl@)i=fla) (6.24)

Example 6.1 By (2.8), the Fourier transforms of the standard basis vectors are
plg™) 1 p(9) 1y
Foeg)p = =pl9) ", Fatg)p = = ply -
Fato)o = oo g Na@ 1) =7 ool = Sl g Nam ) ~ P9 )

We note that f — ((Fuf),)per and f — ((Faf),)pcr are linear maps C¢ — @,M,, (C)
between spaces of dimension n = |G| =}~ d2. The corresponding inverse a-Fourier
transforms at A = (A,),cr are given by

(F-A)(a) - =1 G|Zd trace(A,p(a)),  (F'A)(a):= (F7'A) (™).  (6.25)

These are inverses of each other, and we can extend the other basic results of Fourier
analysis (for when the multiplier is o = 1), as follows.

Theorem 6.1 The a-Fourier transform and inverse a-Fourier transform are inverses
of each other, and

F.(V)Fa(p) = Folppxav),  FaV)Falp) = FalV *a 1), (6.26)

where &(a,b) := a(b~t,a'). There is the Plancherel formula

Z a(Zfz)—/fgz_(l? 1) = |E| Xp: dp trace(<FaV)p(FaN)p)> (6.27)

a€G

and when each p € R is unitary

o) = 3 vl)ia) = e 3 dyl(Fu)pr () (6.28)

a€G

where (A, B) := trace(AB™*) is the Frobenius inner product on matrices.
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Proof: Since F,, F;! and F,, F,! are linear maps between n—dimensional spaces, to
prove they are inverses, it suffices to prove that F;'F, = I and F,'F, = I. Moreover,
it suffices to prove the just first, since if it holds, then (6.24) and (6.25) imply

FolFafla) = FoH(Faf)a™h) = FLHEN(@TY) = fla™) = f(a).

We will show that F; ' F,, = I on the standard basis (e,),eq. First recall the character
of the regular a-representation is ) d,x, = a(l, 1)|Gle;. Therefore, we calculate

» plg~Y)p(h "L h)plgth)
(Fy Faeg)(h |G| Zd trace( alg, g 1)a( 1 1) > G| Zd trace( a(g,97")e(1,1) )

_1h 1
gl Z g g‘lh e Ma(E2, dpXp) o = Mool D)er) = Ty = eq(h).

The inversion formula can be expanded

-1 fla)p(a™)
(F Fof)(g |G| Zd trace(Z (a,al)a(l,l)p(g)) (6.29)

e

Since both sides of the Plancherel formula (6.27) are linear in v and p, it suffices (by
linearity) to prove it for v = e, and pu = ej,. Using (6.29), we have

race e (& race eg(CL)p(a_l) p(h_l)
rG\Z“ (Faea)y(Focn), rG\Z‘“ (X s eyt Taw D)

acG

e(hh) ¢y(a ) n(a™)
a(h, h=t)a(1,1) -2 aa,a=)a(l,1)

aeG

Since both sides of (6.28) are linear in v and conjugate linear in p, it again suffices to
consider v = ¢, and p1 = e Since p is unitary, (Fuoen); = (p(h)~)* = p(h), and so

@l Zd (Fueg)ps (Faen)p |G| Zd trace(Z (Zg,(s)lp)( (1)1)p(h)>

acG

:E eg(a)en(

aceG

We now prove the convolution formulas. On one hand, we have

(Falw s ), = 3037 20 ) atlt pla)”,

a€eG teG

Since p(a)*p(b)* = (p(b)p(a))* = (a(b,a)p(ba))* = Z((I;ai;, and we obtain

(Fav)p(Fapt), = Z v(a)p(a)® Z b Z Z i

a€eG bGG a€G beG
—Z;X; o 1t p(c) :<Fa<u*au>)p,

10



which gives the first convolution formula. From this, we have
fa(ﬂ>fa</1> = fa(m),
and a calculation gives
~1 N~
— u t~ fi(t v(gs—)p(s)
o vlg) = (nxav)(g™) =) = E e p= 1 Z = o
teG = t s€G a(sg »5 )
= (7 a 11)(9),
which gives the second convolution formula. O

To the best of our knowledge, (6.21) is the first time that a Fourier transform has
been defined for projective representations. For ordinary representations, the Fourier
transform is well studied, see, e.g., [Dia88], [Ter99].

