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ABSTRACT

The aim of this paper is to investigate symmetry properties of tight frames, with a
view to constructing tight frames of orthogonal polynomials in several variables which share
the symmetries of the weight function, and other similar applications. This is achieved
by using representation theory to give methods for constructing tight frames as orbits of
groups of unitary transformations acting on a given finite-dimensional Hilbert space. Along
the way, we show that a tight frame is determined by its Gram matrix and discuss how
the symmetries of a tight frame are related to its Gram matrix. We also give a complete
classification of those tight frames which arise as orbits of an abelian group of symmetries.
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1. Introduction

u1

u2 u3

The three equally spaced unit vectors u1, u2, u3 in IR2 provide the following redundant
representation

f =
2
3

3∑
j=1

〈f, uj〉uj , ∀f ∈ IR2, (1.1)

which is the simplest example of a tight frame. Such representations arose in the study of
nonharmonic Fourier series in L2(IR) (see Duffin and Schaeffer [DS52]) and have recently
been used extensively in the theory of wavelets (see, e.g., Daubechies [D92]).

The philosophy behind the use of frames is that representations such as (1.1) are
similar to an orthogonal expansion (but with more terms), and that by going to a frame
representation one might choose the uj to have desirable properties that may be impossible
were they to be orthogonal (in the case of wavelets these are certain smoothness and small
support properties).

In particular, a tight frame may be preferred to an orthogonal basis if there are
underlying symmetries which it is desirable for the tight frame to have, but which cannot
be possessed by any orthogonal basis. We are particularly interested in spaces of orthogonal
polynomials of several variables with weights with some symmetries, e.g., integration over
a polyhedron in IR2. Here we hope to replace orthonormal bases with spanning sets that
share symmetries of the weight and are tight frames.

In this paper, we set out to find ways of constructing tight frames which are invariant
under a given group of symmetries of some finite-dimensional Hilbert spaceH. The paper is
organised as follows. In Section 2, we define tight frames and give some of their elementary
properties. In particular, we show that a spanning set is determined up to a unitary
transformation by the inner products of its elements, a useful result which we have not
found elsewhere (Theorem 2.9). In Section 3, we define the key notion of symmetries
of a tight frame. In Section 4, we investigate how the symmetries of a tight frame are
reflected in the structure of its Gram matrix (Theorem 4.2). In Section 5, we investigate
tight frames generated by abelian groups of unitary transformations, and classify all such
frames (Theorem 5.4). There has been some interest in frames of this type, see eg. [BE03].
In Section 6, we use representation theory to show how to construct tight frames which arise
as orbits of an arbitrary group G of unitary transformations. The situation is particularly
simple if every orbit of G spans H. In this case, every G–orbit is a tight frame (Theorem
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6.3). Theorem 6.4 says that most of the examples constructed in this way cannot be
obtained as an orbit of an abelian group. In Section 7, we exploit the results of Section 6 to
construct some new highly symmetric tight frames of orthogonal polynomials of low degree
on a triangle, square and hexagon, including some orthonormal bases sharing symmetries,
which were not previously known to exist.

2. Finite tight frames

Let H be a d–dimensional real or complex Hilbert space.

Definition 2.1. A finite set Φ = {φj}nj=1 of nonzero vectors in H is a tight frame for H
if there exists c > 0 with

‖f‖2 = c

n∑
j=1

|〈f, φj〉|2, ∀f ∈ H. (2.2)

By the polarisation identity, (2.2) is equivalent to the (possibly redundant) represen-
tation

f = c
n∑
j=1

〈f, φj〉φj =
n∑
j=1

〈f,√cφj〉
√
cφj , ∀f ∈ H. (2.3)

We will refer to {√cφj} as the standard form of Φ, and identify all tight frames with the
same standard form. We say a tight frame Φ is isometric if all φ ∈ Φ have equal norm
(the term normalized tight frame is also in use, cf [Z01]).

Every finite-dimensional tight frame of cardinality n for a d–dimensional space can
be thought of as the projection of an orthonormal basis for an n–dimensional space onto
a suitably chosen d–dimensional subspace (cf Naimark’s theorem in [AG93]).

Example 1. For n ≥ 3, define Φ ⊂ IR2 by

φk =
[

cos(2πk/n)
sin(2πk/n)

]
, k = 1, . . . n

Then Φ = {φk}nk=1 is an isometric tight frame for IR2 called the nth roots of unity.

Example 2. Let {e1, . . . , ed+1} be an orthonormal basis for IRd+1, and z :=
∑d+1
i=1 ei.

Then the orthogonal projection of {ei} onto the orthogonal complement of z (which we
identify with IRd) is an isometric tight frame for IRd which we call the regular d–simplex.
The distances between any two elements of this isometric tight frame are equal.

