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1. IntrodutionOver the last deade there has been renewed interest in frame representations beauseof their appliations in wavelet theory (f [D92℄). Often when an orthogonal wavelet withertain desired properties doesn't exist it is possible to �nd a frame representation whihhas them. More reently the redundany built into a frame representation has been seento be desirable for omputations (when a term in the representation is removed, not allthe information assoiated with it is lost).This paper onerns the question: when an a set of vetors f�jg in a Hilbert spaeH be saled to obtain a tight frame f�j�jg, and hene a representation of the formf =Xj jhf; �ji�j ; 8f 2 H; (1:1)where j = j�j j2 > 0? When dim(H) <1 this is equivalent to writing the identity matrixas a linear ombination of the orthogonal projetions �i��i . Suh representations are ofinterest beause they share many features of an orthogonal expansion (whih may not beavailable). Our motivation was the onstrution of tight frames of multivariate Jaobipolynomials whih share the symmetries of the weight (no suh orthonormal bases exist).It turns out that representations of the form (1.1) an exist with some j negative, andthese orrespond to what we all signed frames. We �rst develop the basi theory of signedframes and give examples. Next we onsider Hadamard produts of Gram matries whihour in the saling question. Here we give a number of results of independent interest,e.g., for almost every v1; : : : ; vn 2 Cdrank([hvi; vjirhvi; vjis℄) = minf�r + d� 1d� 1 ��s+ d� 1d� 1 �; ng; r; s � 0:We then give answers to the saling question. For example, if H is d{dimensional, thenalmost every set of n = � d(d+ 1)=2; H real;d2; H omplexvetors an be saled to obtain a unique representation of the form (1.1). This inludesa disussion on the partiular hoie of n and the geometri interpretation of negative j .We onlude with some appliations inluding the onstrution of tight frames of bivariateJaobi polynomials on a triangle (whih preserve symmetries), and some numerial resultsand onjetures about the lass of tight signed frames in a �nite dimensional spae.2. Basi theory of signed framesThroughout, H denotes a real or omplex Hilbert spae, with the linearity in the �rstvariable of the inner produt. The following motivates the de�nition of signed frames andprovides the onnetion with Hadamard produts of Gram matries.1



Lemma 2.1. Let �j 2 H and j be salars. Then there exists a representationf =Xj j hf; �ji�j ; 8f 2 H; (2:2)if and only if kfk2 =Xj j jhf; �jij2; 8f 2 H: (2:3)If the hoie of the j is unique for given �j , then j 2 IR, 8j. When H is �nite{dimensionaldim(H) =Xj j k�jk2: (2:4)Proof: The forward impliation is immediate, and the reverse follows from thepolarisation identity. If the j are unique, then they an be solved for by applying Gausselimination to (a suitable subsystem of)Xj jhf; �jij2j = kfk2; 8f;and so are real. Let (ei) be an orthonormal basis and use Parseval's formula to obtaindim(H) =Xi keik2 =Xi Xj j jhei; �jij2 =Xj jXi jhei; �jij2 =Xj jk�jk2:
The ondition (2.3) an be rewritten askfk2 =Xj �j jhf;  jij2; �j := sign(j);  j :=pjj j�j ;whih motivates the following.De�nition. A family ( j) in a Hilbert spae is alled a signed frame with signature� = (�j), �j 2 f�1; 1g if there exists A;B > 0 withA kfk2 �Xj �j jhf;  jij2 � B kfk2; 8f 2 H; (2:5)and ( j) is a Bessel set, i.e., there exists C > 0 withXj jhf;  jij2 � C kfk2; 8f 2 H: (2:6)2



The signed frame operator S = S+ � S� is the self adjoint operator de�ned bySf :=Xj �j hf;  ji j; 8f 2 H; (2:7)where its positive and negative parts areS+f := X�j=1hf;  ji j ; S�f := X�j=�1hf;  ji j: (2:8)Sine f jg is a Bessel set, only ountably many of the oeÆients hf;  ji are nonzero,and so the above sums (and those that follow) an be interpreted in the usual way.When A = B we say ( j) is a tight signed frame, and the polarisation identity impliesthe representation f = 1AXj �jhf;  ji j; 8f 2 H:The theory of frames (f [HW89℄) an be extended to signed frames in the obvious way.Theorem 2.9. The following are equivalent(a) ( j) is a signed frame with signature � and frame bounds A;B and Bessel bound C.(b) S+ and S� are bounded linear operators withAI � S = S+ � S� � BI; S+ + S� � CI:Proof: The impliation (a) =) (b) holds sinehIf; fi = kfk2; hSf; fi =Xj �j jhf;  jij2:(b) =) (a). Consider a sequene sn of partial sums for Sfksn � smk2 = supkgk=1 jhsn � sm; gij2 = supkgk=1 jh nXj=m+1�jhf;  ji j; gij2= supkgk=1 j nXj=m+1�jhf;  jih j; gij2� supkgk=1� nXj=m+1 jhf;  jij2�� nXj=m+1 jh j; gij2� (Cauhy{Shwartz)� C nXj=m+1 jhf;  jij2 ! 0; n > m!1;so Sf 2 H is well de�ned, as are S+f , S�f . The bounds kS+k; kS�k � kSk � C followfrom a similar alulation, and the relations AI � S � BI, S++S� � CI from the signedframe de�nition. 3



