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Many tight frames of interest are constructed via their Gramian matrix (which 
determines the frame up to unitary equivalence). Given such a Gramian, it can 
be determined whether or not the tight frame is projective group frame, i.e., is 
the projective orbit of some group G (which may not be unique). On the other 
hand, there is complete description of the projective group frames in terms of the 
irreducible projective representations of G. Here we consider the inverse problem 
of taking the Gramian of a projective group frame for a group G, and identifying 
the cocycle and constructing the frame explicitly as the projective group orbit of a 
vector v (decomposed in terms of the irreducibles). The key idea is to recognise that 
the Gramian is a group matrix given by a vector f ∈ CG, and to take the Fourier 
transform of f to obtain the components of v as orthogonal projections.
This requires the development of a theory of group matrices and the Fourier 
transform for projective representations. Of particular interest, we give a block 
diagonalisation of (projective) group matrices. This leads to a unique Fourier 
decomposition of the group matrices, and a further fine-scale decomposition into 
low rank group matrices.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite abstract group. A map ρ : G → GL(Cd) is said to be a projective representation of G
of dimension d = dρ with cocycle (or multiplier) α : G ×G → C if

ρ(g)ρ(h) = α(g, h)ρ(gh), ∀g, h ∈ G. (1.1)

Two projective representations ρ, α and ρ̃, α̃ are equivalent if there is a map c : G → C with ρ̃ = cTρT−1. 
The theory of projective representations follows that of ordinary representations (when α = 1), and will be 
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introduced as needed. The key point for now, is that for certain groups there are representations which are 
not ordinary representations (the possible α are indexed by the Schur multiplier group).

For a nonzero vector v ∈ Cd and a projective unitary representation ρ, α, we define a projective group 
frame or (G, α)-frame to be the projective G-orbit of v, i.e., the sequence of vectors

(φg) = (gv) = (ρ(g)v)g∈G, gv := ρ(g)v.

By (1.1), this satisfies

gφh = ρ(g)ρ(h)v = α(g, h)φgh, (1.2)

and if the representation is unitary, i.e., ρ(g)∗ = ρ(g)−1, then

〈φh, φg〉 = 〈ρ(h)v, ρ(g)v〉 = 〈ρ(g)−1ρ(h)v, v〉 = 〈 ρ(g−1h)v
α(g, g−1h) , v〉. (1.3)

These generalise group frames (also known as G-frames), which are the case when α = 1. A sequence of 
vectors (vj) in Cd is a (normalised) tight frame for Cd if it satisfies

f =
n∑

j=1
〈f, vj〉vj , ∀f ∈ Cd. (1.4)

The term Parseval frame is also commonly used. Normalised tight G-frames, which are natural generali-
sations of orthonormal bases, have numerous applications [5], [2], [10] [17], and their structure is now well 
understood [21].

On the other hand, tight (G, α)-frames are of great interest also [14], [11], [6]. These are sometimes referred 
to as projective frame representations or group-like systems. As an example, SICs (sets of d2 equiangular 
lines in Cd) come as a tight projective group frame for Zd × Zd [1], as do MUBs (mutually unbiased bases) 
[22], [13], and many real and complex spherical t-designs [12], [20].

Until recently, such tight frames have been studied by considering them as G-frames for a larger group 
for which ρ(G) contains scalar matrices, and by accounting for the scalar multiples of a given vector. One 
such approach is to consider a canonical abstract error group (the enlarged group) with index group G [7]. 
Recent calculations, most notably [3] (which uses the term twisted group frame), suggest that they can be 
viewed as projective group frames, with the theory of group frames following with little extra work (a twist 
if you like). Our contribution to this burgeoning theory of projective group frames is to study them via 
their Gramian matrix V ∗V ∈ CG×G, V = [φg]g∈G, which has (g, h)-entry given by (1.3). The key points 
and results are the following:

• The Gramian determines a projective group frame up to unitary equivalence. If the representation ρ is 
unitary (as must be the case for a tight frame), then the Gramian is a (G, α)-matrix (see Definition 3.1).

• Each (G, α)-matrix is determined by a ν ∈ CG, and they form a C∗-algebra M(G,α).
• The tight (G, α)-frames correspond to the orthogonal projections in M(G,α).
• Each tight (G, α)-frame (gv)g∈G can be decomposed v = ⊕jvj , vj ∈ Vj , where the action of ρ on Vj is 

irreducible.
• Given the Gramian of tight projective group frame for G, i.e., a (G, α)-matrix P which is an orthogonal 

projection, we find a vector v = ⊕jvj and representations ρj ∈ R, where R is a complete set of irreducible 
representations for α, such that the projective group frame (

∑
j ρj(vj))g∈G has Gramian P . In other 

words, we give a concrete construction of a projective group frame (known only from its Gramian) in 
terms of the irreducibles involved (Theorem 8.2).
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• The construction above relies on a simultaneous unitary block diagonalisation of the (G, α)-matrices 
(Theorem 7.2), related to an appropriately defined Fourier transform for projective representations of 
a finite group. The blocks preserve the spectral structure of the (G, α)-matrix. In particular, the tight 
(G, α)-frames correspond to the case when all of the blocks are orthogonal projections. This character-
isation of the tight (G, α)-frames, gives the usual characterisation (in terms of the decomposition of v
into irreducibles), and gives a natural description of the central (G, α)-frames (as those where the blocks 
are 0 or I). The decomposition of (G, α)-matrices given by our Fourier transform is of independent in-
terest, e.g., it allows the determinant of a general (G, α)-matrix to be factored. There is also a fine-scale 
decomposition into low rank (G, α)-matrices, which is not unique.

We now proceed, following the above outline.

2. The Schur multiplier

We first consider the functions α : G ×G → C which can be cocycles of a projective representation of G. 
Given (1.1), multiplying out {ρ(x)ρ(y)}ρ(z) = ρ(x){ρ(y)ρ(z)}, leads to the following multiplication rule for 
cocycles

α(x, y)α(xy, z) = α(x, yz)α(y, z). (2.5)

Every α satisfying (2.5) does come from a projective representation. Indeed, with (eg)g∈G being the standard 
basis vectors for CG, we can define ρ : G → GL(CG) by

ρ(g)eh := α(g, h)egh, (2.6)

and use (2.5) to verify that it is such a representation:

ρ(g)ρ(h)ek = ρ(g)α(h, k)ehk = α(h, k)α(g, hk)eghk
= α(g, h)α(gh, k)eghk = α(g, h)ρ(gh)ek.

Henceforth a map α : G ×G → C satisfying (2.5) will be called a cocycle (more properly a 2-cocycle) or
multiplier of G. The set of cocycles is an abelian group under pointwise multiplication, which is commonly 
denoted by Z2(G, C×). If projective representations ρ, α and ρ̃, α̃ are equivalent, i.e., ρ̃ = cTρT−1, where 
c : G → C, then

ρ̃(g)ρ̃(h) = cgTρ(g)T−1chTρ(h)T−1 = cgchTα(g, h)ρ(gh)T−1 = cgch
cgh

α(g, h)ρ̃(gh),

so that

α̃(g, h) = β(g, h)α(g, h), β(g, h) := cgch
cgh

.

The function β above is a cocycle, called a coboundary (or 2-coboundary), since

β(x, y)β(xy, z) = cxcy
cxy

cxycz
cxyz

= cxcycz
cxyz

= cxcyz
cxyz

cycz
cyz

= β(x, yz)β(y, z).

The coboundaries form a subgroup B2(G, C×) of Z2(G, C×). The quotient group

M(G) = H2(G,C×) := Z2(G,C×)/B2(G,C×)
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is called the Schur multiplier (or second homology group H2(G, Z) of G). The Schur multiplier is a finite 
abelian group whose exponent divides the order of G. If G has a nontrivial cyclic Sylow p-subgroup, then p
does not divide |M(G)|. There do exist finite groups with nontrivial Schur multipliers, and hence projective 
representations which are not ordinary. The first few cases of nontrivial Schur multipliers are for certain 
groups of order 4, 8, 9, 12.

Every projective representation ρ, α is equivalent to one ρ̃, α̃, where the ρ̃ is unitary. For a unitary 
representation, | det(ρ(g))| = 1, and so by taking determinants of (1.1), we have

|α(g, h)| = 1, g, h ∈ G. (2.7)

Consequently, a cocycle satisfying (2.7) is said to be a unitary cocycle. For the purpose of defining the Schur 
multiplier, one can suppose that all of the cocycles are unitary, and satisfy the normalisation condition that 
α(1, 1) = 1.

