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ABSTRACT

We define the symmetry group of a finite frame as a group of permutations on its
index set. This group is closely related to the symmetry group of [VW05] for tight frames:
they are isomorphic when the frame is tight and has distinct vectors. The symmetry group
is the same for all similar frames, in particular for a frame, its dual and canonical tight
frames. It can easily be calculated from the Gramian matrix of the canonical tight frame.
Further, a frame and its complementary frame have the same symmetry group. We exploit
this last property to construct and classify some classes of highly symmetric tight frames.
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1. Introduction

Over the past decade there has been a rapid development of the theory and application
of finite frames to areas as diverse as signal processing, quantum information theory and
multivariate orthogonal polynomials, see, e.g., [KC08], [RBSC04] and [W091]. Key to
these applications is the construction of frames with desirable properties. These often
include being tight, and having a high degree of symmetry. Important examples are the
harmonic or geometrically uniform frames, i.e., tight frames which are the orbit of a single
vector under an abelian group of unitary transformations (see [BE03] and [HW06]). A
workable definition for the symmetry group is required for a full understanding of such
frames.

In [VW05] the symmetry group of a finite tight frame was defined to be the group of
unitary transformations which map the set of its vectors to itself. This led to methods for
constructing and characterising tight frames with symmetries of the underlying space. For
example, all harmonic frames were characterised using the theory of group representations.

Here we introduce a closely related symmetry group which maps the sequence of
vectors of a (possibly nontight) frame to itself. In the case when a frame is tight and
consists of distinct vectors these symmetry groups are isomorphic. This new symmetry
group has following key features:

• It is defined for all finite frames as a group of permutations on the index set.

• It is simple to calculate from the Gramian of the canonical tight frame.

• The symmetry group of a frame and all similar frames are equal. In particular, a
frame, its dual frame and canonical tight frame have the same symmetry group.

• The symmetry group of various combinations of frames, such as tensor products and
direct sums, are related to those of the constituent frames in a natural way.

• The symmetry group of a frame and its complementary frame are equal.

The last property leads to a simple construction of some highly symmetric tight frames,
the so called partition frames. Further, the order of the symmetry group of a frame is ≤ n!,
where n is the number of vectors in the frame, and so it follows that there exist maximally

symmetric frames of n vectors, i.e., those with the largest symmetry groups.
The paper is set out as follows. Next we give the basic theory of finite frames. We

then define the symmetry group of a finite frame as a subgroup of the permutations on
its index set, and prove it has the key features mentioned above. We also discuss the
analogous definition if a frame is thought of as a (weighted) sequence of one dimensional
subspaces. Finally, we use it to construct the class of partition frames, and to investigate
finite frames which are maximally symmetric.

2. The basics of finite frames

The following definitions and results are (mostly) well known (see, e.g., [C03], [W10]).
Let H be a real or complex Hilbert space of finite dimension d. A finite sequence of n ≥ d
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vectors Φ = (fj)j∈J in H is a frame for H if it spans H, and is a tight frame for H if
there is a c > 0 with

f = c
∑

j∈J

〈f, fj〉fj , ∀f ∈ H. (2.1)

We say a tight frame is normalised if it has been scaled so that c = 1 in (2.1), i.e.,

f =
∑

j∈J

〈f, fj〉fj , ∀f ∈ H. (2.2)

The term Parseval frame is also used for a normalised tight frame since (2.1) is then a
generalised Parseval formula. In general, frames with a countable number of vectors (for a
finite or infinite dimensional space) are defined via the so called frame bounds, i.e., that
there exists A,B > 0 with

A‖f‖2 ≤
∑

j∈J

|〈f, fj〉|2 ≤ B‖f‖2, ∀f ∈ H.

This is easily seen to be equivalent to the definition above for J finite. If the vectors in
the frame are distinct, then it is sometimes written as the set {fj}j∈J .

The synthesis operator for a finite sequence (fj)j∈J in H is the linear map

V := [fj ]j∈J : ℓ2(J) → H : a 7→
∑

j∈J

ajfj ,

and its frame operator is the linear map S = V V ∗ : H → H given by

Sf :=
∑

j∈J

〈f, fj〉fj , ∀f ∈ H.

With I = IH the identity on H, the tight frame condition (2.1) can be expressed as

S = V V ∗ = cI. (2.3)

If Φ = (fj)j∈J is a frame, then S is invertible, and the dual frame Φ̃ = (f̃j) is defined by

f̃j := S−1fj , ∀j ∈ J, (2.4)

and the canonical tight frame Φcan = (f can
j ) by

f can
j = S− 1

2 fj , ∀j ∈ J. (2.5)

A frame and its dual satisfy the expansion

f =
∑

j∈J

〈f, fj〉f̃j =
∑

j∈J

〈f, f̃j〉fj , ∀f ∈ H,
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and the canonical tight frame is a normalised tight frame, i.e.,

f =
∑

j∈J

〈f, fcan
j 〉f can

j , ∀f ∈ H.

Let GL(H) be the (general linear) group of all invertible linear transformations H →
H, and U(H) be the subgroup of unitary transformations. Following [HL00], we say
frames Φ = (fj)j∈J and Ψ = (gj)j∈J are unitarily equivalent if there is a U ∈ U(H)
with Ψ = UΦ := (Ufj)j∈J , i.e.,

gj = Ufj , ∀j ∈ J, (2.6)

and are similar if there is a Q ∈ GL(H) with Ψ = QΦ. Clearly, these are equivalence
relations on the set of frames for H, indexed by a given set J . In view of definitions (2.4)
and (2.5), a frame, its dual and canonical tight frame are all similar. A simple calculation
shows that normalised tight frames are similar if and only if they are unitarily equivalent.