In partiular, we have the following signed frame representation.Theorem 2.10 (Signed frame representation).(a) S is invertible with (1=B) I � S�1 � (1=A) I:(b) Let ~ j := S�1 j , then ( ~ j) is a signed frame with signature � and frame bounds1=A; 1=B and Bessel bound C=A2, whih we all the dual signed frame.() Eah f 2 H an be representedf =Xj �j hf; ~ ji j =Xj �j hf;  ji ~ j :Proof: Sine AI � S � BI, kI � (1=B)Sk � (B � A)=B < 1, so S is invertible,and it is positive sinehS�1f; fi = hS�1f; S(S�1f)i � AkS�1fk2 � 0; 8f:Multiplying AI � S � BI by S�1 (whih ommutes with I and S) gives (a). Sine S�1 isself adjoint,~Sf :=Xj �jhf; ~ ji ~ j = S�1�Xj �jhS�1f;  ji j� = S�1S(S�1f) = S�1f;( ~S+ + ~S�)f :=Xj hf; ~ ji ~ j = S�1�Xj hS�1f;  ji j� = S�1(S+ + S�)S�1f:Hene (1=B) I � ~S � (1=A) I; ~S+ + ~S� � (C=A2) I;and we obtain (b) from Theorem 2.9. Part () follows by expandingf = S(S�1f) = S�1(Sf):Corollary 2.11 (Equivalene). Let j 2 IR and �j 2 H. The following are equivalenta) There exists a representationf =Xj j hf; �ji�j ; 8f 2 H:b) (pjjj�j) is a tight signed frame with signature � = sign() and frame bound A = 1.Proof: The forward impliation follows sinekfk2 = hXj jhf; �ji�j ; fi =Xj j jhf; �jij2 =Xj �jjhf;pjjj�jij2:Conversely, taking  j :=pjj j�j in Theorem 2.10 givesf =Xj �jhf;pjj j�jipjj j�j =Xj jhf; �ji�j :
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Example 1 (Frames). A signed frame with zero negative part, i.e., �j = 1, 8j, isframe in the usual sense (and onversely). Here B = C and the Bessel property (2.6) is aonsequene of (2.5). Also the positive part of a signed frame f�jg�j=1 is a frame.Example 2 (Nonharmoni Fourier signed frames). A system of omplex exponen-tials e�j : t 7! ei�jt, �j 2 C is a signed frame with signature (�j) for L2[��; �℄ ifA Z ��� jf j2 �Xj �j ����Z ��� fe�j ����2 � B Z ��� jf j2; Xj ����Z ��� fe�j ����2 � C Z ��� jf j2; 8f:By the Paley{Weiner theorem, this is equivalent toA Z 1�1 jgj2 �Xj �j jg(�j)j2 � B Z 1�1 jgj2; Xj jg(�j)j2 � C Z 1�1 jgj2;for every funtion g from the Paley{Weiner spae (f [Y80℄).Example 3. Take any three unit vetors in IR2 none of whih are multiples of eah other.These an be saled in a unique way (up to �1) to a tight signed frame, with the j for avetor given by j = os(� � �)sin� sin � ;where ��=2 � � < � � �=2 are the (aute) angles from the subspae spanned by thisvetor to those spanned by the other two. This is negative if � < 0, � > 0, � � � < �=2,i.e., the subspae generated by the vetor lies in the region between the aute angle madeby the other two.
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+Fig. 1. Tight signed frames of three vetors in IR2 with the signature indiated.Example 4. Almost all hoies of four unit vetors in C2 an be saled uniquely to atight signed frame. The possible signatures are ++++ (a frame), +++� and ++��.Examples 3 and 4 are speial ases of the saling results in Setion 4.Example 5 (Assoiated tight signed frame). Given a signed frame ( j) with signature�, let vj := S�1=2 j . Then (vj) is a tight signed frame with signature � and frame bound1, sineXj �jhf; vjivj = S1=2Xj �jhS�1=2f;  ji ~ j = S1=2S�1=2f = f; 8f 2 H:5



We all (vj) the assoiated tight signed frame.Example 6 (Possible signatures). Sine the positive part of a signed frame is a frame,the signature � of a signed frame in H = IRd;Cd must have at least d positive entries,say �1 = � � � = �d = 1. A tight signed frame an have any signature � whih satis�es thisrestrition. For example, let ( j)dj=1 be any orthonormal basis, thendXj=1 �j jhf;  jij2 = kfk2; ��� nXj=d+1�j jhf;  jij2��� � � nXj=d+1 k jk2�kfk2;and so any hoie of the remaining  j withPnj=d+1 k jk2 < 1 will give a signed frame withsignature �. Now take the assoiated tight signed frame (whih has the same signature).3. Hadamard produts of Gram matriesIt follows from (2.3) of Lemma 2.1 that a neessary ondition for a saling of f�jg toa tight signed frame to exist is that there are j satisfyingXj jh�i; �jij2j = k�ik2; 8i: (3:1)Thus we are interested in the matrixA := [jh�i; �jij2℄ = B ÆB; B := [h�i; �ji℄: (3:2)Here Æ denotes the Hadamard (pointwise) produt(S Æ T )ij := sijtij :The positive semide�nite matrix B := [h�i; �ji℄ is ommonly known as the Gram matrix.We will use the Shur produt theorem (f [HJ91℄).Theorem (Shur produt). If A and B are positive semide�nite, then so is A Æ B. If,in addition, B is positive de�nite and A has no diagonal entry equal to zero, then A Æ Bis positive de�nite. In partiular, if both A and B are positive de�nite, then so is A ÆB.We now provide general results about the rank of Hadamard produts of the Grammatrix and its onjugate, of whih we will use the partiular ase (3.2).Suppose H is d{dimensional, and letSr := Sr(H) := the symmetri r{linear mappings on H,�0r := �0r(H) := the homogeneous polynomials of degree r on H,Hr := Hr(H) := the restritions of p 2 �0r to the sphere.These spaes are isomorphi via the assoiation of the symmetri r{linear map L withthe homogeneous polynomial p : x 7! L(x; : : : ; x) and the restrition of p to the spherefx 2 H : kxk = 1g. 6