Example 6.2 The condition for P = M,(v) to satisfy P? = P is v %, v = v, which
transforms to
Fo(v*qv) = F,(v)? = F(v).

i.e., each (F,v), satisfies this condition.
Lemma 6.1 If p: G — GL(C%) is a unitary irreducible projective representation, then
Gl )0, £#p;
(Faprs)§ = 7 " .
dp | eser, €=p.

Proof: In view of (6.23), it suffices to prove this when all the £ € R are unitary.
Here, the orthogonality of coordinates (4.16) gives

0, ;
(Faprs)E = me(a Zprs fkg ]k 1= (<prsagkj>);'lfk:1 = {G|e e g a_é P
d T - p

acG a€eG
O

Example 6.3 As examples, we have (for p unitary or not) that the a-character satisfies

_IGI )0, &4 p;
(F&XP)§ - dp {I, g = p,
and if
fg) = trace(p(9)A) = (p(9), A*) = > pin(9)a;,
jik
then
_1G1]0, &% p;
(Faf)e = VA - (6.30)
In particular, for f(g) = (p(g)v,v) = trace(p(g)vv*), i.e., A = vv* above, we have
IGI)0, &% p
(Faf)e = 7, {W’ 6= p. (6.31)
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Lemma 6.2 For a unitary, a (G, a)-matriz M, (v) is Hermitian if and only if

Fo(v), = Fa(v),, pE R.

Proof: We have M, (v)* = M,(v), i.e., v** = v, if and only if F,(v**), = F,(v),,
for all p. Using (2.8), we have

Fu(v™), = Y vlaMala.a (L, Dp(a) = (Y v(a™)

acG aeG
*

= (X vla™Mpla™)) = Falw),

aeG

which gives the result. O

Example 6.2 and Lemmas 6.1 and 6.2 are sufficient to obtain the characterisation of
tight (G, a)-frames given in §8. Before doing this, we give more precise results about the
spectral structure of (G, «)-matrices, which are both enlightening and useful for other
applications.

Definition 6.1 If (F,v)e = 0, for each & % p, then we say that v € C% is a p-function
and M,(v) is a p-matrix.

The vector spaces of p-functions and p-matrices depend only p up to equivalence,
and have dimension d2. It follows from the convolution formula (6.26) for F, that

e The p-functions are closed under the *, convolution.

e The product of p-matrices is a p-matrix.

Lemma 6.3 The following are equivalent
1. M,(v) is a p-matriz.
2. v is a p-function.
3. vespan{pjr: 1 < j. k <d,}.
Jov L€ 1<)k <d, VEER € £p.

Proof: Let B = (Fyv),. Then v is a p-function if and only if (F,v)e =0, £ % p, ie.,
1 dp dp
v(g) = al > de trace((Fov)eé(g)) = Gl trace(Bp(g)) = Gl > bripin(g).
3 gk

This and the fact and the orthogonality of coordinates (4.16) gives the result. O

12



From F;'F, = I and (5.17), we have that each f € C can be uniquely decomposed
as a sum of orthogonal p-functions

d,
F=2 0o Jo=fur= gy trace((Faf)o), (6:32)
p

which we will call F,-Fourier decomposition of f € C¢ into orthogonal p-functions.

We will also call
Mo(f) =D Malf,), (6.33)
p

the F,,-Fourier decomposition of M,(f) into p-matrices. The following lemma shows
that

Mo(fo)Ma(fs) =0, p#¢. (6.34)
Lemma 6.4 For p,& € R, we have

Pik *a 57"5 = Z<€T87 pk5> Pjt =

; d, |0,  otherwise.

‘El{pjsa ézpv T:ka

Proof: We have

P]k grs )
(p]k *o grs Z gt 1 t .
teG

p(gt1) = plg)pt™) _ plg)alt,t™Ha(l, p(t)*
_1) _1> )

a(g,t afg,t
and a(g,t™")a(gt™',t) = a(g,t 't)a(t™"t) = a1, 1)a(t,t7"), we have

(pjk *a grs)(g) = Z ( l)a( ) (p(g>p(t>*)1k£rs<t>

1
2 alg.t Dalgt 1)

= Z Z’Oﬂ pkg &S( ) = Z(&*syﬂk@ pjf(g)a

teG /{

Since

and the orthogonality completes the result. O

Further, if « is unitary, then f;* is also a p-function, since Example 3.3 gives

fo= amoe = [7N=) Tropt = > Grpws

]7k ]7k ]7k
so the p-matrices are closed under the Hermitian transpose, and from (6.34) we obtain