We now list some properties of cocycles that we will often use. Since

ρ(1)2 = α(1, 1)ρ(1), ρ(g)ρ(g−1) = α(g, g−1)ρ(1),

we have ρ(1) = α(1, 1)I, and

ρ(g)−1 = ρ(g−1)
α(g, g−1)α(1, 1) . (2.8)

Similarly, ρ(g)ρ(1) = α(g, 1)ρ(g) and ρ(1)ρ(g) = α(1, g)ρ(g), give

α(1, g) = α(g, 1) = α(1, 1), α(g, g−1) = α(g−1, g), ∀g ∈ G. (2.9)

3. The C∗-algebra of (G, α)-matrices

Motivated by the formula (1.3) for the Gramian of a (G, α)-frame, we have:

Definition 3.1. We say that A = [ag,h]g,h∈G ∈ CG×G is a (G, α)-matrix if

ag,h = Mα(ν)g,h := ν(g−1h)
α(g, g−1h) , (3.10)

for some ν : G → C. We denote the set of (G, α)-matrices by M(G,α).

Other variations are discussed in §10, e.g., [3] consider the matrices M(ν) = M1/α(ν).
Given a (G, α)-matrix A ∈ M(G,α), the cocycle α (or part of it) can be recovered via

α(g, h)
α(1, 1) = a1,h

ag,gh
= ν(h)

α(1, h)
α(g, h)
ν(h) , ν(h) �= 0,

α(g, h)
α(1, 1) = agh,g

ah,1
= ν(h−1)

α(gh, h−1)
α(h, h−1)
ν(h−1) , ν(h−1) �= 0.

From now on, we let n = |G|, and refer to matrices indexed by the elements of G as n × n matrices or 
G ×G matrices.

Lemma 3.1. The (G, α)-matrices are an n-dimensional subspace of the n ×n matrices which is closed under 
matrix multiplication, i.e.,



JID:YACHA AID:1298 /FLA [m3L; v1.248; Prn:13/12/2018; 14:38] P.5 (1-25)
S. Waldron / Appl. Comput. Harmon. Anal. ••• (••••) •••–••• 5
Mα(aν + bμ) = aMα(ν) + bMα(μ), a, b ∈ C,

Mα(ν)Mα(μ) = Mα(ν ∗α μ), (ν ∗α μ)(g) :=
∑
t∈G

ν(gt−1)μ(t)
α(gt−1, t) . (3.11)

When α is unitary, i.e., |α| = 1, then they are also closed under the Hermitian transpose

(Mα(ν))∗ = Mα(ν∗,α), ν∗,α(a) := ν(a−1)α(a, a−1)α(1, 1). (3.12)

Proof. Since α(g, g−1a)α(a, a−1h) = α(g, g−1h)α(g−1a, a−1h), we have

(
Mα(ν)Mα(μ)

)
g,h

=
∑
a∈G

Mα(ν)g,aMα(μ)a,h =
∑
a∈G

ν(g−1a)
α(g, g−1a)

μ(a−1h)
α(a, a−1h)

= 1
α(g, g−1h)

∑
a∈G

ν(g−1h(a−1h)−1)μ(a−1h)
α(g−1h(a−1h)−1, a−1h) = (ν ∗α μ)(g−1h)

α(g, g−1h) .

Since α(h, h−1g)α(g, g−1h) = α(h, 1)α(h−1g, g−1h), we have

(Mα(ν)∗)g,h = Mα(ν)h,g = ν(h−1g)α(h, h−1g)

= ν((g−1h)−1)α(g−1h, (g−1h)−1)α(1, 1)
α(g, g−1h) = Mα(ν∗,α)g,h.

We will call ν ∗α μ the α-convolution (of ν and μ). �
Example 3.1. A calculation gives

eg ∗α eh = egh
α(g, h) ,

so that

Mα(eg)Mα(eh) = Mα(egh)
α(g, h) .

In particular, taking g = h = 1, gives I = α(1, 1)Mα(e1), so the identity matrix is a (G, α)-matrix, hence 
(by Cayley–Hamilton) the inverse of a nonsingular (G, α)-matrix is a (G, α)-matrix. Further, for α unitary, 
the limit formulas

A+ = lim
δ→0+

(A∗A + δI)−1A∗ = lim
δ→0+

A∗(AA∗ + δI)−1

for the pseudoinverse, shows that M(G,α) is closed under the pseudoinverse.

Example 3.2. For α unitary, the matrix P = Mα(ν) is an orthogonal projection, i.e., satisfies P 2 = P , 
P ∗ = P , if and only if ν ∗α ν = ν and ν∗,α = ν.

Example 3.3. For ρ (and hence α) unitary, we have ρ∗,αjk = ρkj , 1 ≤ j, k ≤ dρ, i.e.,

Mα(ρjk)∗ = Mα(ρkj).

This follows from (2.8), by taking the (k, j)-entry of ρ(g) = α(g, g−1)α(1, 1)ρ(g−1)∗.
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4. The twisted group algebra

We now describe how the basic theory of representations extends to the projective case. Let ρ : G →
GL(V ) be a projective representation of G for a cocycle α on V . This gives a “projective group action” of 
G on the C-vector space V

g · v = gv := ρ(g)v, ∀v ∈ V. (4.13)

This is not a group action in the usual sense, since

g · (h · v) = α(g, h)(gh · v).

Nevertheless, we will talk about G-invariant subspaces of V , etc. As in the ordinary case, we say that a 
representation ρ, α on V is irreducible if the only G-invariant subspaces of V are 0 and V , i.e., for any 
nonzero vector v the G-orbit (g · v)g∈G spans V .

Let CG denote the set of formal C-linear combinations of the elements of G. This becomes are ring, 
which we denote by (CG)α, under the multiplication

g ·α h := α(g, h)gh,

extended linearly. We note that the cocycle multiplication rule (2.5) is equivalent to the associativity of the 
multiplication, since

(g ·α h) ·α k = α(g, h)(gh ·α k) = α(g, h)α(gh, k)ghk

g ·α (h ·α k) = g ·α (α(h, k)hk) = α(h, k)α(g, hk)ghk.

Moreover, (CG)α is an algebra, which generalises the group algebra CG (the case α = 1), and is called 
the α-twisted group algebra (over C). The vector space V becomes an (CG)α-module under the operation 
(CG)α × V → V given by extending (4.13) linearly. Conversely, if V is a (CG)α-module, then

ρ(g)v := g · v, g ∈ G, v ∈ V,

defines a projective representation ρ : G → GL(V ) for α. In the language of modules:

The G-invariant subspaces V are precisely the (CG)α-submodules of V.

Since (CG)α is semisimple, it follows that if ρ, α is a projective representation on V , then V decomposes 
as direct sum V = ⊕jVj of irreducible (CG)α-submodules, i.e., each ρ|Vj

is an irreducible projective repre-
sentation for the cocycle α. When ρ is unitary, the decomposition of V can be taken to be an orthogonal 
direct sum. There are finitely many such irreducible representations of G up to equivalence, which we now 
describe.

The representation ρ : G → GL(CG) for α given by (2.6) generalises the (left) regular (ordinary) repre-
sentation. It can also be thought of as a representation on CG, via the identification of CG with CG, i.e., 
ρ(g)h := α(g, h)gh. We will call it the regular α-representation for G. As in the ordinary case, the regular 
α-representation decomposes as a direct sum of irreducible representations (for the fixed cocycle α), with 
each irreducible occuring with multiplicity given by its dimension. In particular, if R = Rα is a complete 
set of irreducible representations i.e., each representation occurs exactly once in R up to equivalence, then 
we have

n = |G| = dim(CG) =
∑

d2
ρ. (4.14)
ρ∈R
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We write [ρ] for the equivalence class of ρ (where α is fixed) and ρ ≈ ξ for the equivalence, e.g., χρ = χ[ρ]
means that χρ depends only on ρ up to equivalence. Schur’s lemma extends (for (CG)α-homomorphisms 
between irreducibles), and from it (see [4]), one has

Theorem 4.1. Fix α. If ρ and ξ are irreducible projective representations of G on V1 and V2, then

1
|G|

∑
g∈G

ξ(g)−1Lρ(g) = 1
|G|

∑
g∈G

ξ(g−1)Lρ(g)
α(g, g−1)α(1, 1) = trace(L)

dim(V1)

{
0, ρ �≈ ξ;
I, ρ = ξ,

for all linear maps L : V1 → V2. In particular, if ρ and ξ map to matrices, then

∑
g∈G

ξ�m(g−1)ρjk(g)
α(g, g−1)α(1, 1) = |G|

dρ

{
0, ρ �≈ ξ;
δj�δkm, ρ = ξ.