Lemma 3.3. Let u1; : : : ; un be unit vetors in a real or omplex Hilbert spae H ofdimension d, wheren := �d+ r � 1r � = dim(Sr) = dim(�0r) = dim(Hr); r � 0:Then the following are equivalent(a) The points fuig are in general position on the sphere, by whih we mean that nononzero p 2 Hr vanishes at all of them.(b) There is a unique p 2 Hr whih interpolates arbitrary data at the points fuig.() The n� n positive semide�nite matrixA := [hui; ujir℄is invertible.(d) The polynomials fh�; uiirg are a basis for �0r and Hr.(e) The funtionals ff 7! f(ui)g are a basis for the dual spaes of �0r and Hr.(f) The symmetri r{linear mappings on H have a basis given by(x1; x2; : : : ; xr) 7! hx1; uiihx2; uii � � � hxr; uii; i = 1; : : : ; n:(g) The funtionals L 7! L(ui; : : : ; ui) are a basis for the dual spae of Sr.Proof: The positive semide�niteness of A = B Æ � � � Æ B follows from the Shurprodut theorem. The equivalene of (a),(b),...,(e) is the standard onditions for uniquelinear interpolation from V = spanfh�; uiig to the linear funtionals f 7! f(ui). Theimpliations (d)() (f), (e)() (g) follow from the isomorphism between Sr and �0r.Remark 1. Lemma 3.3 also holds with the inner produt replaed by the dot produtx � y :=Pi xiyi on Cn, in whih ase () beomes A is an invertible symmetri matrix.In the following we use Lebesgue measure on IRd � � � � � IRd and Cd � � � � � Cd, andremind the reader that the zero set of a nonzero polynomial has measure zero.Theorem 3.4. For almost every v1; : : : ; vn 2 IRd or Cdrank([hvi; vjir℄) = minfn;�d+ r � 1r �g; r � 0: (3:5)Proof: This matrix is the r times Hadamard produt of the Gram matrixA := [hvi; vjir℄ = B ÆB Æ � � � ÆB| {z }r times ; B = V �V; V := [v1; : : : ; vn℄:Sine B = V �V is positive semide�nite, it follows from the Shur produt theorem thatA is also. Almost every hoie of fvigni=1 is in general position, and so we may assumewithout loss of generality that they are hosen so.7



First suppose n � d. Then the fvig are linearly independent, so B is positive de�nite,and by the Shur produt theorem A is positive de�nite, giving rank(A) = n, as asserted.Hene it suÆes to suppose n > d. Clearly, rank(A) � n. Sine B, V have the samekernel and rank(V ) = d, the positive semide�nite matrix B has rank d, and so an bewritten B = dXi=1 uiu�i ;where fu1; : : : ; udg is an orthogonal basis for the range of B. NowA = B Æ � � � ÆB = dXi1=1 dXi2=1 � � � dXir=1(ui1 Æ ui2 Æ � � � Æ uir )(ui1 Æ ui2 Æ � � � Æ uir )�;a sum of at most �d+r�1r � rank one matries (Æ is ommutative), givingrank(A) � �d+ r � 1r �:Thus, by onsidering prinipal submatries, it suÆes to show rank(A) = n, wheren = �d+ r � 1r �:Sine det(A) is a polynomial in v1; : : : ; vn it will be nonzero for almost every hoie of fvig(giving the result) provided it is nonzero for some hoie. Using equivalene with () inLemma 3.3, it is easy to see suh hoies exist. For example, use (d) and the well knownfat that the polynomials �0r have a basis of ridge funtions fh�; uiirg.Example 1. In three dimensions (d = 3), let r = 2. Then the matrix [hvi; vji2℄ is invertiblefor almost every hoie of fv1; : : : ; v6g. If we take v1; v2; v3 to be an orthonormal basis andv4 := v1 + v2; v5 := v2 + v3; v6 := v4 + v5 = v1 + 2v2 + v3;then these fvig are not in general position (sine v6 = v4 + v5), and satisfyj det([hvi; vji2℄)j = 8:Thus, the on�gurations of points fvig whih give (3.5) are not simply those whih are ingeneral position. In Example 2 we give an example where this is the ase.We now give the ounterparts to Lemma 3.3 and Theorem 3.4 for omplex matriesA = [hvi; vjirhvi; vjis℄; r; s � 0:This requires a generalisation of Hermitian forms and the assoiated polynomial algebra.We an not �nd a referene to this in the literature, and so provide the basi results.8