(Ma(f,), Ma(fe)) = trace(Ma(fp) Ma(fe")) =0, p#¢. (6.35)
Example 6.4 From (6.33) (6.34) and (6.35), we have

My (1) = ZMa(Vp)Ma(Np)v Ma(f)k = ZMa(fp)ka
(Mo (v), Ma(p)) = |G|{v, p) |G|Z Vp, o) Z (Ma(vp), Ma(pp))-

13



7 The spectral structure of the (G, «)—matrices

The circulant matrices, i.e., the (G, «)-matrices for G a cyclic group and o = 1, are
all simultaneously unitarily diagonalisable by the Fourier matrix, i.e., the characters
(representations) of G are the eigenvectors of the circulant matrices. We now investigate
to what extent this result extends to general (G, a)-matrices.

We recall from §5 the orthogonal decomposition of C into p-functions

= @Up@, Upo :=span{p;r : 1 < j,k <d,}.

PER

For ordinary representations, i.e., @« = 1, we now present the standard diagonalisation
result (see [Dia88], [Joh18]), which shows that the U,, are invariant subspaces of the
(G, a)-matrices.

Suppose henceforth that each p € R is unitary, and let £ be the unitary matrix

E=FEp:=[E,:p€R1<k<dy), Epr =14/ %[thpw, s Phde)-

Theorem 7.1 For ordinary representations, the matriz E*M,(v)E is block diagonal,
with diagonal blocks (A, :p € R,1 <k <d,), where A, := (Fov),.

Proof: By way of motivation, if we write E = [£1,&,,...] and M, (v)E = EA, then
M( )gh—(EAE*gh—ZZEgsAst th_ZZ§s sté't

By Fourier inversion, we calculate

Mo(V)gn =v(g ™ h) = (F ' Far)(g~'h) = (F, ' Fov)(h™'g) |G|Zd trace(A,p(h™'g)).

Since the representations are ordinary, i.e., o« = 1, trace(A,p(h™'g)) = trace(p(g)A,p(h)*).
Hence, by writing A, = [a?k]?”}czl, we obtain

M)y = g 0o S0l Aol )y = 330 30 37 rona)e(h),

which gives the result. O

From the above, it follows that the orthogonal subspaces
Upaj i =span{pp: 1 <k <d,}, peR, 1<j<d,

are invariant subspaces of the (G, «)-matrices when o« = 1. These subspaces do not give a
unique orthogonal decomposition of U, , into invariant subspaces of the (G, a)-matrices,
since, for any unitary 7', one has

dp
Upa =P Urpr-1.0,- (7.36)
j=1

14



It is natural to suppose that the U, o ; are invariant subspaces of the (G, a)-matrices
for the projective case also, and to adapt the argument above to prove it. Here

a(h,h™1g)
ZZZZ a(g,g7'h) |G\ sthS(g)pjt(h>

and so the remainder of the argument breaks down.
To understand the invariant subspaces of the (G, «)-matrices, we first consider the
range of the (G, o)-matrices M, (pji)-

Lemma 7.1 Let p,£ € R. Then

dp
Ma(pj)o =D > pu(h)onpyy, v eCe

{=1 heG

and, wn particular,
_ |G| p_Sja f:p,t:k;
M,
(psi)6st = dp 0, otherwise.
Proof: Since p(g~th) = a(g, g7 h)p(g9)*p(h), we have
M _ pik(g g 'h) _ “o(h

(Ma(pjk)v)g = Y Malpji)gnvn = Z (g, g )" = = (plg)*p(h))jevn
h h

= Z Z(P(Q) gep )exUn = Z Z ,% )pe(h

Hence

Ma(pin)6se = Y _{pew, §ut) Pij =

n 0, otherwise,

{%p—sj, E=p t=k;

since the entries of p and £ are orthogonal. O

We therefore conclude that the orthogonal subspaces
Voag = span{pjr : 1 <k < dp} = Upay, pER, 1<7<d,

are invariant subspaces of the (G, «)-matrices.
This gives the desired simultaneous unitary (block) diagonalisation of projective
group matrices:

Theorem 7.2 For projective representations, the matriz E*Ma(y)ﬁ 1s block diagonal,
with diagonal blocks (Bg :p€ R, 1<k<d,), where B, := (F,v),.

