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Abstract

We give a complete classification of the finite tight frames which are G–invariant,

i.e., invariant under the unitary action of group G. This result is constructive, and we

use it to consider a number of examples. In particular, we determine the minimum

number of generators for a tight frame for the orthogonal polynomials on an n–gon or

cube, which is invariant under the symmetries of the weight.
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1 Introduction

A finite sequence of vectors (fj)j∈J is a tight frame for a d–dimensional Hilbert space H if
it gives the “redundant orthogonal expansion”

f =
1

A

∑

j∈J

〈f, fj〉fj, ∀f ∈ H, (1.1)

where A = 1
d

∑

j∈J ‖fj‖2. Tight frames (for finite dimensional spaces) have been studied
extensively over the last decade (cf. [6], [3], [19]). Many applications, such as signal analysis
[4] and quantum measurements [12], use tight frames which are the orbit of a single vector
under the unitary action of a finite group G. These so called G–frames [18] include the
harmonic frames (abelian groups) [5], and SIC-POVMs (discrete Heisenberg group) [13].

Here, we consider finite tight frames which are the G–orbit of a one or more vectors,
equivalently, G–invariant frames. By way of motivation, we first outline the case of the orbit
of a single nonzero vector, which was studied extensively in [16]. If the unitary action of a
finite group G on H is irreducible, i.e., every G–orbit of a nonzero vector is a spanning set,
then every such orbit is a tight frame. If the action is not irreducible, then there are two
cases:

1. No G–orbit spans H, and hence there are no tight G–frames for H.

2. Some G–orbit spans H, in which case there is a tight G–frame for H.

In the first case (or the second for that matter) one might seek a G–orbit of more than one
vector which is a spanning set, and then find a tight frame. Of course this can always be
done: take a basis and then the canonical tight frame of its G–orbit.

We give a more precise answer. Namely, a complete characterisation of when the G–orbit
of vectors w1, . . . , wr is a tight frame for H. This is first given for a complex space which
is easily stated, and then the real case is considered separately. This very general result is
constructive, and contains many known results as special cases, e.g., harmonic frames (one
generator, and G abelian). From it, one can determine the minimal number of generators for
a G–invariant tight frame. We do this calculation for the spaces of orthogonal polynomials of
fixed degree on an n–gon and on a cube. Another application considered is the construction
of G–invariant fusion frames.

2 The characterisation of G–invariant frames

Our results involve the representation theory of finite groups (cf. [9]). Throughout, G is a
finite group. A representation or linear action of G on a vector space V over a field F is
a map ρ : G → GL(V ), which is an action, i.e.,

g(hv) = (gh)v, 1v = v, gv := ρ(g)v.
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We say V is a representation of G, or an FG–module, or just a G–module if the field F
and action of G is clear from the context. The reason for this name is that an FG–module
is a module over the group algebra FG, which is the F–vector space with a basis given by
the elements of G and multiplication given by extending the multiplication of G linearly.

When F = R or C, a representation is said to be unitary (or a unitary action) if V
is a Hilbert space, and each ρ(g), g ∈ G, is unitary. If an action is not unitary, then the
inner product can be changed so that it is. Hence, for simplicity, we usually suppose that
our actions are unitary.

A subset of V is said to be G–invariant if it is closed under the action of G. We call a
finite spanning set for a Hilbert space a frame.

Definition 2.1 The number of generators of a G–invariant frame is the number of orbits
under the action of G on the set of its vectors.

Example 2.2 A frame given by the G–orbit of a single nonzero vector, i.e., (gv)g∈G, is called
a G–frame or group frame. (cf. [8],[17]). Clearly, a G–frame is a G–invariant frame with
one generator. Conversely, every one generator G–invariant frame is a G–frame repeated a
fixed number of times.

A representation V of G is said to be irreducible if every G–orbit of a nonzero vector
is a spanning set for V . In this case, we have (cf. [15])

Lemma 2.3 (Irreducible G–frames). Suppose that a unitary action of a finite group G on
a Hilbert space H is irreducible. Then (gv)g∈G is a tight G–frame for H for any v 6= 0, i.e.,

f =
dim(H)

|G|
1

‖v‖2
∑

g∈G

〈f, gv〉gv, ∀f ∈ H.

When the action is not irreducible, or there is more than one generator, we need the
theory for decomposing a space into its G–invariant subspaces. This is often presented in
the language of FG–modules

Definition 2.4 Suppose V and W are FG–modules. Then a linear map σ : V → W is an
FG–homomorphism if it commutes with the action of G, i.e.,

σg = gσ, ∀g ∈ G.

An FG–homomorphism is also often called aG–morphism, aG–map or aG–equivariant
map, where the field F is understood from the context.

A bijective FG–homomorphism is called an FG–isomorphism. We say V and W are
isomorphic, written V ∼= W , if there exists an FG–isomorphism σ : V → W . Usually, we
only consider FG–modules up to isomorphism.

If F is a field of characteristic zero, e.g., R or C, then Maschke’s Theorem (cf. [9])
says that every submodule of an FG–module has a complement. That is, if V ⊂ W is an
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inclusion of FG–modules then there exists V ′ ⊂ W with W = V ⊕V ′ (algebraic direct sum).
This implies that a FG–module V is (isomorphic to) a quotient of W if and only if V is
(isomorphic to) a submodule of W . It also implies that any finite-dimensional FG–module
V can be decomposed into a direct sum of irreducible FG–modules, and the summands are
unique up to isomorphism.

Lemma 2.5 (Decomposition). Let G be a finite group, and V be an FG–module over a field
F of characteristic zero. Then G can be written as a direct sum

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm, (2.2)

where each Vj is an irreducible FG–module, and the Vj are unique up to FG–isomorphism
and reordering. Furthermore, if V = H is a Hilbert space and the action of G on H is
unitary, then (2.2) can be taken to be an orthogonal direct sum.

Proof: The algebraic complement of Maschke’s theorem can be taken to be an orthogonal
complement (see [16] for details). �

We also need the following lemma.