The Gramian of a sequence of n vectors (fj)j∈J is the n × n matrix

Gram(Φ) := V ∗V = [〈fk, fj〉]j,k∈J .

Frames Φ and Ψ are unitarily equivalent if and only if their Gramians are equal, and they
are similar if and only if the Gramians of their canonical tight frames are equal, i.e.,

Gram(Φcan) = Gram(Ψcan).

A sequence of vectors is a normalised tight frame (for its span) if and only if its
Gramian matrix P is an orthogonal projection matrix, i.e., P 2 = P and P = P ∗. Note
that P = P ∗ holds for any Gramian matrix. We say that two frames Φ and Ψ are
complementary (or complements of each other) if the Gramians of the associated
canonical tight frames are complementary projection matrices, i.e.,

Gram(Φcan) + Gram(Ψcan) = I. (2.7)

The complement of a frame is well defined up to similarity, and the complement of a tight
frame in the class of normalised tight frames is well defined up to unitary equivalence.

3. The symmetry group of a sequence of vectors

Here we give two, closely related, symmetry groups of a finite frame Φ = (fj)j∈J , namely

• Sym(Φ) – which gives a faithful action on the sequence of vectors in Φ.

• sym(Φ) (small ‘s’) – which gives a faithful action on the set of vectors in Φ.

Let SJ denote the symmetric group on the set J , i.e., the group of all bijections J → J
(called permutations) under composition. For J = {1, . . . , n} the notation Sn is used.
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Definition 3.1. Let Φ = (fj)j∈J be a finite frame for H, i.e., a sequence of vectors which
spans H. Then the symmetry group of Φ is the group

Sym(Φ) := {σ ∈ SJ : ∃Lσ ∈ GL(H) with Lσfj = fσj , ∀j ∈ J}.

It is easy to check that Sym(Φ) is a subgroup of SJ . Since linear maps are determined
by their action on a spanning set, it follows that if σ ∈ Sym(Φ), then there is unique
Lσ ∈ GL(H) with

Lσfj = fσj , ∀j ∈ J.

From this it follows that

πΦ : Sym(Φ) → GL(H) : σ 7→ Lσ (3.2)

is a group homomorphism. We denote its image, a subgroup of GL(H), by

sym(Φ) := πΦ(Sym(Φ)) = {Lσ : σ ∈ Sym(Φ)} (note the small ‘s’).

This is the group of invertible linear transformations which map the set of vectors in Φ to
itself. Further, πΦ is injective if and only if the vectors in Φ are distinct, in which case

Sym(Φ) ≈ sym(Φ) (group isomorphism).

If Φ is a frame of n vectors, m of which are distinct, for a space of dimension d, then

| sym(Φ)|
∣
∣
∣ |Sym(Φ)|

∣
∣
∣ n!, | sym(Φ)| ≤ m(m − 1) · · · (m − d + 1). (3.3)

When we refer to the symmetry group of Φ, without further qualification, we mean Sym(Φ).
Let SΦ denote the frame operator for Φ. If g ∈ GL(H), then

SΦ(gf) = (g∗)−1Sg∗Φ(f), ∀f ∈ H.

In particular, if g ∈ sym(Φ) is unitary, then it commutes with SΦ, i.e.,

SΦ(gf) = gSΦ(f), ∀f ∈ H.

Example 1. If Φ is a tight frame, then sym(Φ) is a group of unitary transformations, and
hence commutes with the frame operator SΦ. This follows because if Lσ ∈ sym(Φ) and
Φ = (fj) is tight, then LσΦ = (Lσfj) = (fσj) is tight, and so (2.3) gives

cI = [Lσfj ][Lσfj ]
∗ = Lσ[fj ][fj ]

∗L∗
σ = cLσL∗

σ =⇒ LσL∗
σ = I.

Hence for Φ a tight frame of distinct vectors, sym(Φ) is the symmetry group (of unitary
transformations) defined in [VW05]. The essential point of difference is that Sym(Φ) is
larger than sym(Φ) for a frame with repeated vectors, which is necessary if a frame and
its complement are to have the same symmetry group (see Example 3 and Theorem 3.7).
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Example 2. Many interesting examples of finite frames are given by the orbit of a single
vector under the action of a finite group of (usually unitary) transformations, e.g., the
n equally spaced unit vectors in IR2, the vertices of the platonic solids in IR3, and the
harmonic frames. Given a finite group G, a frame Φ = (φg)g∈G for H, indexed by the
elements of G, is a group frame or a G–frame (see [H07] and [VW08]) if there exists a
representation ρ : G → GL(H) (i.e., group homomorphism) for which

gφh := ρ(g)φh = φgh, ∀g, h ∈ G.

If Φ is a group frame, then Sym(Φ) has a subgroup isomorphic to G, and ρ(G) ⊂ sym(Φ).
Further, a given frame Φ of n distinct vectors is a group frame if and only if sym(Φ) has
a subgroup G of order n which acts faithfully on the sequence of vectors in Φ.

Example 3. (See Fig. 1). Let Φ = (v1, v2, v3) be the tight frame of three equally spaced
unit vectors in IR2, and Ψ = ([1], [1], [1]), which is the complementary tight frame for IR.
Then

Sym(Φ) = Sym(Ψ) = S3 = S{1,2,3}.