Suppose H is a omplex Hilbert spae. Then a map L : Hr � Hs ! C is alleda Hermitian (r; s){form on H if it is symmetri r{linear in the �rst r variables andsymmetri s{onjugate{linear in the last s variables. LetSr;s := Sr;s(H) := the real vetor spae of all Hermitian (r; s){forms.The map whih assoiates L 2 Sr;s with x 7! L(x; : : : ; x;x; : : : ; x) is an isomorphism onto�0r;s := �0r;s(H) := �0r 
�0s(f(z) := f(z)), and the restrition of �0r;s to the sphere is an isomorphism ontoHr;s := Hr;s(H) := Hr 
Hs:Lemma 3.6. Let u1; : : : ; un be unit vetors Hilbert spae H of dimension d, wheren := �r + d� 1d� 1 ��s+ d� 1d� 1 � = dim(Sr;s) = dim(�0r;s) = dim(Hr;s); r; s � 0:Then the following are equivalent(a) No nonzero p 2 Hr;s vanishes at all the points fuig.(b) There is a unique p 2 Hr;s whih interpolates arbitrary data at the points fuig.() The n� n positive semide�nite matrixA := [hui; ujirhuj ; uiis℄is invertible.(d) The polynomials fh�; uiirhui; �isg are a basis for �0r;s and Hr;s.(e) The funtionals ff 7! f(ui)g are a basis for the dual spaes of �0r;s and Hr;s.(f) The Hermitian (r; s){forms on H have a basis given by(x1; : : : ; xr; y1; : : : ; ys) 7! hx1; uii � � � hxr; uiihui; y1i � � � hui; ysi; i = 1; : : : ; n:(g) The funtionals L 7! L(ui; : : : ; ui) are a basis for the dual spae of Sr;s.Proof: The proof is similar to that of Lemma 3.6.In partiular, a Hermitian (1; 1){form is a Hermitian form.Theorem 3.7. For almost every v1; : : : ; vn 2 Cdrank([hvi; vjirhvi; vjis℄) = minfn;�d+ r � 1r ��d+ s� 1s �g; r; s � 0: (3:8)Proof: The proof is similar to that of Theorem 3.4, withA := [hvi; vjirhvi; vjis℄ = B ÆB Æ � � � ÆB| {z }r times ÆB ÆB Æ � � � ÆB| {z }s times :This leads toA = dXi1=1 � � � dXir=1 dXj1=1 � � � dXjs=1(ui1 Æ � � � Æ uir Æ uj1 Æ � � � Æ ujs)(ui1 Æ � � � Æ uir Æ uj1 Æ � � � Æ ujs)�a sum of at most �d+r�1r ��d+s�1s � rank one matries.9



We now give an expliit formula for the determinant of [hvi; vjir℄ in two dimensions.Lemma 3.9. Let v1; : : : ; vn be vetors in C2, where n = r + 1. Thendet([hvi; vjir℄) = C(r) Y1�i<j�r+1 j det([vi; vj ℄)j2;det([(vi � vj)r℄) = C(r) Y1�i<j�r+1 det([vi; vj℄)2;where C(r) := rYk=0�rk�:Proof: Let A := [hvi; vjir℄ and vi = (vi1; vi2)T . Then a binomial expansion givesaij = (vi1vj1 + vi2vj2)r = rXk=0�rk�(vi1vj1)k(vi2vj2)r�k= rXk=0(vi1)k(vi2)r�k�rk�(vj1)k(vj2)r�k;i.e., A = B�DB, wherebij := (vj1)i�1(vj2)r�i+1; D = diagf� ri� 1�; i = 1; : : : ; ng:Similarly, with M := [(vi � vj)r℄, we have M = BTDB. Taking determinants givesdet(A) = C(r) j det(B)j2; det(M) = C(r) det(B)2;and so it remains only to ompute the determinant of B.By unitary invariane we may assume that vj2 6= 0, 8j. Divide row j of B by (vj2)rto obtain a Vandermonde matrix in the variable vj1=vj2, givingdet(B) = Y1�j�n(vj2)n�1 det��vj1vj2 �i�1� = Y1�i<j�n(vi1vj2 � vi2vj1):
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Example 2. When n = r + 1, d = 2 the onditions of Lemma 3.3 are equivalent tou1; : : : ; un being in general position, sine by Lemma 3.9[hvi; vjir℄ is invertible() det([hvi; vjir℄) 6= 0() det([vi; vj℄) 6= 0; 1 � i < j � n() v1; : : : ; vn are in general position:Example 1 shows that this is not the ase for d � 3.4. Saling to obtain a tight signed frameIn this setion, we investigate when a set of unit vetors fujg in H an be saled j := �juj ;to obtain a tight signed frame f jg, and hene a representation of the formf =Xj �jhf;  ji j =Xj jhf; ujiuj ; 8f 2 H: (4:1)where j := �j j�j j2. Clearly, multiplying the �j by salars of unit modulus gives a signedframe with the same signature and bounds. Thus we say there is a unique saling ifthere is a unique signature � and j�jj giving a tight signed frame, i.e., there is a uniquehoie of the j . If a more than one saling exists, then there are in�nitely many sinethe set of suh  = (j) is aÆne. Here we onsider a �nite set fu1; : : : ; ung where H hasdimension d.A neessary and suÆient ondition for suh a saling to exist is thatXj hei1 ; ujihuj ; ei2ij = hei1 ; ei2i; 8i = (i1; i2) 2 I;where (ei)di=1 is an orthonormal basis of H, and I is the index setI := f(i1; i2) : 1 � i1 � i2 � dg (H real);I := f(i1; i2) : 1 � i1; i2 � dg (H omplex):This an be written in matrix formM = b; mij := hei1 ; ujihuj ; ei2i; bi := hei1 ; ei2i; (4:2)where M is an I � n matrix. The normal equation for this systemM�M =M�b (4:3)11