Proof: Let (F,v), =B, = [b]’?k]i‘}g:l. Then

vig~'h) _ (Fi'Far)(g™'h) 1

— _ _ L -1
Me)gr = alg,g7th) — alg,gth)  alg,g7'h) |G ;d’)trace(Bpp(g m):

15



Since p(g~"'h) = a(g, g‘lh)p(g)*p(h), we obtain

Z G| trace(p Z G| Zzzpﬂs stpjt

Thus, we calculate

(Be ke Mo(V)Ey,)e ZZ \/ﬁfw Z i ijS(h)bgtpjt(g>

j,s,t |

5

m(h
G|%’ ( )

\/K b €=
- ) S m b - il 7
|G Z ]; Sicts Pit) Py Mhym ) Vs {0, otherwise,

which gives the result. O

Example 7.1 For ordinary representations, p(g)p(h) = p(g)p(h) = p(gh) = p(gh), so
that {p},er is another complete set of ordinary representations for G, with E;j, = E, .
Hence from Theorem 7.1, we have

E"M,(v)E = diag(A;: p€ R,1 <k <d,),
where Ay = Fo(v); = Fo(v)) = B (which is Theorem 7.2).
Example 7.2 The determinant of a (G, «)-matriz factors
det(M,(v)) = det(E" Mo (v)E) = [ [ det(B,)* = [ det((Far),)®
pER

This “factorisation of the group determinant” was one of the motivations which lead to
the development of representation theory (see [Johl18]).

Example 7.3 The blocks of the diagonal form of a (G, «)-matriz M,(f) are unique up
to similarity, and in particular, the Jordan canonical form is given by the block diagonal
matriz with d, diagonal blocks given by the Jordan canonical form of (Fuf),.

For ordinary representations, invariant subspaces of the (G, a)-matrices are

Upaitoerici<d, = {Vpajtper1<i<d, -

For projective representations, the {V,,;} are invariant subspaces (with a neat block

diagonal form). It is no longer the case that even {V,,},cr = {Usa}ocr, see (9.42).

Nevertheless, in the specific cases considered so far (see §9.2), it appears that there is

a block diagonal form for the {U,,},cr which is more complicated (the blocks are no

longer ordered by p, and blocks similar to the same (F,v), are not all identically equal).
From the orthogonal decomposition

dp
=P P, (7.37)

pER j=1

16



we obtain a fine scale F,-Fourier decomposition

d
a d,
— ZZMO‘(fp’j)’ foi= |G| P trace((F, o e]ejp) Upaj

p J=1

We observe from (7.36), or the formula f,;(g9) = (p(9)(Faf),€j,€;), that there is not a
unique fine scale F,-Fourier decomposition.

Let M, ; be the d,-dimensional vector space of (G, a)-matrices of the form M,(f, ;).
It follows from Lemma 6.4 (or the block diagonal form) that M, , ; is closed under
multiplication, indeed M, . jMG,n) C M, j, and hence is an algebra. Moreover, from

Lemma 6.4, we have M, (f, ;)M (ferx) =0, (p,7) # (£, k), and consequently

ZZM Vi) Ma(tip,g)-

pER j=1

We now show the Fourier decompositions of M, (f) are into low rank (G, a)-matrices.

Proposition 7.1 The rank of a (G, «)-matriz satisfies

rank (M, Z rank(M,(f,)) = Z d,rank((Fof),), (7.38)

rank(M,(f)) < Z Zrank o(fo)),  rank(M(f,;)) € {0,d,}. (7.39)

In particular, M,(f) is invertible if and only if f,; # 0, Vp, j.

Proof: The block diagonal matrix E M, (f)E has diagonal blocks (Fof)) = (Fuf,)],
each repeated d, times, and so we have

rank( Zd rank((F,f),) Zd rank((Fof,),)-

The block diagonal form of M,(f,) has just d, (possibly) nonzero blocks Fy(f,)?, and
so the rank of M,(f,) is d,rank((Fof,),). The block diagonal form of M,(f,;) has d,
(possibly) nonzero blocks

(Fafp,j)g = ((Faf)peje;)T = ejej(Fafp),Za

which either have rank one (since rank(eje;) = 1), or are rank zero (when f,; =0). O

Example 7.4 Proposition 7.1 gives a restriction on the possible rank of a (G, a)-matriz,
e.g., for G = Dy, (the dihedral group of order 4m) and « the nontrivial cocycle, all
irreducibles have d, = 2 (see §9.2), and so a (G, a)-matriz must be of even rank.