Here sym(Φ) = 〈a, b〉 is the dihedral group of order 6, which is generated by the unitary
maps: a = rotation through 2π

3 , and b = reflection through the line spanned by v3, while
sym(Ψ) consists of just the identity. The tight frame Φ′ = (v1, v2,−v3) has

Sym(Φ′) = {1, (12)}, sym(Φ′) = 〈b〉.

Fig. 1. The frames Φ and Φ′ of Example 3, with |Sym(Φ)| = 6, |Sym(Φ′)| = 2.

Example 4. The symmetry groups of the tight frame given by n equally spaced unit
vectors in IR2 is the dihedral group of order 2n, i.e.,

Dn := 〈a, b : an = 1, b−1ab = a−1〉,

where a acts as rotation through2π
n

, and b as a reflection which maps the set of vectors

onto itself. Given that all unitary transformations on IR2 are products of rotations and
reflections, it is easy to see this is the most symmetric tight frame of n distinct vectors
in IR2. By way of contrast, the frame consisting of one vector taken n − 1 times together
with another (not linearly dependent) vector has a symmetry group of order (n − 1)!.
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Example 5. The n equally spaced vectors in IR2 are not always the most symmetric tight
frame of n distinct vectors in C2. For n even, the (harmonic) tight frame given by the n
distinct vectors
{
(

1
1

)

,

(
ω
−ω

)

,

(
ω2

ω2

)

,

(
ω3

−ω3

)

,

(
ω4

ω4

)

, . . .

(
ωn−2

ωn−2

)

,

(
ωn−1

−ωn−1

)
}
, ω := e

2πi
n

has a symmetry group of order 1
2n2, (see [HW06] for details).

The symmetry group of a frame depends only on its similarity class:

Theorem 3.4. If Φ and Ψ are similar finite frames, say Ψ = QΦ, then

Sym(Ψ) = Sym(Φ), sym(Ψ) = Q sym(Φ)Q−1.

In particular,
Sym(Φ) = Sym(Φ̃) = Sym(Φcan).

Proof: Suppose that Φ = (fj)j∈J is similar to Ψ = (gj)j∈J , i.e., there exists an
invertible Q with gj = Qfj , ∀j ∈ J . Then, for σ ∈ Sym(Φ),

Lσfj = fσj , ∀j =⇒ (QLσQ−1)Qfj = Qfσj , ∀j,

so that σ ∈ Sym(Ψ), and Sym(Φ) ⊂ Sym(Ψ), Q sym(Φ)Q−1 ⊂ sym(Ψ). The reverse
inclusions follow since similarity is an equivalence relation (and so Ψ is similar to Φ).

If two frames with the same index set have the same symmetry group, then they need
not be similar.

Since a finite frame Φ is determined up to similarity by Gram(Φcan), it should be
possible to compute its symmetry group from this Gramian matrix. We now explain how
this can be done.

Let ej be the j–th standard basis vector. There is a bijection between permutations
σ ∈ SJ and the J × J permutation matrices, given by σ 7→ Pσ, where

Pσej := eσj .

A symmetry σ ∈ Sym(Φ) corresponds to a Pσ which satisfies the following.

Lemma 3.5. Let Φ = (fj)j∈J be a finite frame. Then

σ ∈ Sym(Φ) ⇐⇒ P ∗
σ Gram(Φcan)Pσ = Gram(Φcan).

Proof: By Theorem 3.4, Sym(Φ) = Sym(Φcan), and so we can suppose without
loss of generality that Φ is a normalised tight frame. Let V := [fj ]j∈J , and observe

V Pσ = V [eσj ] = [V eσj ] = [fσj ] = [Lσfj ] = LσV. (3.6)

(=⇒) Suppose σ ∈ Sym(Φ). By Example 1, Lσ is unitary, and so (3.6) gives

P ∗
σ Gram(Φ)Pσ = (V Pσ)∗V Pσ = (LσV )∗LσV = V ∗(L∗

σLσ)V = V ∗V = Gram(Φ).

(⇐=) Suppose P ∗
σ Gram(Φ)Pσ = Gram(Φ), i.e.,

Gram((fσj)j∈J) = Gram((fj)j∈J).

It is easy to prove (see, e.g., [VW05:Lem. 2.7]) that if (fj) and (gj) are sequences of vectors
which span H, with the same inner products, i.e., 〈fj , fk〉 = 〈gj , gk〉, ∀j, k, then there is a
unitary U with Ufj = gj , ∀j. Thus, for gj = fσj , there is U ∈ U(H) with Ufj = fσj , ∀j.
Hence, by taking Lσ = U , we conclude σ ∈ Sym(Φ).
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In words, σ ∈ SJ is a symmetry of a frame Φ = (fj)j∈J if and only the corresponding
permutation matrix Pσ commutes with the Gramian matrix M of the canonical tight
frame, i.e., M is invariant under simultaneous permutation of its rows and columns by σ.

Example 6. A finite frame Φ = (fj)j∈J is equiangular if there is a C ≥ 0 with

|〈fj , fk〉| = C, ∀j 6= k.