is the neessary ondition (3.1) in matrix form, i.e.,A = [1℄; A := [jhui; ujij2℄: (4:4)This follows from the alulations(M�M)st =Xi2I mismit =Xi2I hei1 ; usihus; ei2ihei1 ; utihut; ei2i= �Xi1 hus; ei1ihei1 ; uti��Xi2 hus; ei2i hei2 ; uti� = jhus; utij2(M�b)j =Xi2I mijbi =Xi2I huj ; ei1ihei2 ; ujih; ei1 ; ei2i =Xi1 huj ; ei1ihei1 ; uji = kujk2 = 1;whih show M�M = A, M�b = [1℄.Morever, the  satisfying (4.4) give a representation whih is losest to (4.1) in thefollowing senseTheorem 4.5 (Best approximation property). The  whih minimise the Frobenius(matrix) norm kI � nXj=1 jPjkF ; Pjf := hf; ujiuj; If := f (4:6)are given by A = [1℄.Proof: Reall the Frobenius inner produt is given byhA;BiF := trae(AB�) =Pi;jaijbij ;and sohPj ; PiiF = trae(uju�juiu�i ) = jhui; ujij2; hI; PiiF = trae(uiu�i ) = kuik2 = 1:The minimum (least squares solution) of (4.6) ours when (the error) I �Pj jPj isorthogonal to all the Pi, i.e., 8iI �PjjPj ? Pi () PjjhPj; PiiF = hI; PiiF () Pjj jhui; ujij2 = 1:
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When jIj = n the matrix M is square and the neessary ondition A = [1℄ beomesneessary and suÆient for a unique saling to exist.By a Hermitian form on H we mean a symmetri bilinear map when H is a realspae and a (1; 1){Hermitian form when H is omplex, i.e., one satisfying the onditionsof an Hermitian form. This is a real vetor spae of dimensionn = jIj = � 12d(d+ 1); H real;d2; H omplex. (4:7)Theorem 4.8 (Equivalene). Let u1; : : : ; un be unit vetors in a Hilbert spae H ofdimension d, where n = � 12d(d+ 1); H real;d2; H omplex.Then the following are equivalent(a) The n� n positive semide�nite matrixA := [jhui; ujij2℄is invertible.(b) The vetors u1; : : : ; un have a unique saling whih gives a tight signed frame, withthe  of (4.1) given by  = A�1[1℄; A := [jhui; ujij2℄:() The Hermitian forms on H have a basis given by(f; g) 7! hf; uiihui; gi; i = 1; : : : ; n:(d) The funtionals L 7! L(ui; ui) are a basis for the dual spae of the Hermitian forms.(e) The self adjoint operators onH have a basis given by the rank 1 orthogonal projetionsPi : f 7! hf; uiiui; i = 1; : : : ; n:Proof: The equivalene of (a),(),(d) is a speial ase of Lemmas 3.3 and 3.6.Sine jIj = n, there is a unique saling (given by M = b) i� the I � n matrix M isinvertible i� A = M�M is invertible. Sine  is then given by (4.4) this gives (a)()(b).The self adjoint (Hermitian) operator orresponding to (f; g) 7! hf; uiihui; gi is Pi, whihgives ()()(e).Corollary 4.9 (Saling to a tight frame). Let H be a Hilbert spae of dimension d,and n = � 12d(d+ 1); H real;d2; H omplex.Then almost every hoie of unit vetors fu1; : : : ; ung in H has a unique saling that givesa tight signed frame, with the onstants j in (4.1) given by = A�1[1℄; A := [jhui; ujij2℄: (4:10)The signature and the saling fators of the tight signed frame so obtained satisfy� = sign(); j�jj2 = jj j; 8j; Pj j = d: (4:11)Proof: Sine det(A) is a nonzero polynomial in u1; : : : ; un, A is invertible foralmost every hoie of fuig. The equations (4.11) follow from j = �j j�jj2 and (2.4).13



For d = 1 the result is trivial. The examples of three vetors in IR2 (being in generalposition implies there is unique saling) and four vetors in C2 have already been disussed.Example 1. If n = d(d+ 1)=2 unit vetors are in general position on the sphere in IRd,i.e., no homogeneous quadrati vanishes at all of them, then there is a unique saling ofthem giving a tight signed frame.Example 2. With the exeption of three vetors in IR2, it is possible to onstrut a setof n vetors in general position for whih more than one saling to a tight signed frameexists. For example, take two di�erent orthonormal bases (possible for d � 2, H omplexand d � 3, H real) whose union is in general position and enlarge this to a set of n vetorsin general position. Then this an be saled to a tight frame (in two di�erent ways) bytaking the weights orresponding to one of the orthonormal bases to be 1, and all theothers to be zero.Example 3. It is also possible to onstrut a set of n vetors for whih no saling toa tight frame exists. This an be done by taking the vetors from a basis whih is notorthogonal. Examples where the vetors are in general position also exist, e.g., in C2 take� 10� ; ��ie5i� ; � e�5ip3 + 2� ; � e�3 ie5i � ; (4:12)and in IR3 take0� 11p21A ; 0� 12p51A ; 0� 13p101A ; 0� 14p171A ; 0� 15p261A ; 0� 16p371A : (4:13)The onsiderations whih led to these hoies are disussed in the appendix.Example 4. When H is real a spei� hoie of fuig for whih A is invertible is(ek + el)=p2; 1 � k � l � d;where feigdi=1 is an orthonormal basis. When H is omplex add to this(ek + i el)=p2; 1 � k < l � d;to get suh a hoie.5. Tight frames of Jaobi polynomials on a triangleHere we onstrut tight frames of bivariate orthogonal Jaobi polynomials whih sharethe symmetries of the weight. Though primarily interested in the bivariate ase, we givethe de�nitions for IRs (whih are no more ompliated).14