(4.15)

When ρ is unitary, by (2.8) we may write (4.15) as

〈ρjk, ξm�〉 = |G|
dρ

{
0, ρ �≈ ξ;
δjmδk�, ρ = ξ,

(4.16)

which we will refer to the orthogonality of coordinates (of irreducible representations). This leads to a 
character theory and Fourier transform for projective representations.

5. Character theory for projective representations

Invariants of the equivalence class

[ρ] = {TρT−1 : T is invertible}

of a projective representation ρ : G → GL(Cdρ) include its α-character χρ = χ[ρ] ∈ CG

χρ(g) := trace(ρ(g)) =
∑dρ

j=1 ρjj(g), g ∈ G,

and the subspace of its coordinates

Uρ,α = U[ρ],α := span{ρjk : 1 ≤ j, k ≤ dρ}.

It follows from (4.14) and (4.15) that we have the orthogonal decomposition

CG =
⊕
ρ∈R

Uρ,α. (5.17)

Since χρ ∈ Uρ,α, the α-characters of inequivalent irreducibles are orthogonal. From

ρ(1) = α(1, 1)I, ρ(hgh−1) = α(hgh−1, h)
α(h, g) ρ(h)ρ(g)ρ(h)−1,

it follows that the α-characters satisfy

χρ(1) = α(1, 1)dρ, χρ(hgh−1) = α(hgh−1, h)
χρ(g). (5.18)
α(h, g)
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Furthermore, if ρ is unitary, then (2.8) gives

χρ(g−1) = α(g, g−1)α(1, 1)χρ(g). (5.19)

If ρ : G → GL(V ) is a representation on V , and V = ⊕jVj is a decomposition into irreducibles, then

χρ =
∑
j

χρ|Vj
=

∑
ξ∈R

mξχξ, (5.20)

where mξ is the multiplicity of the irreducible ξ. Since the α-characters of inequivalent irreducibles are 
orthogonal, we may determine mξ from χρ via

〈χρ, χξ〉 = mξ〈χξ, χξ〉 = mξ
|G|
dξ

dξ = mξ|G|.

Applying this to the regular α-represention (2.6) gives mξ = dξ, and hence (4.14).
Motivated by (5.18), a function f : G → C is called an α-class function if

f(hgh−1) = α(hgh−1, h)
α(h, g) f(g), ∀g, h ∈ G,

and g ∈ G is a α-element of G if

α(hgh−1, h)
α(h, g) = 1, ∀h ∈ CG(g) ⇐⇒ α(g, h) = α(h, g), ∀h ∈ CG(g).

It can be shown that the subspace of α-class functions (which contains the α-characters) has an orthogonal 
basis given by the irreducible α-characters, and its dimension, i.e., the number of irreducible projective 
representations (up to equivalence), equals the number of conjugacy classes of G which contain a α-element 
(see [4] for details).

6. Fourier analysis

Let R = Rα be a complete set of inequivalent irreducible projective representations of a finite group G
for a given cocycle α. We define the α-Fourier transform Fα of f : G → C at ρ ∈ R to be the linear map 
given by

Fα(f)(ρ) = (Fαf)ρ :=
∑
a∈G

f(a)ρ(a−1)
α(a, a−1)α(1, 1) . (6.21)

When ρ is unitary, i.e., ρ(a)∗ = ρ(a)−1, this simplifies to

(Fαf)ρ =
∑
a∈G

f(a)ρ(a)−1 =
∑
a∈G

f(a)ρ(a)∗. (6.22)

We observe that the spectral structure of (Fαf)ρ depends only on ρ up to equivalence, since

(Fαf)TρT−1 = T (Fαf)ρT−1. (6.23)

To be able to compare with some presentations, we also define the following variant

(Fαf)ρ :=
∑
a∈G

f(a)ρ(a)
α(a, a−1)α(1, 1) = (Fαf̃)ρ, f̃(a) := f(a−1). (6.24)
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Example 6.1. By (2.8), the Fourier transforms of the standard basis vectors are

(Fαeg)ρ = ρ(g−1)
α(g, g−1)α(1, 1) = ρ(g)−1, (Fαeg)ρ = ρ(g)

α(g, g−1)α(1, 1) = ρ(g−1)−1.

We note that f �→ ((Fαf)ρ)ρ∈R and f �→ ((Fαf)ρ)ρ∈R are linear maps CG → ⊕ρMdρ
(C) between spaces of 

dimension n = |G| =
∑

ρ d
2
ρ. The corresponding inverse α-Fourier transforms at A = (Aρ)ρ∈R are given by

(F−1
α A)(a) := 1

|G|
∑
ρ

dρ trace(Aρρ(a)), (F−1
α A)(a) := (F−1

α A)(a−1). (6.25)

These are inverses of each other, and we can extend the other basic results of Fourier analysis (for when 
the multiplier is α = 1), as follows.

Theorem 6.1. The α-Fourier transform and inverse α-Fourier transform are inverses of each other, and

Fα(ν)Fα(μ) = Fα(μ ∗α ν), Fα(ν)Fα(μ) = Fα(ν ∗α̃ μ), (6.26)

where α̃(a, b) := α(b−1, a−1). There is the Plancherel formula

∑
a∈G

ν(a)μ(a−1)
α(a, a−1)α(1, 1) = 1

|G|
∑
ρ

dρ trace
(
(Fαν)ρ(Fαμ)ρ

)
, (6.27)

and when each ρ ∈ R is unitary

〈ν, μ〉 :=
∑
a∈G

ν(a)μ(a) = 1
|G|

∑
ρ

dρ〈(Fαν)ρ, (Fαμ)ρ〉, (6.28)

where 〈A, B〉 := trace(AB∗) is the Frobenius inner product on matrices.

Proof. Since Fα, F−1
α and Fα, F−1

α are linear maps between n-dimensional spaces, to prove they are inverses, 
it suffices to prove that F−1

α Fα = I and F−1
α Fα = I. Moreover, it suffices to prove the just first, since if it 

holds, then (6.24) and (6.25) imply

F−1
α Fαf(a) = F−1

α (Fαf)(a−1) = F−1
α (Fαf̃)(a−1) = f̃(a−1) = f(a).

We will show that F−1
α Fα = I on the standard basis (eg)g∈G. First recall the character of the regular 

α-representation is 
∑

ρ dρχρ = α(1, 1)|G|e1. Therefore, we calculate

(F−1
α Fαeg)(h) = 1

|G|
∑
ρ

dρ trace
( ρ(g−1)ρ(h)
α(g, g−1)α(1, 1)

)
= 1

|G|
∑
ρ

dρ trace
(α(g−1, h)ρ(g−1h)

α(g, g−1)α(1, 1)

)

= 1
|G|

∑
ρ

dρ
χρ(g−1h)
α(g, g−1h) = 1

|G|Mα

(∑
ρ dρχρ

)
g,h

= Mα

(
α(1, 1)e1

)
g,h

= Ig,h = eg(h).

The inversion formula can be expanded

(F−1
α Fαf)(g) = 1

|G|
∑

dρ trace
(∑ f(a)ρ(a−1)

α(a, a−1)α(1, 1)ρ(g)
)
. (6.29)
ρ a∈G
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Since both sides of the Plancherel formula (6.27) are linear in ν and μ, it suffices (by linearity) to prove 
it for ν = eg and μ = eh. Using (6.29), we have

1
|G|

∑
ρ

dρ trace
(
(Fαeg)ρ(Fαeh)ρ

)
= 1

|G|
∑
ρ

dρ trace
(∑
a∈G

eg(a)ρ(a−1)
α(a, a−1)α(1, 1)

ρ(h−1)
α(h, h−1)α(1, 1)

)

= eg(h−1)
α(h, h−1)α(1, 1) =

∑
a∈G

eg(a)eh(a−1)
α(a, a−1)α(1, 1) .