These frames have applications in signal processing (see [HP04], [BP05]). The equiangular
frames of n > d vectors for IRd are in 1–1 correspondence with graphs with vertices J and
an edge from j to k if and only if 〈fj , fk〉 = C (see [W092] for details). The symmetry
group of such a real equiangular frame is the automorphism group of the corresponding
graph, since σ is an automorphism of the graph if and only if Pσ commutes with its Seidel
adjacency matrix (which is a linear combination of the Gramian and identity matrices).

The frames Φ and Ψ of Example 3 are complementary, and have Sym(Φ) = Sym(Ψ),
while sym(Φ) is not isomorphic to sym(Ψ). More generally:

Theorem 3.7. Suppose that Φ is a finite frame, and Ψ is a complementary frame, i.e.,

Gram(Φcan) + Gram(Ψcan) = I,

then
Sym(Φ) = Sym(Ψ).

It need not be the case that sym(Φ) is isomorphic to sym(Ψ).

Proof: Since the definition of frames being complementary is symmetric, it suffices
to show that Sym(Φ) ⊂ Sym(Ψ). By Lemma 3.5, σ ∈ Sym(Φ) if and only if P = Pσ

commutes with Gram(Φcan). Since P ∗P = I, this implies

P ∗ Gram(Ψcan)P = P ∗(I − Gram(Φcan))P = I − Gram(Φcan) = Gram(Ψcan),

and so, by Lemma 3.5 again, we have σ ∈ Sym(Ψ).

If a frame is constructed from its complement, or its complement is for a space of low
dimension, then it is often easier to calculate its symmetry group via the complement.

Example 7. Consider the equal–norm tight frames Φ of four vectors for C3 with nontrivial
symmetries, i.e., |Sym(Φ)| > 1. The complement Ψ consists of four equal–norm vectors
for C. The symmetries of Ψ (and hence Φ) are those permutations of Ψ which can be
realised by multiplication by a complex number (of unit modulus), e.g., the permutation
(12)(34) is a symmetry of Ψ = ([1], [−1], [1], [−1]) corresponding to multiplication by −1.
Thus, the only possibilities for these complementary frames (up to a scalar multiple) are

([1], [1], [1], [z]), z 6= 1, ([1], [1], [z], [z]), z 6= ±1, ([1], [1], [z], [w]), z 6= w, z, w 6= 1,

([1], [1], [1], [1]), ([1], [−1], [1], [−1]), ([1], [i], [−1], [−i]),
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and the corresponding symmetry groups are

S3, S2 × S2, S2, S4, D4 (dihedral group of order 8), C4.

The Gramian matrices for the last three (which are harmonic frames) are

1

4






3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3




 ,

1

4






3 1 −1 1
1 3 1 −1
−1 1 3 1
1 −1 1 3




 ,

1

4






3 −i 1 i
i 3 −i 1
1 i 3 −i
−i 1 i 3




 .

4. Symmetries of combinations of frames

Let Φ = (fj)j∈J and Ψ = (gk)k∈K be finite frames for H1 and H2. The inner product
on the orthogonal direct sum H1 ⊕H2 and the tensor product H1 ⊗H2 are given by

〈(f1, g1), (f2, g2)〉 := 〈f1, f2〉〈g1, g2〉, ∀(f1, g1), (f2, g2) ∈ H1 ⊕H2,

〈f1 ⊗ g1, f2 ⊗ g2〉 := 〈f1, f2〉〈g1, g2〉, ∀f1 ⊗ g1, f2 ⊗ g2 ∈ H1 ⊗H2.

We investigate the symmetry groups of the union, sums and tensor product of these frames.

Example 8. The union Φ ∪ Ψ of these frames (which is indexed by J ∪ K)

Φ ∪ Ψ :=
(
(

fj

0

)

,

(
0
gk

)
)

j∈J,k∈K

is a frame for the orthogonal direct sum H1 ⊕ H2. If no confusion arises, then one can
identify H1 and H2 as subspaces of H1 ⊕H2, and write fj or fj + 0 in place of (fj , 0), etc.

For σ ∈ Sym(Φ) and τ ∈ Sym(Ψ), with corresponding Lσ ∈ GL(H1), Lτ ∈ GL(H2),
let L(σ,τ) = Lσ ⊕ Lτ ∈ GL(H1 ⊕H2), i.e.,

L(σ,τ)

(
f
g

)

:=

(
Lσf
Lτg

)

, ∀f ∈ H1, ∀g ∈ H2, (4.1)

and interpret (σ, τ) as a permutation on J ∪ K in the obvious way. Then

L(σ,τ)

(
fj

0

)

=

(
Lσfj

0

)

=

(
fσj

0

)

, L(σ,τ)

(
0
gk

)

=

(
0

Lτgk

)

=

(
0

gτk

)

,

and so the permutation (σ, τ) ∈ Sym(Φ ∪ Ψ). In this way, we have

Sym(Φ) × Sym(Ψ) ⊂ Sym(Φ ∪ Ψ), sym(Φ) ⊕ sym(Ψ) ⊂ sym(Φ ∪ Ψ).
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These inclusions can be strict, e.g., if H2 = H1 and Ψ = Φ, then there are additional
symmetries which interchange the two copies of Φ.

We say a frame is balanced if its vectors sum to zero.