There is some interest in subspaces (in our case subalgebras) of matrices with a
restriction on their rank [DGMS10].
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8 The characterisation of tight (G, a)-frames.

We now give the main application of our results: a simple characterisation and explicit
construction of all tight (G, a)-frames. Let R be a complete set of irreducible unitary
representations for a (unitary) cocycle a. With very little effort we have:

Lemma 8.1 Let P = M, (v) be a (G, «)-matriz. Then the following are equivalent
1. P is the Gramian of a normalised tight (G, «)-frame.
2. P is an orthogonal projection.

3. Bach F,(v),, p € R, is an orthogonal projection.

Proof: Since a sequence of vectors is a normalised tight frame if and only if its
Gramian is an orthogonal projection, we have the equivalence of the first two. The
condition that P be an orthogonal projection, i.e., P> = P and P* = P, is equivalent to
the last condition by Example 6.2 and Lemma 6.2. O

We will refer to (Fo(v),),cr as the Fourier coefficients of P = M,(v), or of any
(G, a)-frame with Gramian M, (v).

Example 8.1 If G is abelian and o = 1, then all the irreducibles have dimension 1,
and so the Fourier coefficients of a normalised tight G-frame must be 0 or 1. Thus there
are a finite number of such G-frames for G abelian, the so called harmonic frames.

Now we suppose that p: G — V is a unitary action on V' (for a cocycle ). We now
answer the question: when is (p(g)v)see a normalised tight (G, a)-frame for V? The
result below is the main structure theorem for tight (G, «)-frames, and was first given
in [VWO05] (Theorem 6.18) for the ordinary case, and in [CH18] (Theorem 2.11) for the
projective case. The proof given here uses the Fourier coefficients of the frame, rather
than asserting (1.4) for each irreducible, and gives insight into the result.

Theorem 8.1 Let p: G — V be a unitary action on V for a cocycle o, and V = @V

be an orthogonal direct sum of irreducible (CG)q-modules. If v =3 v;, v; € Vj, then

(gv)gec = (p(9)v)gec is a normalised tight (G, a)-frame for V if and only if

dim(V;)
G

and in the case V; is (CG)4-isomorphic to Vi, j # k, via o : V; — Vj, that

V7,

o lI* =

(ovj,v) = 0.

Proof: By Lemma 8.1, ® := (gv)sec is a normalised tight frame for V' if and only
if its Fourier coefficients are orthogonal projections, and the sum of the ranks of these
projections is dim(V'). We now calculate the Fourier coefficients (c¢)ecr.

Let p; : V; — Vj be the irreducible representation given by p;(g) := p(g)|v;, and let
o; : V; = Vg be a unitary (CG),-isomorphism to the § : G — GL(Vg) in R with p; =~ &.

18



We note that £ = ijjaj’l. By the orthogonality of the V;, the Gramian of (gv)eq is

the sum of the Gramians M,(f;) of the (G, a)-frames ®; := (p;(g)v;)4ec for V;, where
fi(g) = (pi(9)vj, v;) = trace(p;(g)vjv}) = trace(a;p;(g9)o; ' ojv(ov5)")
= trace(§(g)o;v;(05v;)").
It follows from (6.31) that the Fourier coefficients of ®; (given by the ¢-function f;) are

(Fafﬂ')":{o’ . e w; =/ IPou; (0 =€),

U}]U}], n= 57

and hence the Fourier coeflicients of ® are

If ® is a normalised tight frame for V', then each ®; must be one for V; (since
orthogonal projections map normalised tight frames to normalised tight frames), i.e.,
wjw} is a rank one orthogonal projection, which gives
dim(1)

Gl

Finally, for c¢ to be an orthogonal projection, we need w; L wy, j # k, pj, pr = &, i.e.,

G| G|
Jw;||* = d—||<7jvj||2 = d—||UjH2 =1 <= |y|*=
¢ ¢

w; Lw, <<=  ojv; Loy, < O'k_IO'jUj Lu <<= ov; L,
where, by Schur’s lemma, we can replace the (CG),-isomorphism o, 'o; : V; — V; above
by any other one o. O

There a natural description of the various classes of G-frames in [Wall8] (and their
generalisation to (G, a)-frames) in terms of the Fourier coefficients, e.g.,

o [rreducible (G, a)-frames: There is only one nonzero Fourier coefficent, which is a
rank one orthogonal projection (up to a scalar multiple).

e Homogeneous (G, «)-frames: There is only one nonzero Fourier coefficent.
Equivalently, the Gramian is a p-matrix for some irreducible p € R.
o Central (G, a)-frames: All the Fourier coefficients are 0 or a scalar multiple of I.