Since both sides of (6.28) are linear in ν and conjugate linear in μ, it again suffices to consider ν = eg and 
μ = eh. Since ρ is unitary, (Fαeh)∗ρ = (ρ(h)−1)∗ = ρ(h), and so

1
|G|

∑
ρ

dρ〈(Fαeg)ρ, (Fαeh)ρ
)
〉 = 1

|G|
∑
ρ

dρ trace
(∑
a∈G

eg(a)ρ(a−1)
α(a, a−1)α(1, 1)ρ(h)

)

= eg(h) =
∑
a∈G

eg(a)eh(a).

We now prove the convolution formulas. On one hand, we have

(
Fα(ν ∗α μ)

)
ρ

=
∑
a∈G

∑
t∈G

ν(at−1)μ(t)
α(at−1, t) ρ(a)∗.

Since ρ(a)∗ρ(b)∗ = (ρ(b)ρ(a))∗ = (α(b, a)ρ(ba))∗ = ρ(ba)∗
α(b,a) , and we obtain

(Fαν)ρ(Fαμ)ρ =
∑
a∈G

ν(a)ρ(a)∗
∑
b∈G

μ(b)ρ(b)∗ =
∑
a∈G

∑
b∈G

ν(a)μ(b)
α(b, a) ρ(ba)∗

=
∑
c∈G

∑
t∈G

ν(t)μ(ct−1)
α(ct−1, t) ρ(c)∗ =

(
Fα(μ ∗α ν)

)
ρ
,

which gives the first convolution formula. From this, we have

Fα(ν̃)Fα(μ̃) = Fα(μ̃ ∗α ν),

and a calculation gives

μ̃ ∗α ν(g) = (μ ∗α ν)(g−1) :=
∑
t∈G

μ(g−1t−1)ν(t)
α(g−1t−1, t) =

∑
t∈G

μ̃(tg)ν̃(t−1)
α̃(t, g−1t−1) =

∑
s∈G

ν̃(gs−1)μ̃(s)
α̃(sg−1, s−1)

= (ν̃ ∗α̃ μ̃)(g),

which gives the second convolution formula. �
To the best of our knowledge, (6.21) is the first time that a Fourier transform has been defined for 

projective representations. For ordinary representations, the Fourier transform is well studied, see, e.g., [9], 
[16].

Example 6.2. The condition for P = Mα(ν) to satisfy P 2 = P is ν ∗α ν = ν, which transforms to

Fα(ν ∗α ν) = Fα(ν)2 = Fα(ν).
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i.e., each (Fαν)ρ satisfies this condition.

Lemma 6.1. If ρ : G → GL(Cdρ) is a unitary irreducible projective representation, then

(Fαρrs)ξ = |G|
dρ

{
0, ξ �≈ ρ;
e∗ser, ξ = ρ.

Proof. In view of (6.23), it suffices to prove this when all the ξ ∈ R are unitary. Here, the orthogonality of 
coordinates (4.16) gives

(Fαρrs)ξ =
∑
a∈G

ρrs(a)ξ(a)∗ =
∑
a∈G

ρrs(a)(ξkj(a))
dξ

j,k=1 = (〈ρrs, ξkj〉)dξ

j,k=1 =
{

0, ξ �≈ ρ;
|G|
dρ

e∗ser, ξ = ρ. �
Example 6.3. As examples, we have (for ρ unitary or not) that the α-character satisfies

(Fαχρ)ξ = |G|
dρ

{
0, ξ �≈ ρ;
I, ξ = ρ,

and if

f(g) = trace(ρ(g)A) = 〈ρ(g), A∗〉 =
∑
j,k

ρjk(g)akj ,

then

(Fαf)ξ = |G|
dρ

{
0, ξ �≈ ρ;
A, ξ = ρ.

(6.30)

In particular, for f(g) = 〈ρ(g)v, v〉 = trace(ρ(g)vv∗), i.e., A = vv∗ above, we have

(Fαf)ξ = |G|
dρ

{
0, ξ �≈ ρ;
vv∗, ξ = ρ.

(6.31)

Lemma 6.2. For α unitary, a (G, α)-matrix Mα(ν) is Hermitian if and only if

Fα(ν)∗ρ = Fα(ν)ρ, ρ ∈ R.

Proof. We have Mα(ν)∗ = Mα(ν), i.e., ν∗,α = ν, if and only if Fα(ν∗,α)ρ = Fα(ν)ρ, for all ρ. Using (2.8), 
we have

Fα(ν∗,α)ρ =
∑
a∈G

ν(a−1)α(a, a−1)α(1, 1)ρ(a)∗ =
(∑
a∈G

ν(a−1) ρ(a)
α(a, a−1)α(1, 1)

)∗

=
(∑
a∈G

ν(a−1)ρ(a−1)∗
)∗

= Fα(ν)∗ρ,

which gives the result. �
Example 6.2 and Lemmas 6.1 and 6.2 are sufficient to obtain the characterisation of tight (G, α)-frames 

given in §8. Before doing this, we give more precise results about the spectral structure of (G, α)-matrices, 
which are both enlightening and useful for other applications.
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Definition 6.1. If (Fαν)ξ = 0, for each ξ �≈ ρ, then we say that ν ∈ CG is a ρ-function and Mα(ν) is a
ρ-matrix.

The vector spaces of ρ-functions and ρ-matrices depend only ρ up to equivalence, and have dimension d2
ρ. 

It follows from the convolution formula (6.26) for Fα that

• The ρ-functions are closed under the ∗α convolution.
• The product of ρ-matrices is a ρ-matrix.

Lemma 6.3. The following are equivalent

1. Mα(ν) is a ρ-matrix.
2. ν is a ρ-function.
3. ν ∈ span{ρjk : 1 ≤ j, k ≤ dρ}.
4. ν ⊥ ξjk, 1 ≤ j, k ≤ dξ, ∀ξ ∈ R, ξ �= ρ.

Proof. Let B = (Fαν)ρ. Then ν is a ρ-function if and only if (Fαν)ξ = 0, ξ �≈ ρ, i.e.,

ν(g) = 1
|G|

∑
ξ

dξ trace((Fαν)ξξ(g)) = dρ
|G| trace(Bρ(g)) = dρ

|G|
∑
j,k

bkjρjk(g).

This and the fact and the orthogonality of coordinates (4.16) gives the result. �
From F−1

α Fα = I and (5.17), we have that each f ∈ CG can be uniquely decomposed as a sum of 
orthogonal ρ-functions

f =
∑
ρ

fρ, fρ = f[ρ] := dρ
|G| trace((Fαf)ρρ), (6.32)

which we will call Fα-Fourier decomposition of f ∈ CG into orthogonal ρ-functions. We will also call

Mα(f) =
∑
ρ

Mα(fρ), (6.33)

the Fα-Fourier decomposition of Mα(f) into ρ-matrices. The following lemma shows that

Mα(fρ)Mα(fξ) = 0, ρ �≈ ξ. (6.34)

Lemma 6.4. For ρ, ξ ∈ R, we have

ρjk ∗α ξrs =
∑
�

〈ξrs, ρk�〉 ρj� = |G|
dρ

{
ρjs, ξ = ρ, r = k;
0, otherwise.

Proof. We have

(ρjk ∗α ξrs)(g) =
∑
t∈G

ρjk(gt−1)ξrs(t)
α(gt−1, t) .

Since

ρ(gt−1) = ρ(g)ρ(t−1)
−1 = ρ(g)α(t, t−1)α(1, 1)ρ(t)∗

−1 ,

α(g, t ) α(g, t )
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and α(g, t−1)α(gt−1, t) = α(g, t−1t)α(t−1, t) = α(1, 1)α(t, t−1), we have

(ρjk ∗α ξrs)(g) =
∑
t∈G

α(t, t−1)α(1, 1)
α(g, t−1)α(gt−1, t) (ρ(g)ρ(t)∗)jkξrs(t)

=
∑
t∈G

∑
�

ρj�(g)ρk�(t)ξrs(t) =
∑
�

〈ξrs, ρk�〉 ρj�(g),

and the orthogonality completes the result. �
Further, if α is unitary, then f∗,α

ρ is also a ρ-function, since Example 3.3 gives

fρ =
∑
j,k

ajkρjk =⇒ f∗,α
ρ =

∑
j,k

ajkρ
∗,α
jk =

∑
j,k

ajkρkj ,

so the ρ-matrices are closed under the Hermitian transpose, and from (6.34) we obtain

〈Mα(fρ),Mα(fξ)〉 = trace(Mα(fρ)Mα(f∗,α
ξ )) = 0, ρ �≈ ξ. (6.35)

Example 6.4. From (6.33) (6.34) and (6.35), we have

Mα(ν)Mα(μ) =
∑
ρ

Mα(νρ)Mα(μρ), Mα(f)k =
∑
ρ

Mα(fρ)k,

〈Mα(ν),Mα(μ)〉 = |G|〈ν, μ〉 = |G|
∑
ρ

〈νρ, μρ〉 =
∑
ρ

〈Mα(νρ),Mα(μρ)〉.

