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1. Introdu
tionOver the last de
ade there has been renewed interest in frame representations be
auseof their appli
ations in wavelet theory (
f [D92℄). Often when an orthogonal wavelet with
ertain desired properties doesn't exist it is possible to �nd a frame representation whi
hhas them. More re
ently the redundan
y built into a frame representation has been seento be desirable for 
omputations (when a term in the representation is removed, not allthe information asso
iated with it is lost).This paper 
on
erns the question: when 
an a set of ve
tors f�jg in a Hilbert spa
eH be s
aled to obtain a tight frame f�j�jg, and hen
e a representation of the formf =Xj 
jhf; �ji�j ; 8f 2 H; (1:1)where 
j = j�j j2 > 0? When dim(H) <1 this is equivalent to writing the identity matrixas a linear 
ombination of the orthogonal proje
tions �i��i . Su
h representations are ofinterest be
ause they share many features of an orthogonal expansion (whi
h may not beavailable). Our motivation was the 
onstru
tion of tight frames of multivariate Ja
obipolynomials whi
h share the symmetries of the weight (no su
h orthonormal bases exist).It turns out that representations of the form (1.1) 
an exist with some 
j negative, andthese 
orrespond to what we 
all signed frames. We �rst develop the basi
 theory of signedframes and give examples. Next we 
onsider Hadamard produ
ts of Gram matri
es whi
ho

ur in the s
aling question. Here we give a number of results of independent interest,e.g., for almost every v1; : : : ; vn 2 Cdrank([hvi; vjirhvi; vjis℄) = minf�r + d� 1d� 1 ��s+ d� 1d� 1 �; ng; r; s � 0:We then give answers to the s
aling question. For example, if H is d{dimensional, thenalmost every set of n = � d(d+ 1)=2; H real;d2; H 
omplexve
tors 
an be s
aled to obtain a unique representation of the form (1.1). This in
ludesa dis
ussion on the parti
ular 
hoi
e of n and the geometri
 interpretation of negative 
j .We 
on
lude with some appli
ations in
luding the 
onstru
tion of tight frames of bivariateJa
obi polynomials on a triangle (whi
h preserve symmetries), and some numeri
al resultsand 
onje
tures about the 
lass of tight signed frames in a �nite dimensional spa
e.2. Basi
 theory of signed framesThroughout, H denotes a real or 
omplex Hilbert spa
e, with the linearity in the �rstvariable of the inner produ
t. The following motivates the de�nition of signed frames andprovides the 
onne
tion with Hadamard produ
ts of Gram matri
es.1



Lemma 2.1. Let �j 2 H and 
j be s
alars. Then there exists a representationf =Xj 
j hf; �ji�j ; 8f 2 H; (2:2)if and only if kfk2 =Xj 
j jhf; �jij2; 8f 2 H: (2:3)If the 
hoi
e of the 
j is unique for given �j , then 
j 2 IR, 8j. When H is �nite{dimensionaldim(H) =Xj 
j k�jk2: (2:4)Proof: The forward impli
ation is immediate, and the reverse follows from thepolarisation identity. If the 
j are unique, then they 
an be solved for by applying Gausselimination to (a suitable subsystem of)Xj jhf; �jij2
j = kfk2; 8f;and so are real. Let (ei) be an orthonormal basis and use Parseval's formula to obtaindim(H) =Xi keik2 =Xi Xj 
j jhei; �jij2 =Xj 
jXi jhei; �jij2 =Xj 
jk�jk2:
The 
ondition (2.3) 
an be rewritten askfk2 =Xj �j jhf;  jij2; �j := sign(
j);  j :=pj
j j�j ;whi
h motivates the following.De�nition. A family ( j) in a Hilbert spa
e is 
alled a signed frame with signature� = (�j), �j 2 f�1; 1g if there exists A;B > 0 withA kfk2 �Xj �j jhf;  jij2 � B kfk2; 8f 2 H; (2:5)and ( j) is a Bessel set, i.e., there exists C > 0 withXj jhf;  jij2 � C kfk2; 8f 2 H: (2:6)2



The signed frame operator S = S+ � S� is the self adjoint operator de�ned bySf :=Xj �j hf;  ji j; 8f 2 H; (2:7)where its positive and negative parts areS+f := X�j=1hf;  ji j ; S�f := X�j=�1hf;  ji j: (2:8)Sin
e f jg is a Bessel set, only 
ountably many of the 
oeÆ
ients hf;  ji are nonzero,and so the above sums (and those that follow) 
an be interpreted in the usual way.When A = B we say ( j) is a tight signed frame, and the polarisation identity impliesthe representation f = 1AXj �jhf;  ji j; 8f 2 H:The theory of frames (
f [HW89℄) 
an be extended to signed frames in the obvious way.Theorem 2.9. The following are equivalent(a) ( j) is a signed frame with signature � and frame bounds A;B and Bessel bound C.(b) S+ and S� are bounded linear operators withAI � S = S+ � S� � BI; S+ + S� � CI:Proof: The impli
ation (a) =) (b) holds sin
ehIf; fi = kfk2; hSf; fi =Xj �j jhf;  jij2:(b) =) (a). Consider a sequen
e sn of partial sums for Sfksn � smk2 = supkgk=1 jhsn � sm; gij2 = supkgk=1 jh nXj=m+1�jhf;  ji j; gij2= supkgk=1 j nXj=m+1�jhf;  jih j; gij2� supkgk=1� nXj=m+1 jhf;  jij2�� nXj=m+1 jh j; gij2� (Cau
hy{S
hwartz)� C nXj=m+1 jhf;  jij2 ! 0; n > m!1;so Sf 2 H is well de�ned, as are S+f , S�f . The bounds kS+k; kS�k � kSk � C followfrom a similar 
al
ulation, and the relations AI � S � BI, S++S� � CI from the signedframe de�nition. 3