Lemma 2.6 Suppose that there is a unitary action of G on H. If Vj and Vk are irreducible
G–invariant subspaces of H, which are not FG–isomorphic, then for vj ∈ Vj, vk ∈ Vk, we
have

∑

g∈G

〈fj, gvj〉gvk = 0, ∀fj ∈ Vj. (2.3)

Proof: The map A : Vj → Vk given by

Afj :=
∑

g∈G

〈fj, gvj〉gvk

is an FG–homomorphism, by the calculation

h(Afj) = h
∑

g∈G

〈fj, gvj〉gvk =
∑

g∈G

〈hfj, hgvj〉hgvk = A(hfj).

In particular, its image A(Vj) is a G–invariant subspace of Vk. Since Vk is irreducible, this
subspace must be either 0 or Vk. If A(Vj) = Vk then A is an FG–isomorphism because
ker(A) is a proper G–invariant subspace of Vj and so ker(A) = 0. Since Vj and Vk are not
isomorphic, A(Vj) must be 0, i.e., (2.3) holds. �

An irreducible representation V of a finite group G over F = R is said to be absolutely
irreducible if its complexification V C = C⊗V is an irreducible CG–module. An irreducible
representation over F = C is also said to be absolutely irreducible.
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Lemma 2.7 (Schur). Let F = C. Suppose that Vj and Vk are irreducible G–modules, which
are FG–isomorphic via σ : Vj → Vk. If S : Vj → Vk is an FG–homomorphism, then S = cσ
for some c ∈ C.

We now prove the main result: a characterisation of which G–orbits of vectors w1, . . . , wr

give tight frames.

Theorem 2.8 (Characterisation). Let H be a Hilbert space over F = C or R. Suppose that
there is a unitary action of a finite group G on H, and

H = V1 ⊕ V2 ⊕ · · · ⊕ Vm,

an orthogonal direct sum of absolutely irreducible G–invariant subspaces. Let Pj be the
orthogonal projection of H onto Vj. Then

Φ = (gws)g∈G,1≤s≤r, w1, . . . , wr ∈ H,

is a tight G–invariant frame for H if and only if

r
∑

s=1

‖Pjws‖2 6= 0, ∀j,
∑r

s=1 ‖Pjws‖2
∑r

s=1 ‖Pkws‖2
=

dim(Vj)

dim(Vk)
, j 6= k, (2.4)

and when Vj 6= Vk are FG–isomorphic

r
∑

s=1

〈σPjws, Pkws〉 = 0, (2.5)

where σ : Vj → Vk is any choice of FG–isomorphism.

Proof: Φ is a tight frame for H if and only if there exists a λ > 0 with

SΦ(f) =
∑

s

∑

g∈G

〈f, gws〉gws = λf, ∀f ∈ H.

By linearity, it suffices to show this for fj ∈ Vj, 1 ≤ j ≤ m, i.e. to show that there exists λ
(independent of j) such that,

∑

s

∑

g∈G

〈fj, gws〉gws =
∑

s

∑

g∈G

∑

k

〈fj, gPjws〉gPkws = λfj, (2.6)

since ws =
∑

k Pkws. By equating the Vk components, (2.6) holds if and only if

∑

s

∑

g∈G

〈fj, gPjws〉gPjws = λfj,
∑

s

∑

g∈G

〈fj, gPjws〉gPkws = 0, k 6= j. (2.7)
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By Lemma 2.3, the first part of (2.7) will hold for all fj ∈ Vj provided that some ws has a
nonzero Vj–component, i.e.,

∑

s ‖Pjws‖2 6= 0, with a λ = λj > 0, which depends on j, given
by

λj =
|G|

dim(Vj)

∑

s

‖Pjws‖2.

This λj is independent of j if and only if (2.4) holds. By Lemma 2.6, the second part of
(2.7) automatically holds if Vj ≇ Vk, and so reduces to

∑

s

∑

g∈G

〈fj, gPjws〉gPkws = 0, ∀fj ∈ Vj , k 6= j, Vj
∼= Vk. (2.8)

We now seek to simplify (2.8) in the case that Vj is absolutely irreducible. Let τ : Vj → Vk

be the FG–homomorphism

τf :=
∑

s

∑

g

〈f, gPjws〉gPkws.

Then for σ : Vj → Vk an FG–isomorphism, we calculate

〈τvj, σvj〉 = 〈
∑

s

∑

g

〈vj, gPjws〉gPkws, σvj〉

=
∑

s

∑

g

〈vj, gPjws〉〈gPkws, σvj〉

=
∑

s

∑

g

〈g−1vj, Pjws〉〈Pkws, σg
−1vj〉

=
∑

s

〈Pkws, σ
∑

g

〈Pjws, g
−1vj〉g−1vj〉

=
∑

s

〈Pkws, σ
‖vj‖2|G|
dim(Vj)

Pjws〉,

with the last equality given by Lemma 2.3. Since Vj is absolutely irreducible, Lemma 2.7
implies that τ = cσ, for some c ∈ F (possibly zero). Substituting τ = cσ into the above gives

τ =
|G| ‖vj‖2

dim(Vj)‖σvj‖2
∑

s

〈Pkws, σPjws〉σ.

Thus (2.8), which is equivalent to τ = 0, holds if and only if (2.5) does. �

We conclude this section with some special cases.

2.1 One generator

The special case r = 1 gives the Theorem 6.18 of [16].
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Corollary 2.9 (One generator [16]). Let H = V1 ⊕ · · · ⊕ Vm be an orthogonal direct sum
of absolutely irreducible G–invariant subspaces, and v =

∑

j vj, vj ∈ Vj. Then (gv)g∈G, is a
tight G–frame for H if and only if

vj 6= 0, ∀j, ‖vj‖2
‖vk‖2

=
dim(Vj)

dim(Vk)
, j 6= k,

and when Vj 6= Vk are FG–isomorphic via σ : Vj → Vk that

〈σvj, vk〉 = 0.

2.2 G is Abelian

We now consider the special case whenG is abelian. In this case, all the absolutely irreducible
G–invariant subspaces Vj are 1–dimensional, with the action of G given by

gv = ξ(g)v, v ∈ Vj ,

where ξ is a (linear) character of G, i.e., a homomorphism G → C. The characters of G
form a group Ĝ (under pointwise multiplication) which is isomorphic to G. In particular,
there are |G| different characters.