Example 8.2 A (G, a)-frame with Gramian M, (f) is central if f is a a-class function.
Since the irreducible a-characters are a basis for the a-class functions, f must have the
form

Fl9) =D apxpl9) = Y a,trace(p(g)I),

and so, by (6.30), the Fourier coefficients of the frame are (F,f), = @ap[. For these

P d

to be orthogonal projections, we must have ’
0= L %M
Gl ~ a(L |G

which, by taking a, = 0 or the above value, gives the characterisation of [VWO0S] and
[CH18] for normalised tight central (G, a)-frames in terms of their Gramian.
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Theorem 8.2 (Construction) Let M, (f) be an orthogonal projection, i.e., the Gramian
of some normalised tight (G, o)-frame. Write its Fourier coefficients (which are rank mg
orthogonal projections) as

(Fof)e = wejwe;,  we=(wey,. .., Wem) € (C¥)me

where (we ;, we ) = dji. Let
d m
vi=(\/gwe)eer €V = k). (8.40)
¢ER
Then (p(g)v)gec is a normalised tight (G, a)-frame for V. with Gramian M,(f), where
the unitary action p : G — GL(V') is given by
p(g>(<vﬁ,l7 oo 7U§,mg>§€R) = (é(g)vf,lu <o 7£(g)U£,m§)£€R-
Proof: Let M, (v) be the Gramian of (p(g )U)ge(;, ie.,

v(g) == ZZ 9)We js We j)-

£eER j=1

Then by the orthogonality of coordinates (4.16), and (6.31), we calculate

zzdﬁz zdgz s, w05 m(a)"

aceG fGR j=1 aEG
My
* * * o __
= E E trace(n wmwn’j)n(a) = E Wy jwy i = (Fof)y,
j=1 a€qG J=1
as claimed. O

Example 8.3 Consider the normalised tight central (G, a)-frame with Gramian
d xe(1)
Mo(Y Foxe),  de= ,
a “Ta(L)

where S C R (see Example 8.2). Its nonzero Fourier coefficients are I for & € S. By
writing these as I =}, e;e}, we can realise this frame as (¢4)gec, where

VK
._ de
bg = ( Egjk(g))ges,gj,kgd,,'

This can be written compactly as ( %g)ges € Gages Cle*de  qith the Frobenius inner

product on Cde*d

A square matrix is the Gramian of a frame (spanning sequence for a vector space)
if and only if it is positive semidefinite. Thus a (G, a)-matrix M,(f) is the Gramian of
a (G, a)-frame if and only if its Fourier coefficients are positive semidefinite. Each such
Fourier coefficient can be unitarily diagonalised, giving (Fuf)e = D_; Ajwe jwg ;, where
the wg ; are orthonormal and A; > 0. The frame can be realised as in Theorem 8.2,
where w in (8.40) is replaced by (y/Ajwe ;) 1<j<me, and mg = rank((Fyf)e).
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9 Examples

We now give some examples of (G, a)-matrices, their block diagonalisations (factorisation
of the determinant), and Fourier decompositions.

9.1 The Klein four-group

The first group with a nontrivial Schur multipler is the Klein four-group G = Zs X Z,.
We order this 1,a,b,ab = (0,0),(1,0),(0,1),(1,1), and write v(j, k) = vj.
For a = 1, there are four one-dimensional representations, giving

Voo Vio Yor Vi1 1 1 1 1

_ | Y0 Yoo v Vo o lf1r -1 1 -1
M) = Voi Vi1 VYoo Vio | E= 211 1 -1 -1’

i1 Vo1 Yo Voo 1 -1 -1 1

with E M, (v)E being diagonal, and
det(M;(v)) = (voo+r10+vo1+v11) (Voo —Vio+Vo1 — Vi1 ) (Voo +V10— Vo1 —va1) (Voo —Vio—Vor +V11) -