7. The spectral structure of the (G, α)-matrices

The circulant matrices, i.e., the (G, α)-matrices for G a cyclic group and α = 1, are all simultaneously 
unitarily diagonalisable by the Fourier matrix, i.e., the characters (representations) of G are the eigenvectors 
of the circulant matrices. We now investigate to what extent this result extends to general (G, α)-matrices.

We recall from §5 the orthogonal decomposition of CG into ρ-functions

CG =
⊕
ρ∈R

Uρ,α, Uρ,α := span{ρjk : 1 ≤ j, k ≤ dρ}.

For ordinary representations, i.e., α = 1, we now present the standard diagonalisation result (see [9], [15]), 
which shows that the Uρ,α are invariant subspaces of the (G, α)-matrices.

Suppose henceforth that each ρ ∈ R is unitary, and let E be the unitary matrix

E = ER := [Eρ,k : ρ ∈ R, 1 ≤ k ≤ dρ], Eρ,k :=
√

dρ

|G| [ρk1, ρk2, . . . , ρkdξ
].

Theorem 7.1. For ordinary representations, the matrix E∗Mα(ν)E is block diagonal, with diagonal blocks 
(Aρ : ρ ∈ R, 1 ≤ k ≤ dρ), where Aρ := (Fαν)ρ.

Proof. By way of motivation, if we write E = [ξ1, ξ2, . . .] and Mα(v)E = EΛ, then

Mα(v)g,h = (EΛE∗)g,h =
∑∑

Eg,sΛst(E∗)t,h =
∑∑

ξs(g)Λstξt(h).

s t s t
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By Fourier inversion, we calculate

Mα(ν)g,h = ν(g−1h) = (F−1
α Fαν)(g−1h) = (F−1

α Fαν)(h−1g) = 1
|G|

∑
ρ

dρ trace
(
Aρρ(h−1g)

)
.

Since the representations are ordinary, i.e., α = 1, trace
(
Aρρ(h−1g)

)
= trace

(
ρ(g)Aρρ(h)∗

)
. Hence, by 

writing Aρ = [aρjk]
dρ

j,k=1, we obtain

Mα(ν)g,h = 1
|G|

∑
ρ

dρ
∑
j

(ρ(g)Aρρ(h)∗)jj =
∑
ρ

∑
j

∑
s

∑
t

dρ
|G|ρjs(g)a

ρ
stρjt(h),

which gives the result. �
From the above, it follows that the orthogonal subspaces

Uρ,α,j := span{ρjk : 1 ≤ k ≤ dρ}, ρ ∈ R, 1 ≤ j ≤ dρ,

are invariant subspaces of the (G, α)-matrices when α = 1. These subspaces do not give a unique orthogonal 
decomposition of Uρ,α into invariant subspaces of the (G, α)-matrices, since, for any unitary T , one has

Uρ,α =
dρ⊕
j=1

UTρT−1,α,j . (7.36)

It is natural to suppose that the Uρ,α,j are invariant subspaces of the (G, α)-matrices for the projective 
case also, and to adapt the argument above to prove it. Here

Mα(ν)g,h =
∑
ρ

∑
j

∑
s

∑
t

α(h, h−1g)
α(g, g−1h)

dρ
|G|a

ρ
stρjs(g)ρjt(h),

and so the remainder of the argument breaks down.
To understand the invariant subspaces of the (G, α)-matrices, we first consider the range of the 

(G, α)-matrices Mα(ρjk).

Lemma 7.1. Let ρ, ξ ∈ R. Then

Mα(ρjk)v =
dρ∑
�=1

∑
h∈G

ρ�k(h)vh ρ�j , v ∈ CG,

and, in particular,

Mα(ρjk)ξst = |G|
dρ

{
ρsj , ξ = ρ, t = k;
0, otherwise.

Proof. Since ρ(g−1h) = α(g, g−1h)ρ(g)∗ρ(h), we have

(Mα(ρjk)v)g =
∑
h

Mα(ρjk)g,hvh =
∑
h

ρjk(g−1h)
α(g, g−1h)vh =

∑
h

(ρ(g)∗ρ(h))jkvh

=
∑
h

∑
�

(ρ(g)∗)j�ρ(h)�kvh =
∑
h

∑
�

ρ�j(g)ρ�k(h)vh.
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Hence

Mα(ρjk)ξst =
∑
�

〈ρ�k, ξst〉 ρ�j =
{ |G|

dρ
ρsj , ξ = ρ, t = k;

0, otherwise,

since the entries of ρ and ξ are orthogonal. �
We therefore conclude that the orthogonal subspaces

Vρ,α,j := span{ρjk : 1 ≤ k ≤ dρ} = Uρ,α,j , ρ ∈ R, 1 ≤ j ≤ dρ,

are invariant subspaces of the (G, α)-matrices.
This gives the desired simultaneous unitary (block) diagonalisation of projective group matrices:

Theorem 7.2. For projective representations, the matrix E
∗
Mα(ν)E is block diagonal, with diagonal blocks 

(BT
ρ : ρ ∈ R, 1 ≤ k ≤ dρ), where Bρ := (Fαν)ρ.

Proof. Let (Fαν)ρ = Bρ = [bρjk]
dρ

j,k=1. Then

Mα(ν)g,h = ν(g−1h)
α(g, g−1h) = (F−1

α Fαν)(g−1h)
α(g, g−1h) = 1

α(g, g−1h)
1
|G|

∑
ρ

dρ trace
(
Bρρ(g−1h)

)
.

Since ρ(g−1h) = α(g, g−1h)ρ(g)∗ρ(h), we obtain

Mα(ν)g,h =
∑
ρ

dρ
|G| trace

(
ρ(h)Bρρ(g)∗

)
=

∑
ρ

dρ
|G|

∑
j

∑
s

∑
t

ρjs(h)bρstρjt(g).

Thus, we calculate

(Eξ,kξ

∗
Mα(ν)Eη,kη

)�m =
∑
g

∑
h

√
dξ√
|G|

ξkξ�(g)
∑
ρ

dρ
|G|

∑
j,s,t

ρjs(h)bρstρjt(g)
√
dη√
|G|

ηkηm(h)

=
√

dξdη

|G|
∑
ρ

dρ
|G|

∑
j,s,t

〈ξkξ�, ρjt〉〈ρjs, ηkηm〉bρst =
{
bξml, ξ = η;
0, otherwise,

which gives the result. �
Example 7.1. For ordinary representations, ρ(g)ρ(h) = ρ(g)ρ(h) = ρ(gh) = ρ(gh), so that {ρ}ρ∈R is another 
complete set of ordinary representations for G, with Eρ,k = Eρ,k. Hence from Theorem 7.1, we have

E
∗
Mα(ν)E = diag(Aρ : ρ ∈ R, 1 ≤ k ≤ dρ),

where Aρ = Fα(ν)ρ = Fα(ν)Tρ = BT
ρ (which is Theorem 7.2).

Example 7.2. The determinant of a (G, α)-matrix factors

det(Mα(ν)) = det(E∗
Mα(ν)E) =

∏
ρ

det(Bρ)dρ =
∏
ρ∈R

det((Fαν)ρ)dρ .

This “factorisation of the group determinant” was one of the motivations which lead to the development of 
representation theory (see [15]).
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Example 7.3. The blocks of the diagonal form of a (G, α)-matrix Mα(f) are unique up to similarity, and in 
particular, the Jordan canonical form is given by the block diagonal matrix with dρ diagonal blocks given 
by the Jordan canonical form of (Fαf)ρ.