Applying a unitary transformation U on H to (2.3) gives

Uf = c
∑
φ∈Φ

〈f, φ〉Uφ = c
∑
φ∈Φ

〈Uf, Uφ〉Uφ, ∀f =⇒ f = c
∑
φ∈Φ

〈f, Uφ〉Uφ, ∀f,

so that a unitary image of a tight frame Φ is again a tight frame (with the same scaling
factor c), which we consider to be equivalent by the following equivalence relation.

2



Definition 2.4. Tight frames Φ and Ψ in standard form (c = 1) are said to be equivalent
if there exists a unitary U for which

UΦ = Ψ. (2.5)

For Φ = {φi}ni=1, Ψ = {ψj}mj=1, (2.5) means there is a permutation π of the indices with

ψπj = Uφj , (2.6)

This equivalence preserves many properties we are interested in, most importantly the
inner products between vectors and the symmetries of a frame (to be defined later).

There is another notion of equivalence of frames found in [GKK01] and [F01], where
ψπj = Uφj in (2.6) is replaced by ψπj = λjUφj for some scalar λj of unit modulus. This
equivalence does not preserve the inner product between vectors.

Example 3. There are many examples of inequivalent tight frames – even isometric ones.
For example, take three equally spaced vectors in IR2 (which form an isometric tight frame)
together with the equivalent tight frame obtained by rotating them through 0 < θ < 2π/3.
The resulting set of six vectors is an isometric tight frame for IR2. For different values of θ
such tight frames are clearly not equivalent, since unitary transformations preserve angles.

θ
θ

We now show that frames are equivalent if and only if the inner products between
their vectors are the same. The Gram matrix or Gramian of a sequence of vectors
Φ = (φ1, . . . , φn) is the n× n matrix

Gram(Φ) := [〈φi, φj〉]ni,j=1.

Lemma 2.7. Suppose Φ = (φ1, . . . φn), Ψ = (ψ1, . . . ψn) are sequences of vectors, and
that span(Φ) = H. Then there exists a unitary U with Uφi = ψi, ∀i if and only if

〈φi, φj〉 = 〈ψi, ψj〉, ∀i, j, (2.8)

i.e., the Gram matrices of Φ and Ψ are equal.

Proof: If there is such a U , then clearly 〈ψi, ψj〉 = 〈Uφi, Uφj〉 = 〈φi, φj〉, ∀i, j.
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Now suppose (2.8) holds. Assume without loss of generality that {φ1, . . . φd} is a basis for
H, and define a linear map U on H by Uφi = ψi, 1 ≤ i ≤ d. Then U is unitary, since for
f =

∑d
i=1 λiφi, g =

∑d
j=1 µjφj , we have

〈Uf, Ug〉 =
∑
i,j

λiµj〈ψi, ψj〉 =
∑
i,j

λiµj〈φi, φj〉 = 〈f, g〉.

For i > d and 1 ≤ j ≤ d, we have

〈Uφi − ψi, ψj〉 = 〈Uφi, ψj〉 − 〈ψi, ψj〉 = 〈Uφi, Uφj〉 − 〈ψi, ψj〉 = 〈φi, φj〉 − 〈ψi, ψj〉 = 0,

which implies Uφi = ψi since {ψ1, . . . , ψd} is a basis for H.

Theorem 2.9 (Equivalent tight frames). Tight frames Φ and Ψ in standard form are
equivalent if and only if there is a bijection π : Φ → Ψ with

〈φ1, φ2〉 = 〈πφ1, πφ2〉, ∀φ1, φ2 ∈ Φ (2.10)

In particular, isometric tight frames are equivalent if and only if after a suitable reordering
their Gram matrices are equal.

Proof: Suppose the tight frames are equivalent via some U as in (2.5). Let πφ :=
Uφ, then

〈φ1, φ2〉 = 〈Uφ1, Uφ2〉 = 〈πφ1, πφ2〉
Conversely, suppose that (2.10) holds. Then by Lemma 2.7, there is a unitary U with

Uφ = πφ, ∀φ ∈ Φ, which satisfies (2.5).

Example 4. Let ω be a primitive third root of unity. Then

Φ := {
[

1
1

]
,

[
ω
ω2

]
,

[
ω2

ω

]
}, Ψ := {

[
1
1

]
,

[
1
ω

]
,

[
1
ω2

]
} (2.11)

are isometric tight frames for C||2. These are examples of what will later be called cyclic
frames. These frames are not equivalent since the inner product between any two vectors
in Φ is real, wheras there are two vectors in Ψ with non–real inner product.

In [RW02] it is shown that a frame for IRd is also a frame for C||d. Thus the unitary
image of the three vectors of (1.1) gives an equivalent tight frame of three vectors for C||2,
which may have complex entries. Here we show how to recognise that such a frame is
obtained from a frame for a real space.

Definition. A tight frame Φ is said to be real if either H is a real inner product space,
or there is a unitary map U : H → C||d with UΦ ⊂ IRd.