Let V be a set of s + 1 aÆnely independent points in IRs, i.e., the verties of ans{simplex whih we denote by T . Let � = (�v)v2V be the orresponding baryentrioordinates, i.e., the unique linear polynomials that satisfyXv2V �v(a) = 1; Xv2V �v(a)v = a; 8a 2 IRs:For the (standard) triangle with verties 0, e1 = (1; 0), e2 = (0; 1), these are�0(x; y) = 1� x� y; �e1(x; y) = x; �e2(x; y) = y:We will use standard multi{index notation for indies, so, for example,�� := Yv2V ��vv ; � 2 IRV ; �! := Yv2V �v!; � 2 ZZV+:For funtions de�ned on T , we de�ne an inner produt byhf; gi� := ZT fg ��; � > �1:The ondition �v > �1 ensures the nonnegative weight �� is integrable over T .Let SV be the symmetry group of the simplex T with verties V , i.e., the group ofaÆne maps of T onto T . This is (isomorphi to) the symmetri group on V sine an aÆnemap IRs ! IRs is uniquely determined by its ation on s+ 1 aÆnely independent points(suh as V ). Let S 2 SV at on funtions f de�ned on T via S � f := f Æ S�1. Then Spermutes the baryentri oordinates �v, and so if all the �v are equal, the inner produthas the symmetries hS � f; S � gi� = hf; gi�; S 2 SV :We say that f 2 �k(IRs) is a Jaobi polynomial (of degree k) for the simplex Twith weight �� (f [DX01℄) if it satis�es the orthogonality onditionhf; pi� = ZT fp �� = 0; 8p 2 �k�1(IRs):Suh a polynomial of exat degree k is uniquely determined by its leading term f", i.e.,the homogeneous polynomial of degree k for whih deg(f � f") < k, viaf = f" � P�k�1(f"); P�k�1 := orthogonal projetion onto �k�1(IRs):Thus the spae P�k of Jaobi polynomials of (exat) degree k hasdim(P�k ) = dim(�0k(IRs)) = �k + s� 1s� 1 �:There exist expliit formulae for an orthogonal basis of this spae (see [P57℄ and [KMT91℄),and also biorthogonal systems (see [AK26℄ and [FL74℄). But these do not share the15



symmetries of the weight, i.e., they are not invariant under the ation of SV when �v = �0,8v 2 V . We now use the saling results to onstrut a tight frame of Jaobi polynomialswith these symmetries for the triangle.Let p��� , j�j = k denote the Jaobi polynomial of degree k with leading term(��)" = Yv2V (�v")�v 2 �0k:Then fp��� : j�j = k; � 2 ZZV+g � P�k is an SV {invariant family when �v = �0, 8v. In thebivariate ase (s = 2), this onsists of (k+1)(k+2)=2 Jaobi polynomials of degree k, andso, by Theorem 4.8, they have a unique saling that gives a tight signed frame providedthe matrix A := [jhp��� ; p��� i�j2℄j�j;j�j=k (5:1)is invertible. We �rst give examples where A was inverted and the saling fators omputedexatly, then give the general result suggested by these alulations. Normalise the p��� sothat the tight signed representation isf = Xj�j=k�2ZZV+ �� hf; p��� i�hp�� ; p�� i� p��� ; 8f 2 P�k ; (5:2)where, by (2.4), Xj�j=k �� = k + 1: (5:3)Example 1 (Quadratis). For quadrati Jaobi polynomials the � have two forms:(1; 1; 0) and (2; 0; 0) (three of eah). The � for seleted � = (�0; �0; �0) are (respetively)(0;0;0)� = 710 ; 310 ; (1;1;1)� = 914 ; 514 ; (2;2;2)� = 3455 ; 2155 ; (3;3;3)� = 5591 ; 3691 :The Jaobi polynomials arep��v�w = �v�w � �0 + 13�0 + 5(�v + �w) + (�0 + 1)2(3�0 + 4)(3�0 + 5) ; v 6= w;p(0;0;0)�2v = �2v � 2(�0 + 2)3�0 + 5 �v + (�0 + 1)(�0 + 2)(3�0 + 4)(3�0 + 5) :Example 2 (Cubis). For ubis the � have three forms (1; 1; 1), (2; 1; 0) and (3; 0; 0)(1,6,3 of eah). The � for seleted � = (�0; �0; �0) are (respetively)(0;0;0)� = 2435 ; 52105 ; 435 ; (1;1;1)� = 35 ; 2960 ; 16 ;16



(2;2;2)� = 80143 ; 68143 ; 28143 ; (3;3;3)� = 1528 ; 79168 ; 314 :The Jaobi polynomials with onstant weight (referred to as Legendre polynomials) arep(0;0;0)�u�v�w = �u�v�w � 17 (�u�v + �u�w + �v�w) + 2105 ;p(0;0;0)�2v�w = �2v�w � 47�v�w � 17�2v + 221�v + 121�w � 1105 ;p(0;0;0)�3v = �3v � 97�2v + 37�v � 135 :We now give an expliit formula for a general �� . De�ne a multivariate hypergeometrifuntion with arguments  a salar, and �; ; x vetors from IRV byF (; �; ;x) := X�2ZZV+()j�j (�)�()� x��! ;  2 IR; �; ; x 2 IRV ;where (�)� is the multivariate shifted fatorial(�)� := Yv2V (�v)�v ; (�v)�v := �v(�v + 1) � � � (�v + �v � 1):This is the Lauriella funtion FA. Note that F (;��; ; �) is a polynomial of degree j�jin �, i.e., F (;��; ; �) = X���()j�j (�1)j�j()� �!(� � �)! ���! :In [AK26℄ it was shown how in two variables this relates to the Jaobi polynomials with arestrited lass of weights (no weight on the third baryentri oordinate), and the generalresult an be found in [FL74℄, namelyp��� := (�1)j�j(�+ 1)�(j�j+ j�j+ s)j�j q�� ; q�� := F (j�j+ j�j+ s;��;�+ 1; �);where �+ 1 := (�v + 1)v2V , j�j :=Pv �v.In [WX01℄ a tehnial proof, whih uses the orthogonal basis of Proriol [P57℄ and theHahn polynomials, is given for the following bivariate result. Let � be the multivariategamma funtion.Theorem 5.4 (Tight frame of Jaobi polynomials on a triangle). On the trianglethere is a unique saling of fp��� : j�j = kg that gives a tight signed frame for P�k , with thesalars of (5.2) given by�� = C�k (�+ 1)��! hq�� ; q��i� > 0; j�j = k; � 2 ZZV+;17