For the nontrivial multiplier, we have (G, a)-matrices

Yoo Vo Yo Vi1 I 1 1 1

| Yo Yo @ vi1 Vor R I T |
Ma(y) N Voo —Vi1 Voo —Mio “= 1 -1 1 -1}

—Vit Voo —Vio Voo I =11 -1

and a single two-dimensional projective representation p for . This representation, and
a p equivalent to it, are given by

o= (5 1) sa=(7 ) o=(5 L) wa= (7 ),
=y 9) sa=(y 5). wm=(75). " b)-

where p=TpT ', T =% <1 1 ) For these, we have

~
IS
=
~—
I
|
—_
=)

vill -1
1 0 0 1 10 0 1
p_Lfo1 10 p_Lfto o0 -1
=211 0 0 -1 Pl 1o
0 -1 1 0 01 -1 0

This shows that invariant subspace orthogonal decompositions

d, dy
Up,a = @ Up,a,j? V;),a = @ Vp,a,j
j=1 j=1

are not unique.
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Here

B, M, (v)E, = (Cp O) . Co=(Fa), (VOO Lo e” V”)

P Vip + V11 Voo — Vou

= - (C; O _ T (Voo +Vio Vo1 + Vi1
Ly Mo(v)Ej; = ( ) ’ G = (Fav); = (Vm — Vi Voo — VIO) ’
and

det(Ma(v)) = (V5o + v — vip — vi1)*.
We have a fine-scale Fourier decomposition of M, (v) into (G, a)-matrices

Mo (V) = Mo(vp1) + Ma(v2),

where
Vpl = 5(1/00 + Vo1, V10 — V11, Yoo + Vor, V11 — Vo),
1
Vpo = E(Voo — Vo1, V10 + V11, Vo1 — Voo, V1o + V11)-
The summands lie in the corresponding subalgebras of the (G, a)-matrices
a b a -=b c d —c d
b a —-b a d c d —c
Mp,a,l_{ a b a b .CL,bEC}, Mp,a,Q_{ e —d c —d .C,dE(C},

b a =b a —d —c¢c —-d ¢

for which every nonzero matrix has rank 2. By Proposition 7.1, we have that there are
no (G, a)-matrices of rank 1 or 3.

9.2 The dihedral groups

The next groups with nontrivial Schur multiplier are those of order 8, of which Zy x Z4
and Dg have Schur multiplier of order 2, and Z3 which has Schur multiplier of order 8.
We consider G = Dg = (a,b: a* = 1,0 = 1,bab = a~'). In [CH18], it is shown that for
the nontrivial cocycle a given by

a(a?b®, atb™) =i,

there are inequivalent 2-dimensional projective representations p; and py for « given by

: 0\ (0 1\"
pr(a]bk) = (O ’ilT> (1 0) :

We use the ordering 1, a, a?, a®, b, ab, a®b, a®b for G, so that

2 Vg Vg2 Vg3 v Vab  Va2p  Vgdb
Vg3 %1 Vg Vg2 V43p 1% Vab Va2p
Vg2 Vg3 %1 Vg, Va2p Va3p 1% Vab
M o Vg Vg2 Vg3 141 Vab Va2p Va3p 1%
o) = Uy g3y —Vg2py —IlVgy V1 iV —Vgp —ilg |
—1gp v Wa3p —Ve2p —WWe U1 W3 —Ug2
—Vg2p, —Wa U W3y —Vg2 —1V, U1 W3
Wa3p —Vg2p —tlVg0 vy W3 —Ugp2 —IV, U1
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O O R N R Rl N

Here
1 0 01 1 0 0 1
i 0 01 -1 0 0 —i
10 01 1 0 0 -1
1l—i 0o 01 -1 0 0 i
E=310 1 100 1 1 o] (9-41)
0 i 10 0 —1 —i 0
0 -1 10 0 1 -1 0
0 — 10 0 —1 4 0

=t 7 - . . . T T T T
and I M, (v)E is block diagonal, with 2x2 diagonal blocks (Fav), , (Fav),,, (FuV),,; (FaV),,,
where

V] — iV, — Vg2 + 13 Up + Ugp + Vg2p + Vgsp
(Fov)p, = i : ,
b — Wah — Va2p T We3p V1 + Vg + Vg2 + Vg3
Ul — Vg + Vg2 — Vs Up+ Wy — Vg2p — V3
(Fav)p, = U — _ _—_— . .
b — Vab T Vg2ph — Vg3p V1 T We — Vg2 — 1,3
Thus det(M,(v)) factors as det((F,v),, )* det((F,v),,)?. It also happens that E*M, (v)E
is block diagonal, i.e., the U, ; are invariant subspaces of the the (G, «)-matrices. This
is because conjugation permutes the subspaces U, , j, i.e., from (9.41) it is apparent that