Example 9. There are two notions of the sum of frames.
(i) If either Φ or Ψ is balanced, then the sum Φ +̂ Ψ (indexed by J × K)

Φ +̂ Ψ :=
(

(
1√
n2

fj

1√
n1

gk

)

)

j∈J,k∈K
n1 := |J |, n2 := |K|

is a frame for H1 ⊕H2.
(ii) If K = J , and the frames are disjoint, i.e., satisfy

∑

j∈J

〈f, fj〉gj = 0, ∀f ∈ H1 ⇐⇒
∑

j∈J

〈g, gj〉fj = 0, ∀g ∈ H2,

then the direct sum Φ ⊕ Ψ (indexed by J)

Φ ⊕ Ψ :=
(
(

fj

gj

)
)

j∈J

is a frame for H1 ⊕H2.
For the first sum, we may apply the tranformation L(σ,τ) of Example 8, to get

L(σ,τ)

(
1√
n2

fj

1√
n1

gk

)

=

(
1√
n2

fσj

1√
n1

gτk

)

∈ Φ +̂ Ψ,

and hence conclude

Sym(Φ) × Sym(Ψ) ⊂ Sym(Φ +̂ Ψ), sym(Φ) ⊕ sym(Ψ) ⊂ sym(Φ +̂ Ψ),

with strict inclusion possible as before. For the second, it is easy to verify

Sym(Φ) ∩ Sym(Ψ) ⊂ Sym(Φ ⊕ Ψ).

Example 10. The tensor product Φ ⊗ Ψ of these frames (which is indexed by J × K)

Φ ⊗ Ψ :=
(
fj ⊗ gk

)

j∈J,k∈K

is a frame for the tensor product Hilbert space H1 ⊗H2. Similarly to Example 8, we can
define L(σ,τ) ∈ GL(H1 ⊗H2) by L(σ,τ) = Lσ ⊗ Lτ . Then

L(σ,τ)(fj ⊗ gk) = (Lσfj) ⊗ (Lτfk) = fσj ⊗ gτk

and so we obtain

Sym(Φ) × Sym(Ψ) ⊂ Sym(Φ ⊗ Ψ), sym(Φ) ⊗ sym(Ψ) ⊂ sym(Φ ⊗ Ψ).

These inclusions can be strict, e.g., take the tensor product of orthonormal bases for spaces
of dimensions d1 and d2 to obtain an orthonormal basis for a space of dimension d1d2.

We summarise the results of these examples.
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Proposition 4.2. The symmetry groups of a finite frame satisfy

Sym(Φ) × Sym(Ψ) ⊂ Sym(Φ ∪ Ψ), sym(Φ) ⊕ sym(Ψ) ⊂ sym(Φ ∪ Ψ),

Sym(Φ) × Sym(Ψ) ⊂ Sym(Φ +̂ Ψ), sym(Φ) ⊕ sym(Ψ) ⊂ sym(Φ +̂ Ψ),

Sym(Φ) × Sym(Ψ) ⊂ Sym(Φ ⊗ Ψ), sym(Φ) ⊗ sym(Ψ) ⊂ sym(Φ ⊗ Ψ),

Sym(Φ) ∩ Sym(Ψ) ⊂ Sym(Φ ⊕ Ψ).

In some situations these inclusions become equalities, e.g., we have:

Proposition 4.3. Suppose that Φj is an equal–norm tight frame of nj vectors for a space
of dimension dj , j = 1, 2. If d1/n1 6= d2/n2, then

Sym(Φ1) × Sym(Φ2) ∼= Sym(Φ1 ∪ Φ2).

Proof: For σ ∈ Sym(Φ1) and τ ∈ Sym(Φ2), with corresponding Lσ ∈ sym(Φ1)
and Lτ ∈ sym(Φ2), let L(σ,τ) ∈ sym(Φ1 ∪ Φ2) be defined by (4.1). Let J1 and J2 be the
index sets of Φ1 and Φ2, and denote by θ(σ, τ) the permutation on J1 ∪ J2 given by

(
θ(σ, τ)

)
j :=

{
σj, j ∈ J1;
τj, j ∈ J2.

Then θ(σ, τ) ∈ Sym(Φ1 ∪ Φ2) (as detailed in Example 8). It is easy to check that

θ : Sym(Φ1) × Sym(Φ2) → Sym(Φ1 ∪ Φ2)

is an injective group homomorphism, and so it suffices to show that θ is onto.
In view of Theorem 3.4, we may suppose without loss of generality that Φ1 and Φ2

are normalised tight frames, in which case Φ1 ∪Φ2 is also. It follows that all ‘sym’ groups
consist of unitary transformations (Example 1). Taking the trace of (2.3), then gives that
the norm of each vector in Φj is

√

dj/nj . Since d1/n1 6= d2/n2, any unitary transformation
which permutes the vectors in Φ1∪Φ2 must permute the vectors in Φ1 and Φ2 individually,
and so is of the form L(σ,τ) for some σ and τ , as required.

We now generalise Example 7. Recall that a group G is a semidirect product of a
normal subgroup N and a subgroup H, written G = N >⊳ H, if G = NH and N∩H = {1}.
Theorem 4.4. Let Φ be a tight frame of n vectors for Cn−1 (or C). Then

Sym(Φ) ≈ Sm × [(Sa1
× Sa2

× · · · × Sar
)ℓ >⊳ Cℓ], (4.5)

where m ≥ 0, ℓ ≥ 1, a1, . . . , ar ≥ 1 are integers satisfying

ℓ(a1 + · · · + ar) + m = n,

with m = 0 when Φ is an equal–norm frame. Moreover, for any integers satisfying the
above conditions there is a tight frame Φ for Cn−1 with symmetry group given by (4.5).