where C�k := (j�j+ s+ 1)2k(k + j�j+ s)2k �(j�j+ s+ 1)�(�+ 1) ; s = 2;and so this is a frame. The representation (5.2) an be written in the ompat formf = C�k Xj�j=k (�+ 1)��! hf; q�� i�q�� ; 8f 2 P�k : (5:5)This was �rst observed, by hane, for the Legendre polynomials, i.e., when � = (0),and (5.5) simpli�es tof = (2k + 2)((k + 1)!)2(2k + 1)! Xj�j=k hf; q0�i�q0� ; 8f 2 P0k :It was then extended whilst proving this ase. In [WX01℄ it is also shown this result holdsin all dimensions, where now (5.3) beomesXj�j=k �� = dim(P�k ) = �k + s� 1s� 1 �:In ontrast to the bivariate result, our abstrat saling results do not suggest that thisshould be the ase, and the result was proved without determining whether or not thematrix A of (5.1) is invertible.Sine fp��gj�j=k spans P�k any salar multiples of these funtions forms a frame. Thedetermination of the dual frame (whih shares any symmetries) is still an open questionin all but the above (most interesting) ase.6. Numerial results and onjeturesConsider the  of minimal norm giving the best approximation of Theorem 4.5, i.e., theleast squares solution of the neessary ondition (4.4) given by taking the (Moore{Penrose)pseudoinverse  = (u1; : : : ; un) := A+[1℄; A := [jhui; ujij2℄: (6:1)This is a ontinuous funtion of u1; : : : ; un exept at those points where the number ofsingular values of A hanges (a set of measure zero). By Corollary 4.9, for n greater thanor equal to the value (4.7), it has onstant trae, i.e., Pj j = d for almost all hoies ofu1; : : : ; un. When a saling to a tight signed frame exists this value of  gives the salingfators with minimalPj 2j . In partiular, the saling gives a frame if this is possible.Thus, one ould imagine �nding a set of vetors u1; : : : ; un for whih (u1; : : : ; un)takes some spei�ed (and allowable) value � by taking an initial guess, omputing , thenomparing it with the value obtained for some appropriately sized (random) perturbation18



of u1; : : : ; un, and keeping whihever set of vetors gives a value losest to �. UsingMATLAB we implemented this naive sheme. A number of interesting, now mostly proved,onjetures arose from the omputations we undertook.
Fig. 1. Tight frames of vetors in IR2 whih are equally spaed on the irle.In H = IR2;C2 the standard examples of a tight frame of n � 2 vetors areuj := � os 2�jnsin 2�jn � ; uj := 1p2 �wjwj � ; w := e 2�in ; j = 1; : : : ; n:For eah of these the frame representation is of the formx = 2n nXj=1hx; ujiuj ; 8x 2 H:Moreover, the vetors fujg in IR2 are equally spaed on the irle. Thus, it is naturalto ask whether there exist frames with all the i equal in higher dimensions (other thanthe orthonormal bases), and whether they an be interpreted as points whih are equallyspaed on the sphere. The answers to these questions are yes and probably not.Theorem 6.2 (Isometri tight frames). For eah n � d, there exist unit vetorsu1; : : : ; un in general position in H = IRd;Cd for whihx = dn nXi=1hx; uiiui; 8x 2 H;i.e., there exists a tight frame onsisting of n vetors of equal length.This was supported by all our alulations. For example, in IR3 we obtained thefollowing vetors U = [u1; : : : ; un℄, n = 4; 5; 6 whih give a tight frame with equal j (to 4sf). U = 0��0:5742 �0:4972 �0:5799 �0:6569�0:7015 0:3905 0:7496 �0:3424�0:4221 �0:7748 0:3191 0:6718 1A ; i = 0:7500U = 0� 0:4771 0:4732 0:7153 0:6624 0:49550:6468 �0:8745 0:5849 �0:2450 �0:29940:5950 0:1061 �0:3825 �0:7079 0:8153 1A ; i = 0:600019