For one generator, it is known that there is a finite number of G–frames for Cd (up to
unitary equivalence), the so called harmonic frames (cf. [5]). It is therefore natural to ask if
this situation extends to two or more generators. We now answer this question.

Corollary 2.10 (Abelian groups). Suppose there is a unitary action of a finite abelian
group G on Cd, and, without loss of generality, that the irreducible G–invariant subspaces
are Vj = span{ej}, with the action on Vj given by gej = ξj(g)ej, where ξj : G → C is a
character of G. Let w1, . . . , wr ∈ Cd. Then

Φ = (gws)1≤s≤r,g∈G

is a tight frame for Cd if and only if

(a) The matrix W = [w1, . . . , wr] has rows of equal norm.

(b) The rows of W corresponding to the same character are orthogonal.

In particular, there is a G–invariant tight frame for Cd with r generators if and only if
d ≤ r|G|.

Proof: Since Pjws = (ws)jej, we have

∑

s

‖Pjws‖2 =
∑

s

|(ws)j|2 = (norm of the j–th row of W )2,
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and so (2.4) reduces to (a). If Vj and Vk are CG–isomorphic, i.e., correspond to the same
character, then σ : Vj → Vk : ej 7→ ek is a CG–isomorphism, since

σ(gej) = σ(ξj(g)ej) = ξj(g)σ(ej) = ξk(g)ek = g(σej).

In this case, σPjws = σ(ws)jej = e(ws)jek, and so (2.5) becomes

∑

s

〈σPjws, Pkws〉 =
∑

s

〈(ws)jek, (ws)kek〉 =
∑

s

(ws)j(ws)k = 0,

i.e., the j and k rows of W are orthogonal, which is (b). �

Example 2.11 (Harmonic frames). For r = 1, W = [v], v ∈ Cd. Thus the conditions (a),
(b) become v has entries of equal modulus which correspond to different characters. Since the
action of G on Cd is via diagonal matrices, we can suppose, without loss of generality, that
v = (1, 1, . . . , 1), and so (gv)g∈G = ((ξj(g)

d
j=1)g∈G, where ξ1, . . . , ξd distinct characters. This

is the usual construction for harmonic frames, i.e., the d by |G| matrix [gv]g∈G is obtained
by taking rows of the character table (Fourier matrix) of G.

Example 2.12 Let G = 〈a〉 be the cyclic group of order 2. Define a unitary action of G on
C3 by

av :=





1 0 0
0 1 0
0 0 −1



 v =





v1
v2
−v3



 .

Here the action on Ce1, Ce2 is the trivial representation, and on Ce3 it is the sign represen-
tation. There is no G–frame (gv)g∈G for C3. However, there are many choices for w1, w2 so
that (gvj)1≤j≤2,g∈G is a tight G–invariant frame, e.g.,

W = [w1, w2] =





1 0
0 1

u
√

1− |u|2



 , |u| ≤ 1.

Here 〈w1, w2〉 = u
√

1− |u|2, and so infinitely many unitarily inequivalent G–invariant tight
frames for C3 can be constructed in this way.

Given w1 = (x, y, z), a suitable w2 can be chosen provided |z|2 ≤ |x|2 + |y|2, since we
can take w2 = (y,−x, u) where |u|2 = |x|2 + |y|2 − |z|2. For example, if w1 = (1, 2, 2), then
w2 = (2,−1, 1) gives the G–invariant tight frame

{w1, w2, aw1, aw2} =
{





1
2
2



 ,





2
−1
1



 ,





1
2
−2



 ,





2
−1
−1





}

.
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2.3 Fusion frames

The tight frame expansion (1.1) can be generalised to

f =
∑

j∈J

cjPWj
f, ∀f ∈ H,

where cj ≥ 0 and PWj
is the orthogonal projection onto the subspace Wj ⊂ H.

Definition 2.13 The nonnegative weights (cj)j∈J and subspaces (Wj)j∈J of H are a tight
fusion frame for H if for some A > 0

f =
1

A

∑

j∈J

cjPWj
f, ∀f ∈ H.

Tight frames (fj) for H correspond to tight fusion frames with each Wj one–dimensional
(or 0) via

cj = ‖fj‖2, Wj = span{fj}.
At the other extreme, the single subspace W1 = H gives a tight fusion frame.

Fusion frames have found many applications: coding theory, distributed sensing, neurol-
ogy, parallel processing, sparse representations (see the short essays at www.fusionframe.org).
So far, the main constructions are via the frame potential (see [1], [2]). We now show how
they can be constructed as group orbits of a collection of subspaces.

Denote the Frobenius inner product on linear maps H → H by

〈A,B〉 := trace(AB∗).

Corollary 2.14 (Fusion frames). Suppose that there is a unitary action of G on H, and
H = ⊕jVj an orthogonal direct sum of absolutely irreducible subspaces. Let Pj be the orthog-
onal projection onto Vj, and W1, . . . ,Wr ∈ H be subspaces. Then (gWs)g∈G,1≤s≤r with the
weights cg,s = cs is a tight fusion frame for H if and only if

〈Pj, Q〉 6= 0, ∀j, 〈Pj, Q〉
〈Pk, Q〉 =

dim(Vj)

dim(Vk)
, j 6= k, (2.9)

where Q :=
∑

s csPWs
, and when Vj 6= Vk are FG–isomorphic via σ : Vj → Vk

〈σPj, PkQ〉 = 0. (2.10)

Proof: Let (w
(s)
ℓ )dsℓ=1, ds := dim(Ws), be an orthonormal basis for Ws. If g ∈ G then

(gw
(s)
ℓ )dsℓ=1 is an orthonormal basis for Ws, and so (gWs)g∈G,1≤s≤r is a tight fusion frame for

H with weights cs (not depending on g ∈ G) if and only if

∑

g∈G

r
∑

s=1

ds
∑

ℓ=1

cs〈f, gw(s)
ℓ 〉gw(s)

ℓ = Af, ∀f ∈ H,
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i.e., the G–orbit of (
√
csw

(s)
ℓ )1≤s≤r,1≤ℓ≤ds is a tight frame. By Theorem 2.8, the necessary

and sufficient conditions for this are

αj :=
r

∑

s=1

ds
∑

ℓ=1

cs‖Pjw
(s)
ℓ ‖2 6= 0, ∀j, αj

αk

=
dim(Vj)

dim(Vk)
, j 6= k,

and when σ : Vj → Vk is an FG–isomorphism

βjk :=
∑

s

∑

ℓ

cs〈σPjw
(s)
ℓ , Pkw

(s)
ℓ 〉 = 0.