For ordinary representations, invariant subspaces of the (G, α)-matrices are

{Uρ,α,j}ρ∈R,1≤j≤dρ
= {Vρ,α,j}ρ∈R,1≤j≤dρ

.

For projective representations, the {Vρ,α,j} are invariant subspaces (with a neat block diagonal form). It is 
no longer the case that even {Vρ,α}ρ∈R = {Uρ,α}ρ∈R, see (9.42). Nevertheless, in the specific cases considered 
so far (see §9.2), it appears that there is a block diagonal form for the {Uρ,α}ρ∈R which is more complicated 
(the blocks are no longer ordered by ρ, and blocks similar to the same (Fαν)ρ are not all identically equal).

From the orthogonal decomposition

CG =
⊕
ρ∈R

dρ⊕
j=1

Uρ,α,j , (7.37)

we obtain a fine scale Fα-Fourier decomposition

Mα(f) =
∑
ρ

dρ∑
j=1

Mα(fρ,j), fρ,j = dρ
|G| trace((Fαf)ρeje∗jρ) ∈ Uρ,α,j .

We observe from (7.36), or the formula fρ,j(g) = 〈ρ(g)(Fαf)ρej , ej〉, that there is not a unique fine scale
Fα-Fourier decomposition.

Let Mρ,α,j be the dρ-dimensional vector space of (G, α)-matrices of the form Mα(fρ,j). It follows from 
Lemma 6.4 (or the block diagonal form) that Mρ,α,j is closed under multiplication, indeed Mρ,α,jM(G,α) ⊂
Mρ,α,j , and hence is an algebra. Moreover, from Lemma 6.4, we have Mα(fρ,j)Mα(fξ,k) = 0, (ρ, j) �= (ξ, k), 
and consequently

Mα(ν)Mα(μ) =
∑
ρ∈R

dρ∑
j=1

Mα(νρ,j)Mα(μρ,j).

We now show the Fourier decompositions of Mα(f) are into low rank (G, α)-matrices.

Proposition 7.1. The rank of a (G, α)-matrix satisfies

rank(Mα(f)) =
∑
ρ

rank(Mα(fρ)) =
∑
ρ

dρ rank((Fαf)ρ), (7.38)

rank(Mα(f)) ≤
∑
ρ

∑
j

rank(Mα(fρ,j)), rank(Mα(fρ,j)) ∈ {0, dρ}. (7.39)

In particular, Mα(f) is invertible if and only if fρ,j �= 0, ∀ρ, j.

Proof. The block diagonal matrix E
∗
Mα(f)E has diagonal blocks (Fαf)Tρ = (Fαfρ)Tρ , each repeated dρ

times, and so we have

rank(Mα(f)) =
∑

dρ rank((Fαf)ρ) =
∑

dρ rank((Fαfρ)ρ).

ρ ρ



JID:YACHA AID:1298 /FLA [m3L; v1.248; Prn:13/12/2018; 14:38] P.17 (1-25)
S. Waldron / Appl. Comput. Harmon. Anal. ••• (••••) •••–••• 17
The block diagonal form of Mα(fρ) has just dρ (possibly) nonzero blocks Fα(fρ)Tρ , and so the rank of Mα(fρ)
is dρ rank((Fαfρ)ρ). The block diagonal form of Mα(fρ,j) has dρ (possibly) nonzero blocks

(Fαfρ,j)Tρ = ((Fαf)ρeje∗j )T = eje
∗
j (Fαfρ)Tρ ,

which either have rank one (since rank(eje∗j ) = 1), or are rank zero (when fρ,j = 0). �
Example 7.4. Proposition 7.1 gives a restriction on the possible rank of a (G, α)-matrix, e.g., for G = D4m
(the dihedral group of order 4m) and α the nontrivial cocycle, all irreducibles have dρ = 2 (see §9.2), and 
so a (G, α)-matrix must be of even rank.

There is some interest in subspaces (in our case subalgebras) of matrices with a restriction on their 
rank [8].

8. The characterisation of tight (G, α)-frames

We now give the main application of our results: a simple characterisation and explicit construction of all 
tight (G, α)-frames. Let R be a complete set of irreducible unitary representations for a (unitary) cocycle 
α. With very little effort we have:

Lemma 8.1. Let P = Mα(ν) be a (G, α)-matrix. Then the following are equivalent

1. P is the Gramian of a normalised tight (G, α)-frame.
2. P is an orthogonal projection.
3. Each Fα(ν)ρ, ρ ∈ R, is an orthogonal projection.

Proof. Since a sequence of vectors is a normalised tight frame if and only if its Gramian is an orthogonal 
projection, we have the equivalence of the first two. The condition that P be an orthogonal projection, i.e., 
P 2 = P and P ∗ = P , is equivalent to the last condition by Example 6.2 and Lemma 6.2. �

We will refer to (Fα(ν)ρ)ρ∈R as the Fourier coefficients of P = Mα(ν), or of any (G, α)-frame with 
Gramian Mα(ν).

Example 8.1. If G is abelian and α = 1, then all the irreducibles have dimension 1, and so the Fourier 
coefficients of a normalised tight G-frame must be 0 or 1. Thus there are a finite number of such G-frames 
for G abelian, the so called harmonic frames.

Now we suppose that ρ : G → V is a unitary action on V (for a cocycle α). We now answer the 
question: when is (ρ(g)v)g∈G a normalised tight (G, α)-frame for V ? The result below is the main structure 
theorem for tight (G, α)-frames, and was first given in [18] (Theorem 6.18) for the ordinary case, and in [3]
(Theorem 2.11) for the projective case. The proof given here uses the Fourier coefficients of the frame, rather 
than asserting (1.4) for each irreducible, and gives insight into the result.

Theorem 8.1. Let ρ : G → V be a unitary action on V for a cocycle α, and V = ⊕Vj be an orthogonal direct 
sum of irreducible (CG)α-modules. If v =

∑
j vj, vj ∈ Vj, then (gv)g∈G = (ρ(g)v)g∈G is a normalised tight 

(G, α)-frame for V if and only if

‖vj‖2 = dim(Vj)
, ∀j,
|G|
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and in the case Vj is (CG)α-isomorphic to Vk, j �= k, via σ : Vj → Vk that

〈σvj , vk〉 = 0.

Proof. By Lemma 8.1, Φ := (gv)g∈G is a normalised tight frame for V if and only if its Fourier coefficients 
are orthogonal projections, and the sum of the ranks of these projections is dim(V ). We now calculate the 
Fourier coefficients (cξ)ξ∈R.

Let ρj : Vj → Vj be the irreducible representation given by ρj(g) := ρ(g)|Vj
, and let σj : Vj → Vξ be a 

unitary (CG)α-isomorphism to the ξ : G → GL(Vξ) in R with ρj ≈ ξ. We note that ξ = σjρjσ
−1
j . By the 

orthogonality of the Vj , the Gramian of (gv)g∈G is the sum of the Gramians Mα(fj) of the (G, α)-frames 
Φj := (ρj(g)vj)g∈G for Vj , where

fj(g) := 〈ρj(g)vj , vj〉 = trace(ρj(g)vjv∗j ) = trace(σjρj(g)σ−1
j σjvj(σjvj)∗)

= trace(ξ(g)σjvj(σjvj)∗).

It follows from (6.31) that the Fourier coefficients of Φj (given by the ξ-function fj) are

(Fαfj)η =
{

0, η �≈ ξ;
wjw

∗
j , η = ξ,

wj :=
√

|G|
dξ

σjvj (ρj ≈ ξ),

and hence the Fourier coefficients of Φ are

cξ :=
∑

j:ρj≈ξ

wjw
∗
j .

If Φ is a normalised tight frame for V , then each Φj must be one for Vj (since orthogonal projections 
map normalised tight frames to normalised tight frames), i.e., wjw

∗
j is a rank one orthogonal projection, 

which gives

‖wj‖2 = |G|
dξ

‖σjvj‖2 = |G|
dξ

‖vj‖2 = 1 ⇐⇒ ‖vj‖2 = dim(Vj)
|G| .