In parti
ular, we have the following signed frame representation.Theorem 2.10 (Signed frame representation).(a) S is invertible with (1=B) I � S�1 � (1=A) I:(b) Let ~ j := S�1 j , then ( ~ j) is a signed frame with signature � and frame bounds1=A; 1=B and Bessel bound C=A2, whi
h we 
all the dual signed frame.(
) Ea
h f 2 H 
an be representedf =Xj �j hf; ~ ji j =Xj �j hf;  ji ~ j :Proof: Sin
e AI � S � BI, kI � (1=B)Sk � (B � A)=B < 1, so S is invertible,and it is positive sin
ehS�1f; fi = hS�1f; S(S�1f)i � AkS�1fk2 � 0; 8f:Multiplying AI � S � BI by S�1 (whi
h 
ommutes with I and S) gives (a). Sin
e S�1 isself adjoint,~Sf :=Xj �jhf; ~ ji ~ j = S�1�Xj �jhS�1f;  ji j� = S�1S(S�1f) = S�1f;( ~S+ + ~S�)f :=Xj hf; ~ ji ~ j = S�1�Xj hS�1f;  ji j� = S�1(S+ + S�)S�1f:Hen
e (1=B) I � ~S � (1=A) I; ~S+ + ~S� � (C=A2) I;and we obtain (b) from Theorem 2.9. Part (
) follows by expandingf = S(S�1f) = S�1(Sf):Corollary 2.11 (Equivalen
e). Let 
j 2 IR and �j 2 H. The following are equivalenta) There exists a representationf =Xj 
j hf; �ji�j ; 8f 2 H:b) (pj
jj�j) is a tight signed frame with signature � = sign(
) and frame bound A = 1.Proof: The forward impli
ation follows sin
ekfk2 = hXj 
jhf; �ji�j ; fi =Xj 
j jhf; �jij2 =Xj �jjhf;pj
jj�jij2:Conversely, taking  j :=pj
j j�j in Theorem 2.10 givesf =Xj �jhf;pj
j j�jipj
j j�j =Xj 
jhf; �ji�j :
4



Example 1 (Frames). A signed frame with zero negative part, i.e., �j = 1, 8j, isframe in the usual sense (and 
onversely). Here B = C and the Bessel property (2.6) is a
onsequen
e of (2.5). Also the positive part of a signed frame f�jg�j=1 is a frame.Example 2 (Nonharmoni
 Fourier signed frames). A system of 
omplex exponen-tials e�j : t 7! ei�jt, �j 2 C is a signed frame with signature (�j) for L2[��; �℄ ifA Z ��� jf j2 �Xj �j ����Z ��� fe�j ����2 � B Z ��� jf j2; Xj ����Z ��� fe�j ����2 � C Z ��� jf j2; 8f:By the Paley{Weiner theorem, this is equivalent toA Z 1�1 jgj2 �Xj �j jg(�j)j2 � B Z 1�1 jgj2; Xj jg(�j)j2 � C Z 1�1 jgj2;for every fun
tion g from the Paley{Weiner spa
e (
f [Y80℄).Example 3. Take any three unit ve
tors in IR2 none of whi
h are multiples of ea
h other.These 
an be s
aled in a unique way (up to �1) to a tight signed frame, with the 
j for ave
tor given by 
j = 
os(� � �)sin� sin � ;where ��=2 � � < � � �=2 are the (a
ute) angles from the subspa
e spanned by thisve
tor to those spanned by the other two. This is negative if � < 0, � > 0, � � � < �=2,i.e., the subspa
e generated by the ve
tor lies in the region between the a
ute angle madeby the other two.
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+Fig. 1. Tight signed frames of three ve
tors in IR2 with the signature indi
ated.Example 4. Almost all 
hoi
es of four unit ve
tors in C2 
an be s
aled uniquely to atight signed frame. The possible signatures are ++++ (a frame), +++� and ++��.Examples 3 and 4 are spe
ial 
ases of the s
aling results in Se
tion 4.Example 5 (Asso
iated tight signed frame). Given a signed frame ( j) with signature�, let vj := S�1=2 j . Then (vj) is a tight signed frame with signature � and frame bound1, sin
eXj �jhf; vjivj = S1=2Xj �jhS�1=2f;  ji ~ j = S1=2S�1=2f = f; 8f 2 H:5



We 
all (vj) the asso
iated tight signed frame.Example 6 (Possible signatures). Sin
e the positive part of a signed frame is a frame,the signature � of a signed frame in H = IRd;Cd must have at least d positive entries,say �1 = � � � = �d = 1. A tight signed frame 
an have any signature � whi
h satis�es thisrestri
tion. For example, let ( j)dj=1 be any orthonormal basis, thendXj=1 �j jhf;  jij2 = kfk2; ��� nXj=d+1�j jhf;  jij2��� � � nXj=d+1 k jk2�kfk2;and so any 
hoi
e of the remaining  j withPnj=d+1 k jk2 < 1 will give a signed frame withsignature �. Now take the asso
iated tight signed frame (whi
h has the same signature).3. Hadamard produ
ts of Gram matri
esIt follows from (2.3) of Lemma 2.1 that a ne
essary 
ondition for a s
aling of f�jg toa tight signed frame to exist is that there are 
j satisfyingXj jh�i; �jij2
j = k�ik2; 8i: (3:1)Thus we are interested in the matrixA := [jh�i; �jij2℄ = B ÆB; B := [h�i; �ji℄: (3:2)Here Æ denotes the Hadamard (pointwise) produ
t(S Æ T )ij := sijtij :The positive semide�nite matrix B := [h�i; �ji℄ is 
ommonly known as the Gram matrix.We will use the S
hur produ
t theorem (
f [HJ91℄).Theorem (S
hur produ
t). If A and B are positive semide�nite, then so is A Æ B. If,in addition, B is positive de�nite and A has no diagonal entry equal to zero, then A Æ Bis positive de�nite. In parti
ular, if both A and B are positive de�nite, then so is A ÆB.We now provide general results about the rank of Hadamard produ
ts of the Grammatrix and its 
onjugate, of whi
h we will use the parti
ular 
ase (3.2).Suppose H is d{dimensional, and letSr := Sr(H) := the symmetri
 r{linear mappings on H,�0r := �0r(H) := the homogeneous polynomials of degree r on H,Hr := Hr(H) := the restri
tions of p 2 �0r to the sphere.These spa
es are isomorphi
 via the asso
iation of the symmetri
 r{linear map L withthe homogeneous polynomial p : x 7! L(x; : : : ; x) and the restri
tion of p to the spherefx 2 H : kxk = 1g. 6