Since
∑

ℓw
(s)
ℓ (w

(s)
ℓ )∗ = PWs

, these simplify to (2.9) and (2.10), by the calculations

αj =
∑

s

∑

ℓ

cs trace(Pjw
(s)
ℓ (w

(s)
ℓ )∗Pj) =

∑

s

cs trace(PjPWs
)

=
∑

s

cs〈Pj, PWs
〉 = 〈Pj, Q〉,

βjk =
∑

s

∑

ℓ

cs trace(σPjw
(s)
ℓ (w

(s)
ℓ )∗Pk) =

∑

s

cs trace(σPjPWs
Pk)

=
∑

s

cs〈σPj, PkPWs
〉 = 〈σPj, PkQ〉.

�

We observe that the condition above depends only on Q =
∑

s csPWs
, a semipositive

definite (Hermitian) operator. By considering its spectral structure, such a Q could be
decomposed in different ways to obtain various fusion frames, with the minimal number of
subspaces being the number of nonzero eigenvalues.

2.4 The real case

For F = R, our characterisation (Theorem 2.8) applies if H is the orthogonal direct sum of
absolutely irreducible G–invariant subspaces. If not, i.e., some irreducible subspace is not
absolutely irreducible, then it can be applied to the complexification of H. However, this
does not guarantee that the tight frames constructed are real. A careful reading of the proof
of Theorem 2.8 gives the following version for F = R.

Theorem 2.15 (Real case). Suppose that there is unitary action of a finite group G on real
space

H = V1 ⊕ V2 ⊕ · · · ⊕ Vm,

an orthogonal direct sum of irreducible G–invariant subspaces. Let Pj be the orthogonal
projection of H onto Vj. Then

Φ = (gws)g∈G,1≤s≤r, w1, . . . , wr ∈ H

10



is a tight G–invariant frame for H if and only if

r
∑

s=1

‖Pjws‖2 6= 0, ∀j,
∑r

s=1 ‖Pjws‖2
∑r

s=1 ‖Pkws‖2
=

dim(Vj)

dim(Vk)
, j 6= k, (2.11)

and when Vj 6= Vk are RG–isomorphic

r
∑

s=1

∑

g∈G

〈fj, gPjws〉gPkws = 0, ∀fj ∈ Vj , (2.12)

which need only be checked for one fj 6= 0. For Vj absolutely irreducible, (2.12) can be
replaced by

r
∑

s=1

〈σPjws, Pkws〉 = 0, (2.13)

where σ : Vj → Vk is any RG–isomorphism.

Example 2.16 Let G = 〈a〉 be the cyclic group of order n. An irreducible unitary action
of G on R2 is given by

av = Av, A =

(

c −s
s c

)

, c = cos
2π

n
, s = sin

2π

n
.

Suppose G acts on R4 = R2 × R2 componentwise, i.e., a(v, w) = (Av,Aw). Then the
conditions for the G–orbit of (v, w) to be a tight frame for R4 are

‖v‖ = ‖w‖ 6= 0,
n

∑

j=1

〈f1, Ajv〉Ajw =
(

n
∑

j=1

Ajwv∗A−j
)

f1 = 0, ∀f1 ∈ R2.

A calculation shows this is not possible, and so no G–orbit is a tight frame. This can also
be seen by appealing to Theorem 2.8, as follows. The action of G on R2 given by av = Av is
not absolutely irreducible. On the complexification C2 there are two orthogonal G–invariant
subspaces: the eigenspaces of A corresponding to the eigenvalues λ = ω, ω, ω := e

2πi
n . For

n > 2, ω 6= ω, and so these subpaces are not CG–isomorphic. Thus the complexification C4

of R2 × R2 decomposes as the sum of four 1–dimensional G–invariant subspaces, with two
pairs CG–isomorphic to each other. By Theorem 2.8, it is therefore not possible to find a
G–frame for C4, and hence neither for R4.

Similarly, Corollary 2.14 for fusion frames can be modified for the real case. Here, if Vj

is not absolutely irreducible, then (2.10) is replaced by

∑

g∈G

gPkPWPjg
−1vj = 0. (2.14)
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3 The minimal number of generators

Suppose that there is a unitary action of a finite group G on a complex Hilbert space H.
The following is a simple consequence of Corollary 2.9.

Proposition 3.1 The following are equivalent.

1. There exists v ∈ H such that (gv)g∈G is a tight frame.

2. There exists v ∈ H such that (gv)g∈G is a frame (spanning set).

3. As a G–module, H is isomorphic to a submodule of CG.

Wedderburn’s Theorem states that CG is isomorphic as a G–module to
⊕

W W dim(W ),
where the sum is over the set of all irreducible representations W of G. Thus, condition 3.
above is equivalent to

4. [H : W ] ≤ dim(W ) for all irreducible representations W of G.

Note that this condition depends only on the structure of H as a G–module and is indepen-
dent of the inner product on H.

We wish to generalise Proposition 3.1 to the case of tight frames with multiple generators.
It is convenient to give the following lemma.

Lemma 3.2 There exist v1, . . . , vk ∈ H such that (gvi)1≤i≤k,g∈G is a tight frame if and only
if there exist v1, . . . , vk ∈ H such that (gvi)1≤i≤k,g∈G spans H.

Proof: This is a standard argument. If Φ = (gvi)1≤i≤k,g∈G spans H then we can replace vi
by S

−1/2
Φ vi where SΦ is the frame operator of Φ. �

We denote the direct sum of k copies of a representation V of G by V k. We now show
that the minimal number of generators is determined by the G–module structure of H.