Finally, for cξ to be an orthogonal projection, we need wj ⊥ wk, j �= k, ρj , ρk ≈ ξ, i.e.,

wj ⊥ wk ⇐⇒ σjvj ⊥ σkvk ⇐⇒ σ−1
k σjvj ⊥ vk ⇐⇒ σvj ⊥ vk,

where, by Schur’s lemma, we can replace the (CG)α-isomorphism σ−1
k σj : Vj → Vk above by any other 

one σ. �
There a natural description of the various classes of G-frames in [21] (and their generalisation to 

(G, α)-frames) in terms of the Fourier coefficients, e.g.,

• Irreducible (G, α)-frames: There is only one nonzero Fourier coefficient, which is a rank one orthogonal 
projection (up to a scalar multiple).

• Homogeneous (G, α)-frames: There is only one nonzero Fourier coefficient.
Equivalently, the Gramian is a ρ-matrix for some irreducible ρ ∈ R.

• Central (G, α)-frames: All the Fourier coefficients are 0 or a scalar multiple of I.
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Example 8.2. A (G, α)-frame with Gramian Mα(f) is central if f is a α-class function. Since the irreducible 
α-characters are a basis for the α-class functions, f must have the form

f(g) =
∑
ρ

aρχρ(g) =
∑
ρ

aρ trace(ρ(g)I),

and so, by (6.30), the Fourier coefficients of the frame are (Fαf)ρ = |G|
dρ

aρI. For these to be orthogonal 
projections, we must have

aρ = dρ
|G| = χρ(1)

α(1, 1)|G| ,

which, by taking aρ = 0 or the above value, gives the characterisation of [19] and [3] for normalised tight 
central (G, α)-frames in terms of their Gramian.

Theorem 8.2 (Construction). Let Mα(f) be an orthogonal projection, i.e., the Gramian of some normalised 
tight (G, α)-frame. Write its Fourier coefficients (which are rank mξ orthogonal projections) as

(Fαf)ξ =
mξ∑
j=1

wξ,jw
∗
ξ,j , wξ = (wξ,1, . . . , wξ,mξ

) ∈ (Cdξ)mξ ,

where 〈wξ,j , wξ,k〉 = δjk. Let

v := (
√

dξ

|G|wξ)ξ∈R ∈ V :=
⊕
ξ∈R

(Cdξ)mξ . (8.40)

Then (ρ(g)v)g∈G is a normalised tight (G, α)-frame for V with Gramian Mα(f), where the unitary action 
ρ : G → GL(V ) is given by

ρ(g)
(
(vξ,1, . . . , vξ,mξ

)ξ∈R

)
:= (ξ(g)vξ,1, . . . , ξ(g)vξ,mξ

)ξ∈R.

Proof. Let Mα(ν) be the Gramian of (ρ(g)v)g∈G, i.e.,

ν(g) := 〈ρ(g)v, v〉 =
∑
ξ∈R

mξ∑
j=1

〈ξ(g)wξ,j , wξ,j〉.

Then by the orthogonality of coordinates (4.16), and (6.31), we calculate

(Fαν)η =
∑
a∈G

∑
ξ∈R

dξ
|G|

mξ∑
j=1

〈ξ(a)wξ,j , wξ,j〉η(a)∗ =
∑
a∈G

dξ
|G|

mη∑
j=1

〈η(a)wη,j , wη,j〉η(a)∗

=
mη∑
j=1

∑
a∈G

trace(η(a) dξ|G|wη,jw
∗
η,j)η(a)∗ =

mη∑
j=1

wη,jw
∗
η,j = (Fαf)η,

as claimed. �
Example 8.3. Consider the normalised tight central (G, α)-frame with Gramian

Mα

(∑ dξ
|G|χξ

)
, dξ = χξ(1)

α(1, 1) ,

ξ∈S
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where S ⊂ R (see Example 8.2). Its nonzero Fourier coefficients are I for ξ ∈ S. By writing these as 
I =

∑
j eje

∗
j , we can realise this frame as (φg)g∈G, where

φg :=
(√ dξ

|G|ξjk(g)
)
ξ∈S,1≤j,k≤dρ

.

This can be written compactly as (
√

dξ

|G|ξ)ξ∈S ∈
⊕

ξ∈S Cdξ×dξ , with the Frobenius inner product on Cdξ×dξ .

A square matrix is the Gramian of a frame (spanning sequence for a vector space) if and only if it 
is positive semidefinite. Thus a (G, α)-matrix Mα(f) is the Gramian of a (G, α)-frame if and only if its 
Fourier coefficients are positive semidefinite. Each such Fourier coefficient can be unitarily diagonalised, 
giving (Fαf)ξ =

∑
j λjwξ,jw

∗
ξ,j , where the wξ,j are orthonormal and λj > 0. The frame can be realised as 

in Theorem 8.2, where wξ in (8.40) is replaced by (
√
λjwξ,j)1≤j≤mξ

, and mξ = rank((Fαf)ξ).

9. Examples

We now give some examples of (G, α)-matrices, their block diagonalisations (factorisation of the deter-
minant), and Fourier decompositions.

9.1. The Klein four-group

The first group with a nontrivial Schur multiplier is the Klein four-group G = Z2 × Z2. We order this 
1, a, b, ab = (0, 0), (1, 0), (0, 1), (1, 1), and write ν(j, k) = νjk.

For α = 1, there are four one-dimensional representations, giving

M1(ν) =

⎛
⎜⎝
ν00 ν10 ν01 ν11
ν10 ν00 ν11 ν01
ν01 ν11 ν00 ν10
ν11 ν01 ν10 ν00

⎞
⎟⎠ , E = 1

2

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠ ,

with E
∗
M1(ν)E being diagonal, and

det(M1(ν)) = (ν00 + ν10 + ν01 + ν11)(ν00 − ν10 + ν01 − ν11)(ν00 + ν10 − ν01 − ν11)(ν00 − ν10 − ν01 + ν11).

For the nontrivial multiplier, we have (G, α)-matrices

Mα(ν) =

⎛
⎜⎝

ν00 ν10 ν01 ν11
ν10 ν00 ν11 ν01
ν01 −ν11 ν00 −ν10
−ν11 ν01 −ν10 ν00

⎞
⎟⎠ , α :=

⎛
⎜⎝

1 1 1 1
1 1 1 1
1 −1 1 −1
1 −1 1 −1

⎞
⎟⎠ ,

and a single two-dimensional projective representation ρ for α. This representation, and a ρ̃ equivalent to 
it, are given by

ρ(1) =
(

1 0
0 1

)
, ρ(a) =

(
0 1
1 0

)
, ρ(b) =

(
1 0
0 −1

)
, ρ(ab) =

(
0 −1
1 0

)
,

ρ̃(1) =
(

1 0
0 1

)
, ρ̃(a) =

(
1 0
0 −1

)
, ρ̃(b) =

(
0 1
1 0

)
, ρ̃(ab) =

(
0 1
−1 0

)
,
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where ρ̃ = TρT−1, T = 1√
2

(
1 1
1 −1

)
. For these, we have

Eρ = 1√
2

⎛
⎜⎝

1 0 0 1
0 1 1 0
1 0 0 −1
0 −1 1 0

⎞
⎟⎠ , Eρ̃ = 1√

2

⎛
⎜⎝

1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0

⎞
⎟⎠ .

This shows that invariant subspace orthogonal decompositions

Uρ,α =
dρ⊕
j=1

Uρ,α,j , Vρ,α =
dρ⊕
j=1

Vρ,α,j

are not unique.
Here

Eρ
∗
Mα(ν)Eρ =

(
Cρ 0
0 Cρ

)
, Cρ = (Fαν)Tρ =

(
ν00 + ν01 ν10 − ν11
ν10 + ν11 ν00 − ν01

)

Eρ̃
∗
Mα(ν)Eρ̃ =

(
Cρ̃ 0
0 Cρ̃

)
, Cρ̃ = (Fαν)Tρ̃ =

(
ν00 + ν10 ν01 + ν11
ν01 − ν11 ν00 − ν10

)
,

and

det(Mα(ν)) = (ν2
00 + ν2

11 − ν2
10 − ν2

01)2.

We have a fine-scale Fourier decomposition of Mα(ν) into (G, α)-matrices

Mα(ν) = Mα(νρ,1) + Mα(νρ,2),

where

νρ,1 = 1
2(ν00 + ν01, ν10 − ν11, ν00 + ν01, ν11 − ν10),

νρ,2 = 1
2(ν00 − ν01, ν10 + ν11, ν01 − ν00, ν10 + ν11).