Proof: By Theorem 3.7, we may suppose Φ is a tight frame for C1. Let m be the
number of zero vectors in Φ, so that it may be written Φ = (φ1, . . . , φn−m, 0, . . . , 0) a union
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of the tight frames (0, . . . , 0) for C0 and (φ1, . . . , φn−m) for C1. By a slight variation of the
argument for Proposition 4.3 (zero vectors must map to zero vectors under a symmetry),
we have

Sym(Φ) ≈ Sym(0, . . . , 0) × Sym(φ1, . . . , φn−m) = Sm × Sym(φ1, . . . , φn−m).

Thus it suffices to consider only the case when m = 0 and Φ consists of nonzero vectors.
Since Φ is a tight frame, sym(Φ) consists of unitary maps on C1 (cf Example 1), i.e.,

is a subgroup of the unit modulus complex numbers under multiplication. Thus sym(Φ)
is cyclic of order ℓ, say generated by z. We now show how to construct a τ ∈ Sym(Φ) of
order ℓ with πΦ(τ) = z, where πΦ is the group homomorphism given by (3.2). Let 〈z〉 act
on the set of vectors in Φ. The vectors in Φ consist of the orbits under this action (which
have size dividing ℓ) repeated some number of times. Choose some fixed way of doing this.
For a given appearance of an orbit of size t in Φ as

φj1 , φj2 = zφj1 , φj3 = z2φj1 , · · · φjt
= zt−1φj1 ,

define τ on the set of indices for the vectors above to be the cycle (j1j2 · · · jt) (so τ
is a product of such cycles). For example, if Φ = (1, ω, ω2, 2, 2ω, 2ω2, 2, 2ω, 2ω2), with

z = ω = e
2πi
3 , then one could take τ = (123)(486)(759), amongst other choices.

Let σ ∈ Sym(Φ). Then πΦ(σ) = zb, for some b, and πΦ(στ−b) = zbz−b = 1 implies
στ−b ∈ ker(πΦ), so that Sym(Φ) = ker(πΦ)〈τ〉. Further, if τ b ∈ ker(πΦ), then zb = 1, so
that ℓ divides b, which gives τ b = 1. Hence ker(πΦ) ∩ 〈τ〉 = {1}, and we have

Sym(Φ) ≈ ker(πΦ) >⊳ 〈τ〉 ≈ ker(πΦ) >⊳ Cℓ.

It remains only to show that ker(πΦ) = (Sa1
× Sa2

× · · · × Sar
)ℓ.

For a given vector φ in Φ, the number of times φ and zφ appear in Φ are the same.
Further, the vectors φ, zφ, . . . , zℓ−1φ are all distinct, since otherwise

zaφ = φ, 0 < a < ℓ =⇒ za = 1 (since φ 6= 0).

Thus if φ appears exactly aj times in Φ, then so do zφ, z2φ, . . . , zℓ−1φ. A symmetry
σ ∈ Sym(Φ) is in ker(πΦ) if and only if it permutes all the vectors of Φ which are equal,
and so ker(πΦ) is isomorphic to Sℓ

a1
× · · · × Sℓ

ar
= (Sa1

× · · · × Sar
)ℓ.

The semidirect product in (4.5), which does not define a unique group until the mul-
tiplication is specified, can (with a little work) be written as a wreath product. In this way
(4.5) can be expressed as

Sym(Φ) ≈ Sm × ((Sa1
× Sa2

× · · · × Sar
) ≀ Cℓ).

where ≀ denotes the wreath product of permutation groups.

Example 11. For the equal–norm tight frames of four vectors in C3 given in Example 7,
m = 0, and the groups in the [ ] in (4.5) are (respectively)

(S3 × S1)
1 >⊳ C1 ≈ S3, (S2 × S2)

1 >⊳ C1 ≈ S2 × S2, (S2 × S1 × S1)
1 >⊳ C1 ≈ S2,

(S4)
1 >⊳ C1 ≈ S4, (S2)

2 >⊳ C2 ≈ S2 ≀ C2 ≈ D4, (S1)
4 >⊳ C4 ≈ C4.
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5. Symmetries of frames thought of as sums of projections

In applications, the interest is in the decomposition (2.1), i.e., writing the identity as

I =
∑

j∈J

cjPj , cj := c‖fj‖2, Pjf :=
〈f, fj〉
〈fj , fj〉

fj ,

and the particular (unit modulus) scalar multiple of fj used to define the orthogonal
projection Pj is unimportant. Indeed, there may not be a natural choice (cf [RBSC04]).
In this case, the unitary equivalence of (2.6) is replaced by type III equivalence, i.e.,

gj = αjUfj , ∀j ∈ J,

where αj are scalars of unit modulus (see [HP04]).
Correspondingly, one would define a permutation σ to be a (type III) symmetry if

there exists Lσ ∈ GL(H) and unit modular scalars αj (possibly not unique), with

Lσfj = αjfσj , ∀j ∈ J.

This type III symmetry group is larger than our symmetry group, but, for H a complex
space, it cannot be computed in the same way, since for a possible symmetry σ and
Lσ : fj 7→ αjfσj there are infinitely many possible choices for αj . The analogue of 3.5 is

(PσΛ)∗ Gram(Φcan)PσΛ = Gram(Φcan), Λ := diag(αj),

and so to find type III symmetries one must solve a system of quadratic equations in the
complex variables αj , αj , j ∈ J . Such systems of equations define Heisenberg frames, and
are extremely difficult to solve in general (see [BW07]). However, in some cases of interest
the scalars αj come from a finite set, e.g., {−1, 1} for frames in IRd or the cube roots of
unity (see [BPT08]), and so this type III symmetry group can be calculated.