Theorem 3.3 (Minimal number of generators) The following are equivalent.

1. There exist v1, . . . , vk ∈ H such that (gvj)1≤j≤k,g∈G is a tight frame.

2. There exist v1, . . . , vk ∈ H such that (gvj)1≤j≤k,g∈G is a frame (spanning set).

3. As a G–module, H is isomorphic to a submodule of CGk. Equivalently,

[H : W ] ≤ k dim(W ),

for every irreducible G–module W .

12



Proof: By Lemma 3.2, we need only check that the last two conditions are equivalent.
First, suppose that (gvj)1≤j≤k,g∈G spans H. Then H is a quotient of

⊕

j span{gvj}. For
each j, span{gvj} = CGvj is a quotient of CG, and hence is isomorphic to a submodule of
CG. Thus, H is a quotient of CGk, hence is a submodule of CGk.

Conversely, suppose that [H : W ] ≤ k dim(W ), for every irreducible representation W of
G. Then we can write H = Z1 ⊕ · · · ⊕ Zk, where each Zj contains at most one copy of each
irreducible W . Thus, each Zj is a submodule of CG, so we can find vj ∈ Zj with (gvj)g∈G a
spanning set for Zj, by Proposition 3.1. Therefore, (gvj)1≤j≤k,g∈G spans H. �

4 Multivariate orthogonal polynomials

Here we use Theorem 3.3 to determine the minimum number of generators for a tight frame
for the orthogonal polynomials on the n–gon and on the cube, which is invariant under the
symmetries of the weight.

4.1 Generalities

Let V be a finite–dimensional complex vector space. Let S = C[V ] be the ring of polynomial
functions on V , and suppose that S is equipped with an inner product 〈·, ·〉. Suppose further
that a finite group G acts on S by unitary transformations which preserve polynomial degree.
A typical example is S = C[x, y] with 〈·, ·〉 given by

〈f, g〉 :=
∫

A

fgdµ

where µ is the Lebesgue measure on R2, and A ⊂ R2 is some measurable region with
µ(A) > 0. The innner product 〈·, ·〉 is to be understood as the sesquilinear extension of

〈xj1yk1 , xj2yk1〉 =
∫

A

xj1+j2yk1+k2dµ.

We write Sj for the space of homogeneous polynomials of degree j, so that

S =
∞
⊕

j=0

Sj

is a graded ring, and let ΠN =
⊕N

j=0 Sj be the polynomials of degree up to N . The space of
orthogonal polynomials of degree N is

QN = ΠN ∩ Π⊥
N−1,

where ⊥ denotes the orthogonal complement.
In [16] the problem of constructing one–generator G–invariant tight frames for QN , was

considered. Since the dimension of QN is soon larger than |G| (the size of a G–orbit), these
techniques only apply to orthogonal polynomials of small degree. In this section, we use our
results to consider the case of several generators. The natural question is:

13



Question 4.1 What is the minimum number of generators that a G–invariant tight frame
for QN can have? In other words, what is the smallest k, such that there exist w1, . . . , wk ∈
QN for which (gwi)g∈G,1≤i≤k is a tight frame for QN?

Note that the map

SN → QN : f 7→ f − PΠN−1
(f) = PΠ⊥

N−1
∩ΠN

(f)

is an orthogonal projection onto a G–invariant subspace, and so commutes with the action
of G. It is also a linear isomorphism. Therefore, SN and QN are isomorphic G–modules, and
so Question 4.1 is equivalent to

Question 4.2 What is the minimum number of generators for a G–invariant tight frame
for SN?

In order to answer Question 4.2, we need to know the structure of SN as a G–module. We
can then apply Theorem 3.3. In general, it is very hard to decompose SN into irreducibles.
However, for one class of group actions, the complex reflection groups, this problem can
be addressed. In the next subsection, we analyse the action of a complex reflection group to
get a bound on the number of generators for a tight frame. We then consider the case of the
action of the dihedral group on an n–gon in the plane, and calculate the minumum number
of generators exactly. Finally, we consider the orthogonal polynomials on the cube.

4.2 Complex reflection groups

Let V be a finite-dimensional complex vector space. A linear transformation s : V → V
is called a complex reflection if s has finite multiplicative order and fixes a hyperplane
pointwise [11]. That is, s = Pdiag(ξ, 1, 1, . . . , 1)P−1 for some invertible P and some root of
unity ξ. A finite group G generated by complex reflections is called a complex reflection
group [11]. Note that being a complex reflection group is a property of the set of matrices G,
not the abstract group G. The number dim(V ) is called the rank of the complex reflection
group. We will assume that V is an irreducible G–module. A complete classification of the
irreducible complex reflection groups was given by Shephard and Todd [14].

One important fact about complex reflection groups is that their invariant theory is
well-understood [10] (Chapter 23). The group G acts on the polynomial ring S = C[V ] by

g · f = f ◦ g−1.

This action preserves the degree of a homogeneous f , and so we can ask how the module SN

of homogeneous polynomials of degree N decomposes as a sum of irreducible representations
of G.

Let SG denote the invariant polynomials, that is,

SG = {f ∈ S : g · f = f ∀g ∈ G}.

14



Let S+
G denote the invariant polynomials with zero constant term and let I+ denote the ideal

generated by S+
G in S, that is

I+ = {
k

∑

i=1

fihi : fi ∈ S+
G , hi ∈ S} ⊂ S.

The ring of coinvariants is the quotient ring

ScoG :=
S

I+

and there is a decomposition of S as a tensor product of graded G–modules

S ∼= SG ⊗C ScoG. (4.15)

For readers who are unfamiliar with invariant theory, the following example may help.
Let V be one-dimensional and let G = {1, g} be a group of order 2 with g acting by −1.
Then S = C[z], a polynomial ring in one variable, and g · z = −z. The ring of invariants is
SG = C[z2] and the ideal I+ = z2C[z] consists of the polynomials of degree ≥ 2. The ring of
coinvariants is ScoG = span{[1], [z]}, a two-dimensional vector space spanned by the images
[1] = 1 + I+ and [z] = z + I+ of 1 and z in the quotient ring S/I+, with the multiplication
given by [z][z] = 0. As a G–module, this can be naturally identified with span{1, z} ⊂ S.
We have the tensor product decomposition

S ∼= SG ⊗C span{1, z},

meaning that for each N , we have

SN =
N
⊕

i=0

SG
i ⊗C span{1, z}N−i = SG

N ⊗ span{1} ⊕ SG
N−1 ⊗ span{z}

where the subscript denotes the homogeneous polynomials of degree i. This is just another
way of saying that a homogeneous polynomial of degree N can be written as a linear combi-
nation of an invariant times z plus another invariant times 1. Since the only homogeneous
polynomial of degree N is zN , this is just saying that zN = zN .1 if N is even and zN = zN−1z
if N is odd.