U = 0� 0:5767 0:8003 0:6376 �0:0293 �0:5824 0:5294�0:5587 0:4885 0:1064 0:7417 �0:5180 �0:78710:5961 �0:3475 0:7630 0:6701 0:6265 �0:31651A ; i = 0:5000Here is an example of 8 vetors in IR5 (i = 0:6250)U = 0BBB� 0:6257 �0:3562 �0:2393 0:4430 0:4650 0:0081 0:5352 0:55220:4655 0:1264 �0:9514 �0:4910 �0:2354 0:2406 0:0612 �0:3293�0:0407 0:7345 0:0480 0:4079 �0:5840 0:5357 0:3845 0:34070:5238 0:0028 0:1466 0:5980 �0:4689 �0:5520 0:0466 �0:6521�0:3403 0:5636 �0:1175 �0:1966 0:4092 �0:5918 0:7482 �0:2130
1CCCAIn the omplex ase our naive algorithm onverges only when the perturbation of u1; : : : ; unis taken to be real (here auray of 4 sf is typially obtained within 1000 iterations). Asyet, we have been unable to explain why this is so in term of the underlying geometry of(u1; : : : ; un). It is also observed that the  of iterates tend to approah � (equal entries)from below in the ases where the trae of  is need not be d. Here are examples ofisometri tight frames of 4 vetors in C2 and C3 obtained from our alulationsU = � 0:5587 + 0:0842i �0:0848 + 0:0482i �0:8080 + 0:1602i �0:8242� 0:5600i0:8225� 0:0657i �0:9889 + 0:1119i 0:5467� 0:1505i 0:0832 + 0:0157i �U = 0��0:2995 + 0:2150i 0:5050� 0:1116i 0:9105 + 0:0821i �0:0492 + 0:3040i0:6115 + 0:3047i �0:6113 + 0:3512i 0:3641 + 0:0847i �0:3063 + 0:3687i0:6101� 0:1581i 0:4626� 0:1466i 0:1271� 0:0910i �0:5943� 0:5677i1AA proof of Theorem 6.2, whih is based on a simple indutive onstrution, is given inReams and Waldron [RW01℄. After proving this, it was pointed out to us by MatthewFikus that this result was proved by Goyal, Vetterli and Thao in [GVT98℄ using disreteoveromplete Fourier series. Further disussion is given Fikus's thesis [F01℄, whih usesthe term `normalized tight frame' for what we all an `isometri tight frame'.Now we onsider the question of whether or not a (tight) frame with all j equal anbe interpreted as a set of points whih are equally spaed on the sphere. For three vetorsin IR2 this is the ase. Here the intersetion of the three subspaes spanned by the fuigwith the irle gives six equally spaed points. However, for four or more points there existframes where this is not the ase. For example, all frames of four vetors with equal jan be obtained by taking the union of two orthonormal bases. This gives equally spaedpoints only when the axes orresponding to the bases an be mapped onto eah other byrotation through �=4.
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Fig. 2. Isometri tight frames of four vetors in IR2.

Fig. 3. Isometri tight frames of �ve, six and seven vetors in IR2.An even more extreme example is given by H = C. Here u1; : : : ; un an be anyomplex numbers of unit modulus. These an be plaed anywhere on the irle, eventaken to be all the same. Thus it appears that, exept for a few speial ases, a randomlygenerated isometri tight frame an not be interpreted as points whih are equally spaed.Many nie examples, suh as the roots of unity (in IR2), the verties of the �ve Platonisolids in IR3 and normalised Eutati stars (see Coxeter [C63℄) and the losely relatedspherial 2{designs (see [DGS77℄) do exist, but the authors an think of no systematiway of �nding them. 7. AppendixHere we provide details on the onstrutions of Example 3 of Setion 4, i.e., we �ndvetors u1; : : : ; un whih are in general position for whih (4.2) has no solution.To �nd four vetors in general position in C2 for whih no saling to a tight frameexists it suÆes to onsider ones of the formu1 = � 10� ; u2 = � os t2sin t2 ei�2 � ; u3 = � os t3sin t3 ei�3 � ; u4 = � os t4sin t4 ei�4 � ;where tj ; �j 2 IR. For these the determinant of the matrix M in (4.2) is salar multiple ofsin(2t2) sin(2t3) sin(2t4)ftan t2 sin(�3 � �4) + tan t3 sin(�4 � �2) + tan t4 sin(�2 � �3)g;provided os tj 6= 0. It is easy to hoose tj ; �j so that the seond fator above is zero,and so there is not a unique saling to a tight signed frame. Moreover, a hoie an bemade so that there is no solution toM = b (hene no saling), and the fujg are in generalposition. One suh hoie is t2 = �=4, t3 = tan�1(p3+2), t4 = 5�=4, �3 = 5, �2 = �=2+5,�4 = 5� �=3, whih gives (4.12) up to a salar fator.The seond example (4.13) is a speial ase of the following.21



Proposition 7.1. There exist n := d(d + 1)=2 vetors in general position in IRd, d � 3for whih no saling to a tight signed frame exists.Proof: Let V = [u1; : : : ; un℄ 2 IRd�n and feig be the standard basis vetors inIRd. With I := f(i1; i2) : 1 � i1 � i2 � dg, the ondition (4.2) beomesM = b; mij := hei1 ; ujihuj ; ei2i = vi1jvi2j ; bi := hei1 ; ei2i:The systemM = b (whih gives the salings to a tight signed frame) has no solution, i.e.,b 62 ran(M) = ker(M�)?, if we an �nd a vetor a 2 IRI with M�a = 0 and ha; bi 6= 0. Letai := 8<: 1; i 2 f(1; 1); (2; 2)g;�1; i = (3; 3);0; otherwise.Then ha; bi = 1 6= 0, and the ondition M�a = 0 isv21j + v22j = v23j ; j = 1; : : : ; n: (7:2)Thus it suÆes to �nd a V 2 IRd�n whose �rst three rows satisfy (7.2), and whose olumnsare in general position. Let vij := � ji�1; i 6= 3;pj2 + 1; i = 3.Then this satis�es (7.2), and it olumns are in general position sine any d� d submatrixis a Vandermonde matrix (for distint integer points) with the third row modi�ed in suha way that it an not be written as a linear ombination of the others.AknowledgementThe authors would like to thank Brad Baxter for emphasizing the onnetion betweenthe invertibility of Hadamard produts of Gram matries and multivariate polynomialinterpolation. The referee provided helpful omments inluding the nie proof for det(B)in the proof of Lemma 3.9. Referenes[AK26℄ P. Appell and J. Kamp�e de F�eriet, \Fontions Hyperg�eom�etriqes et Hypersph�eriques",Gauthier{Villars, Paris, 1966.[C63℄ H. S. M. Coxeter, \Regular polytopes", Mamillan, New York, 1963.[D92℄ I. Daubehies, \Ten Letures onWavelets", CBMS Conf. Series in Appl. Math., vol. 61,SIAM, Philadelphia, 1992. 22
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