Example 12. The simplest example of a Heisenberg frame (see [RBSC04], [BW07]) is
the equiangular tight frame Φ := (v, Sv,Ωv, SΩv) of four vectors for C2, where

v :=
1√
6

( √

3 +
√

3

e
π
4

i
√

3 −
√

3

)

, S :=

(
0 1
1 0

)

, Ω :=

(
1

−1

)

.

Since SΩ = −ΩS, multiplication by S and Ω induces type III symmetries, namely (12)(34)
and (13)(24). Further, the unitary matrix

B :=
1√
2

(
1 1
−i i

)

induces a type III symmetry (132), and so the type III symmetry group of Φ contains

A4 = 〈(12)(34), (13)(24), (132)〉, |A4| = 12.

6. Partition frames

The simplest way to obtain a highly symmetric frame is to repeat the vectors in a
basis a number of times. By Theorem 3.7, the complement of such a frame is also highly
symmetric, and it turns out consists of distinct vectors. We call these partition frames.

Let (ej)
k
j=1 be an orthonormal basis for IRk.
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Definition. Let α = (α1, . . . , αk) ∈ ZZk be a partition of n, i.e.,

n = α1 + · · · + αk, 1 ≤ α1 ≤ α2 ≤ · · · ≤ αk.

Then the normalised tight frame of n vectors which is complementary to the frame
( e1√

α1
, . . . ,

e1√
α1

︸ ︷︷ ︸

α1 times

, . . . ,
ek√
αk

, . . . ,
ek√
αk

︸ ︷︷ ︸

αk times

)

(6.1)

for IRk is called the α–partition frame, and this is proper if α1 ≥ 2.

By (2.7), the Gramian of the α–partition frame is the block diagonal n × n matrix

P =










B1

. . .

Bj

. . .

Bk










, Bj :=












αj−1
αj

−1
αj

−1
αj

· · · −1
αj

−1
αj

αj−1
αj

−1
αj

· · · −1
αj

−1
αj

−1
αj

αj−1
αj

−1
αj

...
...

. . . −1
αj

−1
αj

−1
αj

−1
αj

−1
αj

αj−1
αj












(6.2)

where the above Bj is a αj × αj orthogonal projection matrix of rank αj − 1. Since each
normalised tight frame is isomorphic to the projection of an orthonormal basis, namely the
columns of its Gramian matrix, it follows that the vectors in a partition frame are distinct,
except those corresponding to αj = 1, which are all zero (hence the term proper).

We can easily determine the basic properties of a partition frame from its Gramian.

Proposition 6.3. Let Φ be a proper α–partition frame, α = (α1, . . . , αk). Then
(a) Φ is a normalised tight frame of n := α1 + · · ·+αk distinct vectors for IRd, d := n−k.
(b) Φ is a harmonic frame (and a G–frame) if and only if α1 = · · · = αk.
(c) The symmetry group of Φ has order

|Sym(Φ)| =
∏

m∈{αj}
m#!(m!)m# > n, m# := |{j : αj = m}|. (6.4)

Proof: The α–partition frame is (Hilbert space) isomorphic to the normalised
tight frame given by the columns of its Gramian matrix P , which is given by (6.2).

(a) We observed that this implies a proper α–partition frame has distinct vectors.
Moreover, the frame (6.1) of n = α1+· · ·+αk vectors spans a real k–dimensional space, and
so by (2.7) its complement is a normalised tight frame for a space of dimension d = n− k.

(b) A tight G–frame (see Example 2) has equal length vectors, and a tight frame has
equal length vectors if and only if its complement does. Thus Φ can be a G–frame only if
α1 = · · · = αk. A frame is G–frame if and only if its complement is (see [VW08]), and so
it suffices to show that (6.1) is a G–frame for some abelian group G. Let S be the shift
operator on IRk, i.e.,

Sej :=

{
ej+1, 1 ≤ j < k;
e1, j = k.
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It is easy to check that (6.1) reordered as

( e1√
α

,
e2√
α

, . . . ,
ek√
α1

, . . . ,
e1√
α

,
e2√
α

, . . . ,
ek√
α

)

, α := α1 = · · · = αk

is a ZZn–frame, via the representation ρ : ZZn → GL(IRk) : j 7→ Sj .
(c) By Theorem 3.7, Sym(Φ) = Sym(Ψ), where Ψ is the complementary normalised

tight frame Ψ given by (6.1). Since Ψ is tight, each symmetry σ ∈ Sym(Ψ) corresponds
a unitary map Lσ which permutes the vectors in Ψ. Since unitary maps preserve vector
length, the only possible symmetries are those that map the vectors of length m ∈ {αj} to

themselves. Since the subspaces Hm := span{ej : αj = m} ⊂ IRk are orthogonal to each
other, the symmetry group Sym(Φ) is the product of the symmetry groups for the equal
norm tight frames of the m · m# vectors contained in Hm. There are m#! unitary maps
which map these vectors to themselves. For each of these maps, the image of the m copies
of each of the m# vectors

ej√
m

∈ Hm (which are equal) can be reordered in m! ways, giving

|Sym(Φ)| =
∏

m∈{αj}
m#!(m!)m# ≥

∏

m∈{αj}
2m# = 2n > n.