Returning to the case of a general complex reflection group G, equation (4.15) describes
how SN decomposes as a sum of irreducible representations of G. From (4.15), we have

SN =
N
⊕

i=0

SG
i ⊗C ScoG

N−i

as G–modules. But, by definition, SG
i consists of dim(SG

i ) copies of the trivial module.
Therefore, if V is an irreducible G–module then

[SN : V ] =
N
∑

i=0

dim(SG
i )[S

coG
N−i : V ].
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The ring ScoG is very well-understood. It happens that as G–modules, ScoG ∼= CG. There-
fore, [ScoG : V ] = dim(V ) for every irreducible G–module V , and so we have

[SN : V ] ≤ max
0≤i≤N

dim(SG
i ) · dim(V ).

Applying Theorem 3.3 gives a partial answer to Question 4.2 for a complex reflection group.

Theorem 4.3 Let G be a complex reflection group acting on the irreducible G–module V .
Let S = C[V ] and let SN ⊂ S denote the space of homogeneous polynomials of degree N . Let
c be the minimum number of generators for a tight frame of SN . Then

c ≤ max
0≤i≤N

dim(SG
i ).

The bound in Theorem 4.3 is not sharp in general, see Proposition 4.5 (to follow).

4.3 Orthogonal polynomials on a regular polygon in the plane

Dunkl [7] considers orthogonal polynomials on the hexagon (to be used for the analysis of
optical properties of hexagonal lenses).

Let n ≥ 3. We consider the regular n–gon T = Tn with vertices (vj) on the unit circle

vj :=

(

cos 2π
n
j

sin 2π
n
j

)

, j ∈ Zn

These correspond to the n–roots of unity ωj = e2πi
j

n .
Define σ : R2 → R2 by σ : (x, y) 7→ (x,−y) and define ρ : R2 → R2 to be anticlockwise

rotation through an angle of 2π/n. Then σ and ρ generate a subgroup of GL(R2) of order 2n,
called the dihedral group G = Dn. The group G consists of all the linear transformations
which leave the regular n–gon invariant. When considering polynomials on the regular n–
gon, it is convenient to complexify the problem and regard G as a subgroup of GL(C2). Let
S = C[x, y] be the ring of polynomial functions on C2. It is convenient to define

z = x+ iy

z = x− iy

Then S = C[x, y] = C[z, z], and σ acts on this ring by σ : z 7→ z, σ : z 7→ z and ρ acts by
ρ : z 7→ ω−1z, ρ : z 7→ ωz. The ring of invariants SG is generated by zn + zn and zz (called
the fundamental invariants of G). It is isomorphic to a polynomial ring in these variables.
Therefore, the number ri := dim(SG

i ) is the coefficient of qi in the power series

1

(1− q2)(1− qn)
=

∞
∑

i=0

riq
i

16



where q is an indeterminate. We now calculate the numbers ri in order to apply Theorem
4.3. We observe that

ri = #Σi

where
Σi = {(k, ℓ) : k, ℓ ≥ 0, k, ℓ ∈ Z, 2k + nℓ = i}.

It is clear that the value of ri depends on whether n is odd or even, so we must consider
these cases separately.

4.3.1 The case of odd n

Suppose that n is odd. Then if 2 ∤ i, there is a bijection between Si and Si−n given by
(k, ℓ) 7→ (k, ℓ− 1), so ri = ri−n.

Similarly, if n ∤ i then ri = ri−2.
Next, for t ≥ 1, we have Σ2nt = Σ2nt−n ∪ {(0, 2t)}, so r2nt = r2nt−n + 1. But 2 ∤ 2nt − n

because n is odd, so r2nt−n = r2nt−2n. By induction on t, we see that

r2nt = t+ 1.

Using these facts, the reader may now verify that if i = 2nt+ ℓ with 0 ≤ ℓ ≤ 2n− 1 then

ri =

{

t, ℓ < n, ℓ odd

t+ 1 otherwise.

Therefore, if N = 2nt+ ℓ, 0 ≤ ℓ ≤ 2n− 1 then

max
0≤i≤N

ri = t+ 1 =

⌈

N + 1

2n

⌉

.

Therefore, from Theorem 4.3, the minimum number of generators for a G–invariant tight
frame of Si is at most ⌈N+1

2n
⌉. But notice that |G| = 2n, so the span of a G–orbit can have

dimension at most 2n. Also, dim(Si) = N + 1. So the number of generators of a spanning
set of Si must be at least (N + 1)/2n. Therefore, the minimum number of generators for a
tight frame of Si is exactly ⌈(N + 1)/2n⌉.

4.3.2 The case of even n

Suppose that n is even. Then Σi = ∅ for i odd, so ri = 0 for odd i. For i even, we can do
a similar analysis to the odd case. If n ∤ i then ri = ri−2. Otherwise, rtn = rtn−n + 1. By
induction on t we have rtn = t+ 1. Overall, if i = tn+ ℓ, 0 ≤ ℓ ≤ n− 1, then

ri =

{

t+ 1 ℓ even

0 ℓ odd.
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So if N = nt+ ℓ, 0 ≤ ℓ ≤ n− 1, we have

max
0≤i≤N

ri = t+ 1 =

⌈

N + 1

n

⌉

.