Lemma 3.3. Let u1; : : : ; un be unit ve
tors in a real or 
omplex Hilbert spa
e H ofdimension d, wheren := �d+ r � 1r � = dim(Sr) = dim(�0r) = dim(Hr); r � 0:Then the following are equivalent(a) The points fuig are in general position on the sphere, by whi
h we mean that nononzero p 2 Hr vanishes at all of them.(b) There is a unique p 2 Hr whi
h interpolates arbitrary data at the points fuig.(
) The n� n positive semide�nite matrixA := [hui; ujir℄is invertible.(d) The polynomials fh�; uiirg are a basis for �0r and Hr.(e) The fun
tionals ff 7! f(ui)g are a basis for the dual spa
es of �0r and Hr.(f) The symmetri
 r{linear mappings on H have a basis given by(x1; x2; : : : ; xr) 7! hx1; uiihx2; uii � � � hxr; uii; i = 1; : : : ; n:(g) The fun
tionals L 7! L(ui; : : : ; ui) are a basis for the dual spa
e of Sr.Proof: The positive semide�niteness of A = B Æ � � � Æ B follows from the S
hurprodu
t theorem. The equivalen
e of (a),(b),...,(e) is the standard 
onditions for uniquelinear interpolation from V = spanfh�; uiig to the linear fun
tionals f 7! f(ui). Theimpli
ations (d)() (f), (e)() (g) follow from the isomorphism between Sr and �0r.Remark 1. Lemma 3.3 also holds with the inner produ
t repla
ed by the dot produ
tx � y :=Pi xiyi on Cn, in whi
h 
ase (
) be
omes A is an invertible symmetri
 matrix.In the following we use Lebesgue measure on IRd � � � � � IRd and Cd � � � � � Cd, andremind the reader that the zero set of a nonzero polynomial has measure zero.Theorem 3.4. For almost every v1; : : : ; vn 2 IRd or Cdrank([hvi; vjir℄) = minfn;�d+ r � 1r �g; r � 0: (3:5)Proof: This matrix is the r times Hadamard produ
t of the Gram matrixA := [hvi; vjir℄ = B ÆB Æ � � � ÆB| {z }r times ; B = V �V; V := [v1; : : : ; vn℄:Sin
e B = V �V is positive semide�nite, it follows from the S
hur produ
t theorem thatA is also. Almost every 
hoi
e of fvigni=1 is in general position, and so we may assumewithout loss of generality that they are 
hosen so.7



First suppose n � d. Then the fvig are linearly independent, so B is positive de�nite,and by the S
hur produ
t theorem A is positive de�nite, giving rank(A) = n, as asserted.Hen
e it suÆ
es to suppose n > d. Clearly, rank(A) � n. Sin
e B, V have the samekernel and rank(V ) = d, the positive semide�nite matrix B has rank d, and so 
an bewritten B = dXi=1 uiu�i ;where fu1; : : : ; udg is an orthogonal basis for the range of B. NowA = B Æ � � � ÆB = dXi1=1 dXi2=1 � � � dXir=1(ui1 Æ ui2 Æ � � � Æ uir )(ui1 Æ ui2 Æ � � � Æ uir )�;a sum of at most �d+r�1r � rank one matri
es (Æ is 
ommutative), givingrank(A) � �d+ r � 1r �:Thus, by 
onsidering prin
ipal submatri
es, it suÆ
es to show rank(A) = n, wheren = �d+ r � 1r �:Sin
e det(A) is a polynomial in v1; : : : ; vn it will be nonzero for almost every 
hoi
e of fvig(giving the result) provided it is nonzero for some 
hoi
e. Using equivalen
e with (
) inLemma 3.3, it is easy to see su
h 
hoi
es exist. For example, use (d) and the well knownfa
t that the polynomials �0r have a basis of ridge fun
tions fh�; uiirg.Example 1. In three dimensions (d = 3), let r = 2. Then the matrix [hvi; vji2℄ is invertiblefor almost every 
hoi
e of fv1; : : : ; v6g. If we take v1; v2; v3 to be an orthonormal basis andv4 := v1 + v2; v5 := v2 + v3; v6 := v4 + v5 = v1 + 2v2 + v3;then these fvig are not in general position (sin
e v6 = v4 + v5), and satisfyj det([hvi; vji2℄)j = 8:Thus, the 
on�gurations of points fvig whi
h give (3.5) are not simply those whi
h are ingeneral position. In Example 2 we give an example where this is the 
ase.We now give the 
ounterparts to Lemma 3.3 and Theorem 3.4 for 
omplex matri
esA = [hvi; vjirhvi; vjis℄; r; s � 0:This requires a generalisation of Hermitian forms and the asso
iated polynomial algebra.We 
an not �nd a referen
e to this in the literature, and so provide the basi
 results.8