Example 13. The (d + 1)–partition frame is the vertices of the regular simplex in IRd,
which has Sym(Φ) = (d+1)!. It follows from the block diagonal form (6.2) of its Gramian
matrix that a proper α–partition frame can be decomposed as the union over 1 ≤ j ≤ k
of the normalised tight frames given by the αj vertices of the simplex IRαj−1.

Example 14. The proper partition frames in IR2 and IR3 are as follows.

Partition n Description of α–partition frame Φ |Sym(Φ)|
(3) 3 three equally spaced vectors in IR2 6
(2, 2) 4 four equally spaced vectors in IR2 8
(4) 4 vertices of the tetrahedron in IR3 24
(2, 3) 5 vertices of the trigonal bipyramid in IR3 12
(2, 2, 2) 6 vertices of the octahedron in IR3 48

In four dimensions the possible choices for α are (5), (2, 4), (3, 3) and (2, 2, 3).

Fig. 2. The proper α–partition frames in IR3 for α = (4), (2, 3) and (2, 2, 2),
respectively, i.e., the vertices of the tetrahedron, trigonal bipyramid and octagon.
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Example 15. One can modify the construction of partition frames, e.g., the sequence of
repeated vectors in (6.1) could be replaced by

ej√
αj

,
ωej√
αj

, . . . ,
ωj−1ej√

αj
︸ ︷︷ ︸

αj times

, ω := e
2πi

j ,

for some or all choices of j, which gives a tight frame with |Sym(Φ)| > n (α1 ≥ 2).

7. Maximally symmetric frames

Since the order of the symmetry group of a frame of n vectors (a subgroup of Sn)
divides n!, there are maximally symmetric frames in any class of such frames.

Definition 7.1. Let C be a class of frames of n vectors, e.g., the tight frames or equal
norm tight frames in IRd and Cd. We say that Φ ∈ C is maximally symmetric if

|Sym(Φ)| = max
Ψ∈C

|Sym(Ψ)|.

This definition should be treated with a little caution for frames with repeated vectors.
For example, the frame of n vectors for IR2 consisting e1 repeated n − 1 times and e2 has
symmetry group of order (n − 1)!, whilst that of the n equally spaced unit vectors has
order 2n.

Example 16. The only cases when a frame Φ of n vectors for IFd can have maximal
symmetry by virtue of |Sym(Φ)| = n! are for n = d, i.e., when it is a basis (all bases are
similar), and for n = d + 1 when it is (similar to) the vertices of the regular d–simplex.

Example 17. In Examples 4 and 5 we observed the n equally spaced unit vectors in IR2

give the most symmetric tight frame of n distinct vectors in IR2, but that this need not be
the most symmetric such frame in C2.

Example 18. (See Fig. 3). We determine the maximally symmetric tight frames Φ of five
distinct vectors in IR3. By Theorem 3.7, these can be described via the complementary
normalised tight frames Ψ of five vectors in IR2. By (3.3), the order of Sym(Φ) divides 5!.
The complement of a unit vector is a zero vector, and so the most symmetric Φ with a
zero vector is given by the (1, 4)–partition frame

Ψ =
{(

1
0

)

,

(
0
1
2

)

,

(
0
1
2

)

,

(
0
1
2

)

,

(
0
1
2

)}

, |Sym(Φ)| = 4! = 24,

which is the vertices of the tetrahedron and a zero vector. If Sym(Φ) does not have an
element of order 5, then the next most symmetric is the (2, 3)–partition frame

Ψ =
{( 1√

2
0

)

,

(
1√
2

0

)

,

(
0
1√
3

)

,

(
0
1√
3

)

,

(
0
1√
3

)}

, |Sym(Φ)| = 2!3! = 12,
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which is the vertices of the trigonal bipyramid, i.e.,

Φ =
{
√

2

3





1
0
0



 ,

√

2

3





cos 2π
3

sin 2π
3

0



 ,

√

2

3





cos 4π
3

sin 4π
3

0



 ,
1√
2





0
0
−1



 ,
1√
2





0
0
−1





}

,

followed by

Ψ =
{( 1√

2
0

)

,

(
1√
2

0

)

,

(
0
1√
2

)

,

(
0
1√
2

)

,

(
0
0

)}

, |Sym(Φ)| = 8,

which is four equally spaced vectors and one orthogonal, i.e.,

Φ =
{ 1√

2





1
0
0



 ,
1√
2





0
1
0



 ,
1√
2





−1
0
0



 ,
1√
2





0
−1
0



 ,





0
0
1





}

.

If Sym(Φ) has an element or order 5, then Ψ must be five equally spaced vectors

Ψ =
{
√

2

5

(
cos 2πj

5

sin 2πj
5

)

: j = 1, . . . , 5
}

|Sym(Φ)| = |D5| = 10,

and Φ is the lifted five equally spaced vectors, i.e.,

Φ =
{
√

2

5





cos 2πj
5

sin 2πj
5

1√
2



 : j = 1, . . . , 5
}

.

Fig. 3. The most symmetric tight frames of five distinct nonzero vectors in IR3.
The trigonal bipyramid (12 symmetries), five equally spaced vectors lifted (10
symmetries), and four equally spaced vectors and one orthogonal (8 symmetries).

Motivated by examples such as these, we end with the following conjecture.
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Conjecture. A maximally symmetric tight frame is a union of group frames.
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