Therefore, from Theorem 4.3, the minimum number of generators for a G–invariant tight
frame of Si is at most ⌈N+1

n
⌉. But notice that |G| = 2n and −1 = ρn/2 ∈ G. The element

−1 acts by 1 or −1 on Si, so the span of a G–orbit can have dimension at most n. Also,
dim(Si) = N + 1. So the number of generators of a spanning set of Si must be at least
(N + 1)/n. Therefore, the minimum number of generators for a tight frame of Si is exactly
⌈(N + 1)/n⌉.

The above observations can be summarised in the following way.

Theorem 4.4 Let G = D2n be the dihedral group of order 2n acting on V = C2 and let
S = C[V ] =

⊕∞

N=0 SN be the ring of polynomial functions on V . Regardless of the inner
product, the minimum number of generators for a G–invariant tight frame of SN is given by

⌈

N + 1

2n

⌉

if n is odd, and

⌈

N + 1

n

⌉

if n is even.

4.4 Example: the triangle

Let us consider Theorem 4.4 in the simplest case n = 3. Then G = D3, the symmetry
group of a triangle T in the plane with vertices 1, ω, ω2 where ω = e2πi/3. This example was
previously considered in [16]. The inner product on S = C[z, z] is given by 〈f, g〉 =

∫

T
fg

where
∫

T
h(z) is shorthand for

∫

T
Re(h(z))dµ + i

∫

T
Im(h(z))dµ where µ is the Lebesgue

measure on R2.
The group G = D3 has three irreducible representations: the trivial representation triv,

the one-dimensional “sign” representation sgn, which is isomorphic to span{z3 − z3}, and a
two-dimensional representation V , which is isomorphic to span{z, z}.

Let us study the action of G on the space of homogeneous polynomials SN of degree N .
For each N , we can decompose SN into a direct sum of irreducibles by inspection, using the
basis {zizN−i|0 ≤ i ≤ N}. We see by inspection that

S1
∼= V

S2
∼= span{zz} ⊕ span{z2, z2} ∼= triv⊕ V

S3
∼= span{z3 + z3} ⊕ span{z3 − z3} ⊕ span{z2z, z2z} ∼= triv⊕ sgn⊕ V

S4
∼= V ⊕ V ⊕ triv

S5
∼= V ⊕ V ⊕ sgn⊕ triv ∼= CG

S6
∼= V ⊕ V ⊕ sgn⊕ triv⊕ triv

The smallest N for which there is an irreducible W with [SN : W ] > dim(W ) is N = 6. This
is in agreement with Theorem 4.4, because the smallest N for which

⌈

N+1
6

⌉

≥ 2 is N = 6,
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and so there exists a G–invariant tight frame for SN for N ≤ 5. Incidentally, this corrects a
false claim in [16].

As an example, let us show how to construct a G–invariant tight frame for S6. Following
Dunkl [7], we observe that

∫

T

zazb = 0

if a 6≡ bmod 3 because ρ : z 7→ ω−1z, z 7→ ωz leaves the triangle T invariant. Let us write

α =

∫

T

z6z6 =
425

28028
β =

∫

T

z9z3 =
137

10010
γ =

∫

T

z12 =
1

91

These values are for normalised Lebesgue measure. and note that α, β, γ ∈ R because T is
invariant under z 7→ z. We get the following table of inner products among elements of a
basis of S6.

z6 z5z z4z2 z3z3 z2z4 zz5 z6

z6 α 0 0 β 0 0 γ
z5z 0 α 0 0 β 0 0
z4z2 0 0 α 0 0 β 0
z3z3 β 0 0 α 0 0 β
z2z4 0 β 0 0 α 0 0
zz5 0 0 β 0 0 α 0
z6 γ 0 0 β 0 0 α

Using this, we observe that z6 − z6 is orthogonal to all basis elements except z6, z6. Next,
z6 + z6 is orthogonal to everything except z3z3, and therefore

z6 + z6 − 〈z6 + z6, z3z3〉
||z3z3||2 z3z3 = z6 + z6 − 2β

α
z3z3

is orthogonal to all the other basis elements, so that

S6 = span{z6 − z6} ⊕ span{z3z3} ⊕ span{z6 + z6 − 2β

α
z3z3} ⊕ span{z4z2, z2z4, zz5, zz5}

is an orthogonal direct sum. In a similar way, we can decompose span{z4z2, z2z4, zz5, zz5}
into two orthogonal copies of V , yielding the following decomposition of S6 into an orthogonal
direct sum of irreducibles.

S6 = span{z6 − z6} ⊕ span{z3z3} ⊕ span{z6 + z6 − 2β

α
z3z3}⊕

⊕ span{z4z2, z4z2} ⊕ span{z5z − β

α
z4z2, z5z − β

α
z4z2}.

We can now use Theorem 2.8 to construct a G–invariant tight frame consisting of the orbits
of two vectors in S6. For this, we need the norms of the basis elements. We have ||z6−z6||2 =
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2α − 2γ, ||z3z3||2 = α, ||z6 + z6 − 2β
α
z3z3||2 = 2α + 2γ − 4β2

α
, ||z4z2||2 = ||z4z2||2 = α, and

||z5z − β
α
z4z2||2 = α− β2

α
. We can take

w1 =
1√
α
(z3z3)

and

w2 =
1√

2α− 2γ
(z6 − z6) +

1
√

2α + 2γ − 4β2/α
(z6 + z6 − 2β

α
z3z3)+

+

√
2√
α
z4z2 +

√
2

√

α− β2/α
(z5z − β

α
z4z2).

In other words, we just take a unit vector in each irreducible component, with the two-
dimensional components having a factor of

√
2. This guarantees that the conditions of

Theorem 2.8 are satisfied and we conclude that

(w1, w1, w1, w1, w1, w1, w2, ρ · w2, ρ
2 · w2σ · w2, ρσ · w2, σρ · w2)

is a G–invariant tight frame for S6. We may as well replace the six copies of w1 by a single
copy of

√
6w1. Rescaling, we see that

Φ = (w1,
1√
6
w2,

1√
6
ρ · w2,

1√
6
ρ2 · w2,

1√
6
σ · w2,

1√
6
ρσ · w2,

1√
6
σρ · w2)

is aG–invariant orthonormal basis for S6. This basis could not be constructed by the methods
of [16] because it does not arise as a single orbit of the group G. A basis for the space Q6 of
orthogonal polynomials of degree 6 can be constructed by applying the isomorphism S6 → Q6

to Φ. This basis is orthonormal because it is a tight frame (being the image of a tight frame
under an orthogonal projection) and has exactly dim(Q6) elements.