Suppose H is a 
omplex Hilbert spa
e. Then a map L : Hr � Hs ! C is 
alleda Hermitian (r; s){form on H if it is symmetri
 r{linear in the �rst r variables andsymmetri
 s{
onjugate{linear in the last s variables. LetSr;s := Sr;s(H) := the real ve
tor spa
e of all Hermitian (r; s){forms.The map whi
h asso
iates L 2 Sr;s with x 7! L(x; : : : ; x;x; : : : ; x) is an isomorphism onto�0r;s := �0r;s(H) := �0r 
�0s(f(z) := f(z)), and the restri
tion of �0r;s to the sphere is an isomorphism ontoHr;s := Hr;s(H) := Hr 
Hs:Lemma 3.6. Let u1; : : : ; un be unit ve
tors Hilbert spa
e H of dimension d, wheren := �r + d� 1d� 1 ��s+ d� 1d� 1 � = dim(Sr;s) = dim(�0r;s) = dim(Hr;s); r; s � 0:Then the following are equivalent(a) No nonzero p 2 Hr;s vanishes at all the points fuig.(b) There is a unique p 2 Hr;s whi
h interpolates arbitrary data at the points fuig.(
) The n� n positive semide�nite matrixA := [hui; ujirhuj ; uiis℄is invertible.(d) The polynomials fh�; uiirhui; �isg are a basis for �0r;s and Hr;s.(e) The fun
tionals ff 7! f(ui)g are a basis for the dual spa
es of �0r;s and Hr;s.(f) The Hermitian (r; s){forms on H have a basis given by(x1; : : : ; xr; y1; : : : ; ys) 7! hx1; uii � � � hxr; uiihui; y1i � � � hui; ysi; i = 1; : : : ; n:(g) The fun
tionals L 7! L(ui; : : : ; ui) are a basis for the dual spa
e of Sr;s.Proof: The proof is similar to that of Lemma 3.6.In parti
ular, a Hermitian (1; 1){form is a Hermitian form.Theorem 3.7. For almost every v1; : : : ; vn 2 Cdrank([hvi; vjirhvi; vjis℄) = minfn;�d+ r � 1r ��d+ s� 1s �g; r; s � 0: (3:8)Proof: The proof is similar to that of Theorem 3.4, withA := [hvi; vjirhvi; vjis℄ = B ÆB Æ � � � ÆB| {z }r times ÆB ÆB Æ � � � ÆB| {z }s times :This leads toA = dXi1=1 � � � dXir=1 dXj1=1 � � � dXjs=1(ui1 Æ � � � Æ uir Æ uj1 Æ � � � Æ ujs)(ui1 Æ � � � Æ uir Æ uj1 Æ � � � Æ ujs)�a sum of at most �d+r�1r ��d+s�1s � rank one matri
es.9



We now give an expli
it formula for the determinant of [hvi; vjir℄ in two dimensions.Lemma 3.9. Let v1; : : : ; vn be ve
tors in C2, where n = r + 1. Thendet([hvi; vjir℄) = C(r) Y1�i<j�r+1 j det([vi; vj ℄)j2;det([(vi � vj)r℄) = C(r) Y1�i<j�r+1 det([vi; vj℄)2;where C(r) := rYk=0�rk�:Proof: Let A := [hvi; vjir℄ and vi = (vi1; vi2)T . Then a binomial expansion givesaij = (vi1vj1 + vi2vj2)r = rXk=0�rk�(vi1vj1)k(vi2vj2)r�k= rXk=0(vi1)k(vi2)r�k�rk�(vj1)k(vj2)r�k;i.e., A = B�DB, wherebij := (vj1)i�1(vj2)r�i+1; D = diagf� ri� 1�; i = 1; : : : ; ng:Similarly, with M := [(vi � vj)r℄, we have M = BTDB. Taking determinants givesdet(A) = C(r) j det(B)j2; det(M) = C(r) det(B)2;and so it remains only to 
ompute the determinant of B.By unitary invarian
e we may assume that vj2 6= 0, 8j. Divide row j of B by (vj2)rto obtain a Vandermonde matrix in the variable vj1=vj2, givingdet(B) = Y1�j�n(vj2)n�1 det��vj1vj2 �i�1� = Y1�i<j�n(vi1vj2 � vi2vj1):
10



Example 2. When n = r + 1, d = 2 the 
onditions of Lemma 3.3 are equivalent tou1; : : : ; un being in general position, sin
e by Lemma 3.9[hvi; vjir℄ is invertible() det([hvi; vjir℄) 6= 0() det([vi; vj℄) 6= 0; 1 � i < j � n() v1; : : : ; vn are in general position:Example 1 shows that this is not the 
ase for d � 3.4. S
aling to obtain a tight signed frameIn this se
tion, we investigate when a set of unit ve
tors fujg in H 
an be s
aled j := �juj ;to obtain a tight signed frame f jg, and hen
e a representation of the formf =Xj �jhf;  ji j =Xj 
jhf; ujiuj ; 8f 2 H: (4:1)where 
j := �j j�j j2. Clearly, multiplying the �j by s
alars of unit modulus gives a signedframe with the same signature and bounds. Thus we say there is a unique s
aling ifthere is a unique signature � and j�jj giving a tight signed frame, i.e., there is a unique
hoi
e of the 
j . If a more than one s
aling exists, then there are in�nitely many sin
ethe set of su
h 
 = (
j) is aÆne. Here we 
onsider a �nite set fu1; : : : ; ung where H hasdimension d.A ne
essary and suÆ
ient 
ondition for su
h a s
aling to exist is thatXj hei1 ; ujihuj ; ei2i
j = hei1 ; ei2i; 8i = (i1; i2) 2 I;where (ei)di=1 is an orthonormal basis of H, and I is the index setI := f(i1; i2) : 1 � i1 � i2 � dg (H real);I := f(i1; i2) : 1 � i1; i2 � dg (H 
omplex):This 
an be written in matrix formM
 = b; mij := hei1 ; ujihuj ; ei2i; bi := hei1 ; ei2i; (4:2)where M is an I � n matrix. The normal equation for this systemM�M
 =M�b (4:3)11



is the ne
essary 
ondition (3.1) in matrix form, i.e.,A
 = [1℄; A := [jhui; ujij2℄: (4:4)This follows from the 
al
ulations(M�M)st =Xi2I mismit =Xi2I hei1 ; usihus; ei2ihei1 ; utihut; ei2i= �Xi1 hus; ei1ihei1 ; uti��Xi2 hus; ei2i hei2 ; uti� = jhus; utij2(M�b)j =Xi2I mijbi =Xi2I huj ; ei1ihei2 ; ujih; ei1 ; ei2i =Xi1 huj ; ei1ihei1 ; uji = kujk2 = 1;whi
h show M�M = A, M�b = [1℄.Morever, the 
 satisfying (4.4) give a representation whi
h is 
losest to (4.1) in thefollowing senseTheorem 4.5 (Best approximation property). The 
 whi
h minimise the Frobenius(matrix) norm kI � nXj=1 
jPjkF ; Pjf := hf; ujiuj; If := f (4:6)are given by A
 = [1℄.Proof: Re
all the Frobenius inner produ
t is given byhA;BiF := tra
e(AB�) =Pi;jaijbij ;and sohPj ; PiiF = tra
e(uju�juiu�i ) = jhui; ujij2; hI; PiiF = tra
e(uiu�i ) = kuik2 = 1:The minimum (least squares solution) of (4.6) o

urs when (the error) I �Pj 
jPj isorthogonal to all the Pi, i.e., 8iI �Pj
jPj ? Pi () Pj
jhPj; PiiF = hI; PiiF () Pj
j jhui; ujij2 = 1:
12