‘/pl,a,l = Upg,a,?v ‘/pl,a,Q = Upl,a,Za ‘/pg,a,l = Upg,a,lv ‘/pz,a,Q = Upl,a,l' (942>
The diagonal blocks of E*M,(v)E are

V1 F iV, — Vg2 — V3 Up + Wy — Vg2p — WWy3p V1 — @V, — Vg2 + 1,3 Uy — tWaqp — Vg2p + W43
Up — Vgh + Vg2p — Vgdpy V1 — Vg + Vg2 — Vg3 "NV Ugp + Vg2 + Vgsy V1 Vg + Vg2 + Vg3 ’

V1 — Vg + Vg2 — Uy Uy — Vg + Vg2p — Vg3p UV + Vg + Vg2 + Vg3 Up + Vap + Vg2p + Vy3p
Vp 4 Wap — Vg2 — W3y V1 + 1V — Vg2 — 103 ) " \Up — WWap — Vg2p + 103, V1 — Vg — Vg2 + 1043 )

We observe that these are all different.

10 Other (G, a)-matrices

The definition (3.10) for M,(v) and that of the Fourier transform F, are motivated
by our analysis of projective group frames. Since these notions are so new, we now
provide the tools to compare the variants. As the theory evolves, perhaps it will become
apparent if there are ones which are best.

In (1.3), we define the Gramian of (gv)geq so that it factors V*V, where V' = [gv] eq-
In [CH18] the transpose (or equivalently the complex conjugate) of this is considered
(for unitary representations), i.e., the matrix with (g, h)-entry

v _ (vl h)v)
<¢g7¢h> - <¢h7¢g> - E(g,g_lh)
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For o unitary or not, we say that A € C¥*¢ a [G, a]-matrix if it has this form, i.e.,
agn = M@),n = alg,g " h)v(g~'h), v e CC. (10.43)

In [CH18], the formula (10.43) is written as

M@)gh = alg.g~ h)v(g~'h) = v(g~'h). (10.44)

We observe that 1/« is cocycle, and that a [G, a]-matrix is a (G, 1/a)-matrix, i.e.,
M(v) = Mo (v). (10.45)

Moreover, for o unitary, the complex conjugate of a (G, a)-matrix is a [G, a]-matrix,
ie.,

M, (v) = M(D). (10.46)

Proposition 10.1 The (G, «)-matrices and [G, a]-matrices are the transposes of each

other, 1i.e.,
M) =M, )=

M@)" = Ma(p),  plg) = (L, Dalg. g " v(g™).

Proof: Since a(g,g 'h)a(h,htg) = a(g,1)a(g 'h,h 1g), we calculate

) v((g~'h))

M) Yo = Mg = 2 — a(g,g”! .
Ml o = Melina = 5, 3mrgy = 09 WS Datg Th (g 0y )

The other follows similarly, or by a change of variables. O

Example 10.1 Taking the transpose of the diagonalisation of Theorem 7.2 gives
E*M,()"E = E' My(v)"(E")" = diag((Fav), : p € R,1 < k < d,),
so that the U, ; are invariant subspaces of M,(v)", and hence of the |G, a]-matrices.

Group matrices can also be defined to have (g, h)-entries of the form v(gh™") [Joh18].
To transform these to matrices of the above type, we consider the unitary involution J
given by Jey, 1= ep-1, i.e., (J)gn = 0yp-1. Then

(JAJ)th = Ag—1 p—1,
and so for A = M, (v) and A = M (v), we have

v(gh™)
a(g~', gh™t)’

which would provide the natural definitions for (G, a)-matrices of this type.

(Mo (v)T)gn = (JM (@) )gn = (g™, gh™ )v(gh™),
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Example 10.2 For ordinary representations, Theorem 7.1 gives

(JE) (JMa(v)J)(JE) = diag((Fav), : p€ R, 1<k <d,),

so the “group matrices” JM,(v)J are block diagonalised by JE, which has (p, k)-blocks

since

d 4 _
@il prts Jpras - Tprag] = \) & [Pies P2k, - - Pagkl,

(Jpir)g = pin(g™") = (p(g™))ir = (p(9))jr = Pri(9)-

This is the Theorem 61 of [Joh18].
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