In general, the question of for which N there exists a G–invariant orthonormal basis for
SN is quite delicate. For example, there is no such basis for S7.

4.5 Orthogonal polynomials on the cube

Let us consider a complex reflection group of rank 3 in order to demonstrate that some of
the phenomena from the dihedral case do not carry over to the case of a general complex
reflection group.

Consider the cube X = [−1, 1]3 ⊂ R3 with vertices (±1,±1,±1). The group G of
symmetries of the cube consists of those 3 × 3 matrices with exactly one entry in each row
and column, such that all the nonzero entries are ±1. An arbitrary element x ∈ G can be
written uniquely as x = λσ where λ is a diagonal matrix whose entries are ±1 and σ is a
permutation matrix. The group G has order 233! and is the Coxeter group of type B3. It

20



is a complex reflection group and is labelled G(2, 1, 3) in the Shepherd-Todd classification.
Let S = C[x, y, z] with the inner product

〈f, g〉 =
∫

X

fg

and let SN denote the subspace of homogeneous polynomials of degree N . Then SN is a
Hilbert space of dimension (N+1)(N+2)

2
. We consider the minimal number of generators for a

tight frame of SN . Using Theorem 4.3, an upper bound for the minimal number of generators
is given by

max
0≤i≤N

dim(SG
i ).

As for all complex reflection groups, the ring SG has been written down explicitly. It is a
polynomial ring with generators in degrees 2, 4, 6. Therefore, if ri = dim(SG

i ) then

∞
∑

i=0

riq
i =

1

(1− q2)(1− q4)(1− q6)

from which we see that rk = 0 for k odd. The sequence {r2k} is a well-known sequence; it is
Sloane’s A001399.

By an explicit computation of the coinvariant ring of G, it is possible to verify the
following proposition.

Proposition 4.5 Let cN be the minimum number of generators for a tight frame of SN .
Then

cN =

{

rN N even
⌈ rN−1+rN−3+rN−5

3

⌉

N odd.

Proposition 4.5 is interesting because it shows that the upper bound of Theorem 4.3 is
not sharp. Indeed, for N odd we have max0≤i≤N dim(SG

i ) = max0≤i≤N ri = rN−1. But there
exist N for which rN−1 >

⌈ rN−1+rN−3+rN−5

3

⌉

. For example, for N = 7 the minimal number of
generators is

⌈

r6+r4+r2
3

⌉

= 2 but rN−1 = r6 = 3.
The proof of Proposition 4.5 involves quite a lengthy analysis of the coinvariant ring of

G, so we omit it. However, let us explicitly show that the minimal number of generators
for a tight frame of S7 is 2, as claimed. This is equivalent to saying that no irreducible X
appears more than 2 dim(X) times in S7. This can be verified by writing S7 as a direct sum
of irreducible G–modules and counting how many times each occurs.

Let {x, y, z} be the dual basis to the standard basis of R3. We will require the following
irreducible representations of G, given for convenience as linear subspaces of S = C[x, y, z].

V = span{x, y, z}
V ′ = span{(x2 − y2)z, (y2 − z2)x, (z2 − x2)y}
U = span{xyz}
W = span{x2, y2, z2}/ span{x2 + y2 + z2} ∼= span{x2 − y2, x2 − z2}
W ′ = span{x3yz, xy3z, xyz3}/ span{x3yz + xy3z + xyz3} ∼= span{x3yz − xy3z, x3yz − xyz3} ∼= U ⊗W
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These are irreducible representations ofG with dim(V ) = dim(V ′) = 3, dim(W ) = dim(W ′) =
2, and dim(U) = 1. Since the monomials xiyjzk form a basis for S7, we see that S7 can be
split into the following (non-orthogonal) direct sum of linear subspaces.

S7 = span{x7, y7, z7} ⊕ span{(x6 + y6)z, (y6 + z6)x, (z6 + x6)y}
⊕ span{(x6 − y6)z, (y6 − z6)x, (z6 − x6)y} ⊕ span{(x2 + y2)z5, (y2 + z2)x5, (z2 + x2)y5}

⊕ span{(x2 − y2)z5, (y2 − z2)x5, (z2 − x2)y5} ⊕ span{(x4 + y4)z3, (y4 + z4)x3, (z4 + x4)y3}
⊕ span(x4 − y4)z3, (y4 − z4)x3, (z4 − x4)y3} ⊕ xyz span{x4 + y4 + z4}

⊕ xyz span{x4 − y4, x4 − z4} ⊕ xyz span{(x2 + y2)xy, (y2 + z2)yz, (z2 + x2)zx}
⊕ xyz span{(x2 − y2)xy, (y2 − z2)yz, (z2 − x2)zx} ⊕ x2y2z2 span{x, y, z}

⊕ xyz span{x2y2 + x2z2 + y2z2} ⊕ xyz span{x2y2 − x2z2, x2y2 − y2z2}.

Comparing these with the representations listed above, we see that

S7
∼= V ⊕ V ⊕ V ′ ⊕ V ⊕ V ′ ⊕ V ⊕ V ′ ⊕ U ⊕W ′ ⊕ V ⊕ V ′ ⊕ V ⊕ U ⊕W ′

from which [S7 : X] ≤ 2 dim(X) for all irreducibles X, as claimed. Therefore, by Theorem
3.3, the minimal number of generators is 2, regardless of the choice of inner product on S7.
This verifies that the bound of Theorem 4.3 is not sharp in general.
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[4] A. Chebira and J. Kovaˇ cević. Life beyond bases: The advent of frames (part i). IEEE
Signal Processing Mag., 24:86–104, 2007.

[5] T.-Y. Chien and S. Waldron. A classification of the harmonic frames up to unitary
equivalence. Appl. Comput. Harmon. Anal., 30(3):307–318, 2011.

22



[6] O. Christensen. An introduction to frames and Riesz bases. Applied and Numerical
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