When jIj = n the matrix M is square and the ne
essary 
ondition A
 = [1℄ be
omesne
essary and suÆ
ient for a unique s
aling to exist.By a Hermitian form on H we mean a symmetri
 bilinear map when H is a realspa
e and a (1; 1){Hermitian form when H is 
omplex, i.e., one satisfying the 
onditionsof an Hermitian form. This is a real ve
tor spa
e of dimensionn = jIj = � 12d(d+ 1); H real;d2; H 
omplex. (4:7)Theorem 4.8 (Equivalen
e). Let u1; : : : ; un be unit ve
tors in a Hilbert spa
e H ofdimension d, where n = � 12d(d+ 1); H real;d2; H 
omplex.Then the following are equivalent(a) The n� n positive semide�nite matrixA := [jhui; ujij2℄is invertible.(b) The ve
tors u1; : : : ; un have a unique s
aling whi
h gives a tight signed frame, withthe 
 of (4.1) given by 
 = A�1[1℄; A := [jhui; ujij2℄:(
) The Hermitian forms on H have a basis given by(f; g) 7! hf; uiihui; gi; i = 1; : : : ; n:(d) The fun
tionals L 7! L(ui; ui) are a basis for the dual spa
e of the Hermitian forms.(e) The self adjoint operators onH have a basis given by the rank 1 orthogonal proje
tionsPi : f 7! hf; uiiui; i = 1; : : : ; n:Proof: The equivalen
e of (a),(
),(d) is a spe
ial 
ase of Lemmas 3.3 and 3.6.Sin
e jIj = n, there is a unique s
aling (given by M
 = b) i� the I � n matrix M isinvertible i� A = M�M is invertible. Sin
e 
 is then given by (4.4) this gives (a)()(b).The self adjoint (Hermitian) operator 
orresponding to (f; g) 7! hf; uiihui; gi is Pi, whi
hgives (
)()(e).Corollary 4.9 (S
aling to a tight frame). Let H be a Hilbert spa
e of dimension d,and n = � 12d(d+ 1); H real;d2; H 
omplex.Then almost every 
hoi
e of unit ve
tors fu1; : : : ; ung in H has a unique s
aling that givesa tight signed frame, with the 
onstants 
j in (4.1) given by
 = A�1[1℄; A := [jhui; ujij2℄: (4:10)The signature and the s
aling fa
tors of the tight signed frame so obtained satisfy� = sign(
); j�jj2 = j
j j; 8j; Pj 
j = d: (4:11)Proof: Sin
e det(A) is a nonzero polynomial in u1; : : : ; un, A is invertible foralmost every 
hoi
e of fuig. The equations (4.11) follow from 
j = �j j�jj2 and (2.4).13



For d = 1 the result is trivial. The examples of three ve
tors in IR2 (being in generalposition implies there is unique s
aling) and four ve
tors in C2 have already been dis
ussed.Example 1. If n = d(d+ 1)=2 unit ve
tors are in general position on the sphere in IRd,i.e., no homogeneous quadrati
 vanishes at all of them, then there is a unique s
aling ofthem giving a tight signed frame.Example 2. With the ex
eption of three ve
tors in IR2, it is possible to 
onstru
t a setof n ve
tors in general position for whi
h more than one s
aling to a tight signed frameexists. For example, take two di�erent orthonormal bases (possible for d � 2, H 
omplexand d � 3, H real) whose union is in general position and enlarge this to a set of n ve
torsin general position. Then this 
an be s
aled to a tight frame (in two di�erent ways) bytaking the weights 
orresponding to one of the orthonormal bases to be 1, and all theothers to be zero.Example 3. It is also possible to 
onstru
t a set of n ve
tors for whi
h no s
aling toa tight frame exists. This 
an be done by taking the ve
tors from a basis whi
h is notorthogonal. Examples where the ve
tors are in general position also exist, e.g., in C2 take� 10� ; ��ie5i� ; � e�5ip3 + 2� ; � e�3 ie5i � ; (4:12)and in IR3 take0� 11p21A ; 0� 12p51A ; 0� 13p101A ; 0� 14p171A ; 0� 15p261A ; 0� 16p371A : (4:13)The 
onsiderations whi
h led to these 
hoi
es are dis
ussed in the appendix.Example 4. When H is real a spe
i�
 
hoi
e of fuig for whi
h A is invertible is(ek + el)=p2; 1 � k � l � d;where feigdi=1 is an orthonormal basis. When H is 
omplex add to this(ek + i el)=p2; 1 � k < l � d;to get su
h a 
hoi
e.5. Tight frames of Ja
obi polynomials on a triangleHere we 
onstru
t tight frames of bivariate orthogonal Ja
obi polynomials whi
h sharethe symmetries of the weight. Though primarily interested in the bivariate 
ase, we givethe de�nitions for IRs (whi
h are no more 
ompli
ated).14