The summands lie in the corresponding subalgebras of the (G, α)-matrices

Mρ,α,1 =
{⎛⎜⎝

a b a −b
b a −b a
a b a −b
b a −b a

⎞
⎟⎠ : a, b ∈ C

}
, Mρ,α,2 =

{⎛⎜⎝
c d −c d
d c d −c
−c −d c −d
−d −c −d c

⎞
⎟⎠ : c, d ∈ C

}
,

for which every nonzero matrix has rank 2. By Proposition 7.1, we have that there are no (G, α)-matrices 
of rank 1 or 3.

9.2. The dihedral groups

The next groups with nontrivial Schur multiplier are those of order 8, of which Z2 × Z4 and D8 have 
Schur multiplier of order 2, and Z3

2 which has Schur multiplier of order 8. We consider G = D8 = 〈a, b :
a4 = 1, b2 = 1, bab = a−1〉. In [3], it is shown that for the nontrivial cocycle α given by

α(ajbk, a�bm) := ik�,
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there are inequivalent 2-dimensional projective representations ρ1 and ρ2 for α given by

ρr(ajbk) :=
(
ir 0
0 i1−r

)j (0 1
1 0

)k

.

We use the ordering 1, a, a2, a3, b, ab, a2b, a3b for G, so that

Mα(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν1 νa νa2 νa3 νb νab νa2b νa3b

νa3 ν1 νa νa2 νa3b νb νab νa2b

νa2 νa3 ν1 νa νa2b νa3b νb νab
νa νa2 νa3 ν1 νab νa2b νa3b νb
νb iνa3b −νa2b −iνab ν1 iνa3 −νa2 −iνa

−iνab νb iνa3b −νa2b −iνa ν1 iνa3 −νa2

−νa2b −iνab νb iνa3b −νa2 −iνa ν1 iνa3

iνa3b −νa2b −iνab νb iνa3 −νa2 −iνa ν1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and, e.g.,

ρ1 =
((1 0

0 1

)
,

(
i 0
0 1

)
,

(
−1 0
0 1

)
,

(
−i 0
0 1

)
,

(
0 1
1 0

)
,

(
0 i
1 0

)
,

(
0 −1
1 0

)
,

(
0 −i
1 0

))
.

Here

E := 1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1 0 0 1
i 0 0 1 −1 0 0 −i
−1 0 0 1 1 0 0 −1
−i 0 0 1 −1 0 0 i
0 1 1 0 0 1 1 0
0 i 1 0 0 −1 −i 0
0 −1 1 0 0 1 −1 0
0 −i 1 0 0 −1 i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9.41)

and E
∗
Mα(ν)E is block diagonal, with 2 × 2 diagonal blocks (Fαν)Tρ1

, (Fαν)Tρ1
, (Fαν)Tρ2

, (Fαν)Tρ2
, where

(Fαν)ρ1 =
(

ν1 − iνa − νa2 + iνa3 νb + νab + νa2b + νa3b

νb − iνab − νa2b + iνa3b ν1 + νa + νa2 + νa3

)
,

(Fαν)ρ2 =
(

ν1 − νa + νa2 − νa3 νb + iνab − νa2b − iνa3b

νb − νab + νa2b − νa3b ν1 + iνa − νa2 − iνa3

)
.

Thus det(Mα(ν)) factors as det((Fαν)ρ1)2 det((Fαν)ρ2)2. It also happens that E∗Mα(ν)E is block diagonal, 
i.e., the Uρ,α,j are invariant subspaces of the (G, α)-matrices. This is because conjugation permutes the 
subspaces Uρ,α,j , i.e., from (9.41) it is apparent that

Vρ1,α,1 = Uρ2,α,2, Vρ1,α,2 = Uρ1,α,2, Vρ2,α,1 = Uρ2,α,1, Vρ2,α,2 = Uρ1,α,1. (9.42)

The diagonal blocks of E∗Mα(ν)E are
(
ν1 + iνa − νa2 − iνa3 νb + iνab − νa2b − iνa3b

νb − νab + νa2b − νa3b ν1 − νa + νa2 − νa3

)
,

(
ν1 − iνa − νa2 + iνa3 νb − iνab − νa2b + iνa3b

νb + νab + νa2b + νa3b ν1 + νa + νa2 + νa3

)
,

(
ν1 − νa + νa2 − νa3 νb − νab + νa2b − νa3b

νb + iνab − νa2b − iνa3b ν1 + iνa − νa2 − iνa3

)
,

(
ν1 + νa + νa2 + νa3 νb + νab + νa2b + νa3b

νb − iνab − νa2b + iνa3b ν1 − iνa − νa2 + iνa3

)
.

We observe that these are all different.
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10. Other (G, α)-matrices

The definition (3.10) for Mα(ν) and that of the Fourier transform Fα are motivated by our analysis of 
projective group frames. Since these notions are so new, we now provide the tools to compare the variants. 
As the theory evolves, perhaps it will become apparent if there are ones which are best.

In (1.3), we define the Gramian of (gv)g∈G so that it factors V ∗V , where V = [gv]g∈G. In [3] the transpose 
(or equivalently the complex conjugate) of this is considered (for unitary representations), i.e., the matrix 
with (g, h)-entry

〈φg, φh〉 = 〈φh, φg〉 = 〈v, ρ(g−1h)v〉
α(g, g−1h) = α(g, g−1h)〈v, ρ(g−1h)v〉.

For α unitary or not, we say that A ∈ CG×G a [G, α]-matrix if it has this form, i.e.,

ag,h = M(ν)g,h := α(g, g−1h)ν(g−1h), ν ∈ CG. (10.43)

In [3], the formula (10.43) is written as

M(ν)g,h = α(g, g−1h)ν(g−1h) = α(g, g−1)α(1, 1)
α(g−1, h) ν(g−1h). (10.44)

We observe that 1/α is cocycle, and that a [G, α]-matrix is a (G, 1/α)-matrix, i.e.,

M(ν) = M1/α(ν). (10.45)

Moreover, for α unitary, the complex conjugate of a (G, α)-matrix is a [G, α]-matrix, i.e.,

Mα(ν) = M(ν). (10.46)

Proposition 10.1. The (G, α)-matrices and [G, α]-matrices are the transposes of each other, i.e.,

Mα(ν)T = M(μ), μ(g) := ν(g−1)
α(1, 1)α(g, g−1) ,

M(ν)T = Mα(μ), μ(g) := α(1, 1)α(g, g−1)ν(g−1).

Proof. Since α(g, g−1h)α(h, h−1g) = α(g, 1)α(g−1h, h−1g), we calculate

(Mα(ν)T )g,h = Mα(ν)h,g = ν(h−1g)
α(h, h−1g) = α(g, g−1h) ν((g−1h)−1)

α(1, 1)α(g−1h, (g−1h)−1) .

The other follows similarly, or by a change of variables. �
Example 10.1. Taking the transpose of the diagonalisation of Theorem 7.2 gives

E∗Mα(ν)TE = E
T
Mα(ν)T (E∗)T = diag

(
(Fαν)ρ : ρ ∈ R, 1 ≤ k ≤ dρ

)
,

so that the Uρ,α,j are invariant subspaces of Mα(ν)T , and hence of the [G, α]-matrices.
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Group matrices can also be defined to have (g, h)-entries of the form ν(gh−1) [15]. To transform these to 
matrices of the above type, we consider the unitary involution J given by Jeh := eh−1 , i.e., (J)g,h = δg,h−1 . 
Then

(JAJ)g,h = ag−1,h−1 ,

and so for A = Mα(ν) and A = M(ν), we have

(JMα(ν)J)g,h = ν(gh−1)
α(g−1, gh−1) , (JM(ν)J)g,h = α(g−1, gh−1)ν(gh−1),

which would provide the natural definitions for (G, α)-matrices of this type.

Example 10.2. For ordinary representations, Theorem 7.1 gives

(JE)∗(JMα(ν)J)(JE) = diag
(
(Fαν)ρ : ρ ∈ R, 1 ≤ k ≤ dρ

)
,

so the “group matrices” JMα(ν)J are block diagonalised by JE, which has (ρ, k)-blocks

√
dρ

|G| [Jρk1, Jρk2, . . . , Jρkdξ
] =

√
dρ

|G| [ρ1k, ρ2k, . . . , ρdξk],

since

(Jρjk)g = ρjk(g−1) = (ρ(g−1))jk = (ρ(g)∗)jk = ρkj(g).

This is the Theorem 61 of [15].
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