Let V be a set of s + 1 aÆnely independent points in IRs, i.e., the verti
es of ans{simplex whi
h we denote by T . Let � = (�v)v2V be the 
orresponding bary
entri

oordinates, i.e., the unique linear polynomials that satisfyXv2V �v(a) = 1; Xv2V �v(a)v = a; 8a 2 IRs:For the (standard) triangle with verti
es 0, e1 = (1; 0), e2 = (0; 1), these are�0(x; y) = 1� x� y; �e1(x; y) = x; �e2(x; y) = y:We will use standard multi{index notation for indi
es, so, for example,�� := Yv2V ��vv ; � 2 IRV ; �! := Yv2V �v!; � 2 ZZV+:For fun
tions de�ned on T , we de�ne an inner produ
t byhf; gi� := ZT fg ��; � > �1:The 
ondition �v > �1 ensures the nonnegative weight �� is integrable over T .Let SV be the symmetry group of the simplex T with verti
es V , i.e., the group ofaÆne maps of T onto T . This is (isomorphi
 to) the symmetri
 group on V sin
e an aÆnemap IRs ! IRs is uniquely determined by its a
tion on s+ 1 aÆnely independent points(su
h as V ). Let S 2 SV a
t on fun
tions f de�ned on T via S � f := f Æ S�1. Then Spermutes the bary
entri
 
oordinates �v, and so if all the �v are equal, the inner produ
thas the symmetries hS � f; S � gi� = hf; gi�; S 2 SV :We say that f 2 �k(IRs) is a Ja
obi polynomial (of degree k) for the simplex Twith weight �� (
f [DX01℄) if it satis�es the orthogonality 
onditionhf; pi� = ZT fp �� = 0; 8p 2 �k�1(IRs):Su
h a polynomial of exa
t degree k is uniquely determined by its leading term f", i.e.,the homogeneous polynomial of degree k for whi
h deg(f � f") < k, viaf = f" � P�k�1(f"); P�k�1 := orthogonal proje
tion onto �k�1(IRs):Thus the spa
e P�k of Ja
obi polynomials of (exa
t) degree k hasdim(P�k ) = dim(�0k(IRs)) = �k + s� 1s� 1 �:There exist expli
it formulae for an orthogonal basis of this spa
e (see [P57℄ and [KMT91℄),and also biorthogonal systems (see [AK26℄ and [FL74℄). But these do not share the15



symmetries of the weight, i.e., they are not invariant under the a
tion of SV when �v = �0,8v 2 V . We now use the s
aling results to 
onstru
t a tight frame of Ja
obi polynomialswith these symmetries for the triangle.Let p��� , j�j = k denote the Ja
obi polynomial of degree k with leading term(��)" = Yv2V (�v")�v 2 �0k:Then fp��� : j�j = k; � 2 ZZV+g � P�k is an SV {invariant family when �v = �0, 8v. In thebivariate 
ase (s = 2), this 
onsists of (k+1)(k+2)=2 Ja
obi polynomials of degree k, andso, by Theorem 4.8, they have a unique s
aling that gives a tight signed frame providedthe matrix A := [jhp��� ; p��� i�j2℄j�j;j�j=k (5:1)is invertible. We �rst give examples where A was inverted and the s
aling fa
tors 
omputedexa
tly, then give the general result suggested by these 
al
ulations. Normalise the p��� sothat the tight signed representation isf = Xj�j=k�2ZZV+ 
�� hf; p��� i�hp�� ; p�� i� p��� ; 8f 2 P�k ; (5:2)where, by (2.4), Xj�j=k 
�� = k + 1: (5:3)Example 1 (Quadrati
s). For quadrati
 Ja
obi polynomials the � have two forms:(1; 1; 0) and (2; 0; 0) (three of ea
h). The 
� for sele
ted � = (�0; �0; �0) are (respe
tively)
(0;0;0)� = 710 ; 310 ; 
(1;1;1)� = 914 ; 514 ; 
(2;2;2)� = 3455 ; 2155 ; 
(3;3;3)� = 5591 ; 3691 :The Ja
obi polynomials arep��v�w = �v�w � �0 + 13�0 + 5(�v + �w) + (�0 + 1)2(3�0 + 4)(3�0 + 5) ; v 6= w;p(0;0;0)�2v = �2v � 2(�0 + 2)3�0 + 5 �v + (�0 + 1)(�0 + 2)(3�0 + 4)(3�0 + 5) :Example 2 (Cubi
s). For 
ubi
s the � have three forms (1; 1; 1), (2; 1; 0) and (3; 0; 0)(1,6,3 of ea
h). The 
� for sele
ted � = (�0; �0; �0) are (respe
tively)
(0;0;0)� = 2435 ; 52105 ; 435 ; 
(1;1;1)� = 35 ; 2960 ; 16 ;16




(2;2;2)� = 80143 ; 68143 ; 28143 ; 
(3;3;3)� = 1528 ; 79168 ; 314 :The Ja
obi polynomials with 
onstant weight (referred to as Legendre polynomials) arep(0;0;0)�u�v�w = �u�v�w � 17 (�u�v + �u�w + �v�w) + 2105 ;p(0;0;0)�2v�w = �2v�w � 47�v�w � 17�2v + 221�v + 121�w � 1105 ;p(0;0;0)�3v = �3v � 97�2v + 37�v � 135 :We now give an expli
it formula for a general 
�� . De�ne a multivariate hypergeometri
fun
tion with arguments 
 a s
alar, and �; 
; x ve
tors from IRV byF (
; �; 
;x) := X�2ZZV+(
)j�j (�)�(
)� x��! ; 
 2 IR; �; 
; x 2 IRV ;where (�)� is the multivariate shifted fa
torial(�)� := Yv2V (�v)�v ; (�v)�v := �v(�v + 1) � � � (�v + �v � 1):This is the Lauri
ella fun
tion FA. Note that F (
;��; 
; �) is a polynomial of degree j�jin �, i.e., F (
;��; 
; �) = X���(
)j�j (�1)j�j(
)� �!(� � �)! ���! :In [AK26℄ it was shown how in two variables this relates to the Ja
obi polynomials with arestri
ted 
lass of weights (no weight on the third bary
entri
 
oordinate), and the generalresult 
an be found in [FL74℄, namelyp��� := (�1)j�j(�+ 1)�(j�j+ j�j+ s)j�j q�� ; q�� := F (j�j+ j�j+ s;��;�+ 1; �);where �+ 1 := (�v + 1)v2V , j�j :=Pv �v.In [WX01℄ a te
hni
al proof, whi
h uses the orthogonal basis of Proriol [P57℄ and theHahn polynomials, is given for the following bivariate result. Let � be the multivariategamma fun
tion.Theorem 5.4 (Tight frame of Ja
obi polynomials on a triangle). On the trianglethere is a unique s
aling of fp��� : j�j = kg that gives a tight signed frame for P�k , with thes
alars of (5.2) given by
�� = C�k (�+ 1)��! hq�� ; q��i� > 0; j�j = k; � 2 ZZV+;17



where C�k := (j�j+ s+ 1)2k(k + j�j+ s)2k �(j�j+ s+ 1)�(�+ 1) ; s = 2;and so this is a frame. The representation (5.2) 
an be written in the 
ompa
t formf = C�k Xj�j=k (�+ 1)��! hf; q�� i�q�� ; 8f 2 P�k : (5:5)This was �rst observed, by 
han
e, for the Legendre polynomials, i.e., when � = (0),and (5.5) simpli�es tof = (2k + 2)((k + 1)!)2(2k + 1)! Xj�j=k hf; q0�i�q0� ; 8f 2 P0k :It was then extended whilst proving this 
ase. In [WX01℄ it is also shown this result holdsin all dimensions, where now (5.3) be
omesXj�j=k 
�� = dim(P�k ) = �k + s� 1s� 1 �:In 
ontrast to the bivariate result, our abstra
t s
aling results do not suggest that thisshould be the 
ase, and the result was proved without determining whether or not thematrix A of (5.1) is invertible.Sin
e fp��gj�j=k spans P�k any s
alar multiples of these fun
tions forms a frame. Thedetermination of the dual frame (whi
h shares any symmetries) is still an open questionin all but the above (most interesting) 
ase.6. Numeri
al results and 
onje
turesConsider the 
 of minimal norm giving the best approximation of Theorem 4.5, i.e., theleast squares solution of the ne
essary 
ondition (4.4) given by taking the (Moore{Penrose)pseudoinverse 
 = 
(u1; : : : ; un) := A+[1℄; A := [jhui; ujij2℄: (6:1)This is a 
ontinuous fun
tion of u1; : : : ; un ex
ept at those points where the number ofsingular values of A 
hanges (a set of measure zero). By Corollary 4.9, for n greater thanor equal to the value (4.7), it has 
onstant tra
e, i.e., Pj 
j = d for almost all 
hoi
es ofu1; : : : ; un. When a s
aling to a tight signed frame exists this value of 
 gives the s
alingfa
tors with minimalPj 
2j . In parti
ular, the s
aling gives a frame if this is possible.Thus, one 
ould imagine �nding a set of ve
tors u1; : : : ; un for whi
h 
(u1; : : : ; un)takes some spe
i�ed (and allowable) value 
� by taking an initial guess, 
omputing 
, then
omparing it with the value obtained for some appropriately sized (random) perturbation18



of u1; : : : ; un, and keeping whi
hever set of ve
tors gives a value 
losest to 
�. UsingMATLAB we implemented this naive s
heme. A number of interesting, now mostly proved,
onje
tures arose from the 
omputations we undertook.
Fig. 1. Tight frames of ve
tors in IR2 whi
h are equally spa
ed on the 
ir
le.In H = IR2;C2 the standard examples of a tight frame of n � 2 ve
tors areuj := � 
os 2�jnsin 2�jn � ; uj := 1p2 �wjwj � ; w := e 2�in ; j = 1; : : : ; n:For ea
h of these the frame representation is of the formx = 2n nXj=1hx; ujiuj ; 8x 2 H:Moreover, the ve
tors fujg in IR2 are equally spa
ed on the 
ir
le. Thus, it is naturalto ask whether there exist frames with all the 
i equal in higher dimensions (other thanthe orthonormal bases), and whether they 
an be interpreted as points whi
h are equallyspa
ed on the sphere. The answers to these questions are yes and probably not.Theorem 6.2 (Isometri
 tight frames). For ea
h n � d, there exist unit ve
torsu1; : : : ; un in general position in H = IRd;Cd for whi
hx = dn nXi=1hx; uiiui; 8x 2 H;i.e., there exists a tight frame 
onsisting of n ve
tors of equal length.This was supported by all our 
al
ulations. For example, in IR3 we obtained thefollowing ve
tors U = [u1; : : : ; un℄, n = 4; 5; 6 whi
h give a tight frame with equal 
j (to 4sf). U = 0��0:5742 �0:4972 �0:5799 �0:6569�0:7015 0:3905 0:7496 �0:3424�0:4221 �0:7748 0:3191 0:6718 1A ; 
i = 0:7500U = 0� 0:4771 0:4732 0:7153 0:6624 0:49550:6468 �0:8745 0:5849 �0:2450 �0:29940:5950 0:1061 �0:3825 �0:7079 0:8153 1A ; 
i = 0:600019



U = 0� 0:5767 0:8003 0:6376 �0:0293 �0:5824 0:5294�0:5587 0:4885 0:1064 0:7417 �0:5180 �0:78710:5961 �0:3475 0:7630 0:6701 0:6265 �0:31651A ; 
i = 0:5000Here is an example of 8 ve
tors in IR5 (
i = 0:6250)U = 0BBB� 0:6257 �0:3562 �0:2393 0:4430 0:4650 0:0081 0:5352 0:55220:4655 0:1264 �0:9514 �0:4910 �0:2354 0:2406 0:0612 �0:3293�0:0407 0:7345 0:0480 0:4079 �0:5840 0:5357 0:3845 0:34070:5238 0:0028 0:1466 0:5980 �0:4689 �0:5520 0:0466 �0:6521�0:3403 0:5636 �0:1175 �0:1966 0:4092 �0:5918 0:7482 �0:2130
1CCCAIn the 
omplex 
ase our naive algorithm 
onverges only when the perturbation of u1; : : : ; unis taken to be real (here a

ura
y of 4 sf is typi
ally obtained within 1000 iterations). Asyet, we have been unable to explain why this is so in term of the underlying geometry of
(u1; : : : ; un). It is also observed that the 
 of iterates tend to approa
h 
� (equal entries)from below in the 
ases where the tra
e of 
 is need not be d. Here are examples ofisometri
 tight frames of 4 ve
tors in C2 and C3 obtained from our 
al
ulationsU = � 0:5587 + 0:0842i �0:0848 + 0:0482i �0:8080 + 0:1602i �0:8242� 0:5600i0:8225� 0:0657i �0:9889 + 0:1119i 0:5467� 0:1505i 0:0832 + 0:0157i �U = 0��0:2995 + 0:2150i 0:5050� 0:1116i 0:9105 + 0:0821i �0:0492 + 0:3040i0:6115 + 0:3047i �0:6113 + 0:3512i 0:3641 + 0:0847i �0:3063 + 0:3687i0:6101� 0:1581i 0:4626� 0:1466i 0:1271� 0:0910i �0:5943� 0:5677i1AA proof of Theorem 6.2, whi
h is based on a simple indu
tive 
onstru
tion, is given inReams and Waldron [RW01℄. After proving this, it was pointed out to us by MatthewFi
kus that this result was proved by Goyal, Vetterli and Thao in [GVT98℄ using dis
reteover
omplete Fourier series. Further dis
ussion is given Fi
kus's thesis [F01℄, whi
h usesthe term `normalized tight frame' for what we 
all an `isometri
 tight frame'.Now we 
onsider the question of whether or not a (tight) frame with all 
j equal 
anbe interpreted as a set of points whi
h are equally spa
ed on the sphere. For three ve
torsin IR2 this is the 
ase. Here the interse
tion of the three subspa
es spanned by the fuigwith the 
ir
le gives six equally spa
ed points. However, for four or more points there existframes where this is not the 
ase. For example, all frames of four ve
tors with equal 
j
an be obtained by taking the union of two orthonormal bases. This gives equally spa
edpoints only when the axes 
orresponding to the bases 
an be mapped onto ea
h other byrotation through �=4.

20



Fig. 2. Isometri
 tight frames of four ve
tors in IR2.

Fig. 3. Isometri
 tight frames of �ve, six and seven ve
tors in IR2.An even more extreme example is given by H = C. Here u1; : : : ; un 
an be any
omplex numbers of unit modulus. These 
an be pla
ed anywhere on the 
ir
le, eventaken to be all the same. Thus it appears that, ex
ept for a few spe
ial 
ases, a randomlygenerated isometri
 tight frame 
an not be interpreted as points whi
h are equally spa
ed.Many ni
e examples, su
h as the roots of unity (in IR2), the verti
es of the �ve Platoni
solids in IR3 and normalised Euta
ti
 stars (see Coxeter [C63℄) and the 
losely relatedspheri
al 2{designs (see [DGS77℄) do exist, but the authors 
an think of no systemati
way of �nding them. 7. AppendixHere we provide details on the 
onstru
tions of Example 3 of Se
tion 4, i.e., we �ndve
tors u1; : : : ; un whi
h are in general position for whi
h (4.2) has no solution.To �nd four ve
tors in general position in C2 for whi
h no s
aling to a tight frameexists it suÆ
es to 
onsider ones of the formu1 = � 10� ; u2 = � 
os t2sin t2 ei�2 � ; u3 = � 
os t3sin t3 ei�3 � ; u4 = � 
os t4sin t4 ei�4 � ;where tj ; �j 2 IR. For these the determinant of the matrix M in (4.2) is s
alar multiple ofsin(2t2) sin(2t3) sin(2t4)ftan t2 sin(�3 � �4) + tan t3 sin(�4 � �2) + tan t4 sin(�2 � �3)g;provided 
os tj 6= 0. It is easy to 
hoose tj ; �j so that the se
ond fa
tor above is zero,and so there is not a unique s
aling to a tight signed frame. Moreover, a 
hoi
e 
an bemade so that there is no solution toM
 = b (hen
e no s
aling), and the fujg are in generalposition. One su
h 
hoi
e is t2 = �=4, t3 = tan�1(p3+2), t4 = 5�=4, �3 = 5, �2 = �=2+5,�4 = 5� �=3, whi
h gives (4.12) up to a s
alar fa
tor.The se
ond example (4.13) is a spe
ial 
ase of the following.21



Proposition 7.1. There exist n := d(d + 1)=2 ve
tors in general position in IRd, d � 3for whi
h no s
aling to a tight signed frame exists.Proof: Let V = [u1; : : : ; un℄ 2 IRd�n and feig be the standard basis ve
tors inIRd. With I := f(i1; i2) : 1 � i1 � i2 � dg, the 
ondition (4.2) be
omesM
 = b; mij := hei1 ; ujihuj ; ei2i = vi1jvi2j ; bi := hei1 ; ei2i:The systemM
 = b (whi
h gives the s
alings to a tight signed frame) has no solution, i.e.,b 62 ran(M) = ker(M�)?, if we 
an �nd a ve
tor a 2 IRI with M�a = 0 and ha; bi 6= 0. Letai := 8<: 1; i 2 f(1; 1); (2; 2)g;�1; i = (3; 3);0; otherwise.Then ha; bi = 1 6= 0, and the 
ondition M�a = 0 isv21j + v22j = v23j ; j = 1; : : : ; n: (7:2)Thus it suÆ
es to �nd a V 2 IRd�n whose �rst three rows satisfy (7.2), and whose 
olumnsare in general position. Let vij := � ji�1; i 6= 3;pj2 + 1; i = 3.Then this satis�es (7.2), and it 
olumns are in general position sin
e any d� d submatrixis a Vandermonde matrix (for distin
t integer points) with the third row modi�ed in su
ha way that it 
an not be written as a linear 
ombination of the others.A
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