Thus a tight frame is real if it is equivalent to a tight frame for a real inner product space.
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Lemma 2.12. Let Φ ⊂ H. There is unitary map U : H → C||d with UΦ ⊂ IRd if and only
if 〈φ, ψ〉 ∈ IR, ∀φ, ψ ∈ Φ.

Proof: If UΦ ⊂ IRd, then clearly 〈φ, ψ〉 = 〈Uφ,Uψ〉 ∈ IR, ∀φ, ψ ∈ Φ.
Now suppose 〈φ, ψ〉 ∈ IR, ∀φ, ψ ∈ Φ. Let {φ1, . . . , φk} be a basis for V := spanΦ, and

apply the Gram–Schmidt algorithm to obtain an orthonormal basis {u1, . . . , uk} with uj ∈
spanIR{φ1, . . . , φk}. This satisfies 〈φ, uj〉 ∈ IR, ∀φ ∈ Φ. Now let U be any unitary matrix
mapping the orthonormal vectors {u1, . . . , uk} to orthonormal vectors {e1, . . . , ek} ⊂ IRd.
Then

Uφ =
k∑
j=1

〈φ, uj〉ej ∈ IRd, ∀φ ∈ Φ

as required.

Theorem 2.13 (Real frames). A tight frame Φ is real if and only if

〈φ1, φ2〉 ∈ IR, ∀φ1, φ2 ∈ Φ.

Proof: The forward implication is immediate. For the converse, use Lemma 2.12
to choose U .

Example 5. Let ω be a primitive third root of unity. For the isometric tight frames of
(2.11) the Gram matrices are given by

Gram(Φ) =

 2 −1 −1
−1 2 −1
−1 −1 2

 , Gram(Ψ) =

 2 1 + ω2 1 + ω
1 + ω 2 1 + ω2

1 + ω2 1 + ω 2

 . (2.14)

Thus, by Theorem 2.13, Φ is a real frame (it is a unitary image of three equally spaced
vectors in IR2) and Ψ is not.

3. Symmetries of tight frames

Here we introduce the key idea of this paper the symmetry group of a tight frame Φ.
This will be the group of invertible linear maps U : H → H which permute the vectors
in Φ. Such a transformation preserves the vector’s length, indeed is unitary (orthogonal)
since

‖U∗f‖2 =
∑
φ∈Φ

c|〈U∗f, φ〉|2 =
∑
φ∈Φ

c|〈f, Uφ〉|2 =
∑
φ∈Φ

c|〈f, φ〉|2 = ‖f‖2, ∀f ∈ H.

We denote the group of unitary (inner-product preserving) transformations on the real or
complex Hilbert space H by U(H). The G–orbit of a vector φ under the action of a group
G is the set {gφ : g ∈ G}.
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Definition. The symmetry group of a tight frame Φ is the group

Sym(Φ) := {U ∈ U(H) : UΦ = Φ}. (3.1)

Note that Sym(Φ) can only act transitively when the tight frame Φ is isometric. In
this case, we make the following definition:

Definition. An isometric tight frame Φ is said to be transitive if G = Sym(Φ) acts
transitively on the set of vectors in Φ, i.e.,

Gφ = Φ, ∀φ ∈ Φ. (3.2)

Bölcskei and Eldar [BE03] use the term geometrically uniform for a transitive tight
frame defined by Φ := Gφ where G is abelian. A set of vectors in H (not necessarily
forming an isometric tight frame) on which some (finite) subgroup of the unitary group acts
transitively is called a “group code” by Slepian [Sl68] (when H = IRd) and a “geometrically
uniform code” by Forney [For91]. Not all geometrically uniform codes are tight frames

Note that Sym(Φ) is isomorphic to a subgroup of the symmetric group on Φ, and so
its order divides |Φ|!, for short

| Sym(Φ)|
∣∣∣ |Φ|!. (3.3)

Also, note that since a U ∈ Sym(Φ) is uniquely determined by is action on a basis
taken from Φ, we have

| Sym(Φ)| ≤ |Φ|(|Φ| − 1) · · · (|Φ| − k + 1), k := dim(H). (3.4)

Example 1. Let Φ1 = (v1, v2, v3) be the isometric tight frame obtained by taking three
equally spaced unit vectors in IR2 (with c = 2/3), and Φ2 = (−v1, v2, v3) the isometric
tight frame obtained by replacing one vector by its negative.

v1

v2

v3

Φ1

−v1

v2

v3

Φ2

These have symmetry groups Sym(Φ1, c) = D3 (the dihedralgroup of order 6) which acts
transitively, so Φ1 is a transitive frame, and Sym(Φ2, c) = C2 (the cyclic group of order 2).

Example 2. Equivalent tight frames have isomorphic symmetry groups, namely if Φ is a
tight frame and UΦ is an equivalent tight frame obtained from some unitary U , then

Sym(UΦ) = U Sym(Φ)U∗.
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Example 3. The isometric tight frames Φ and Ψ of (2.11) have symmetry groups

Sym(Φ) = 〈
(

0 1
1 0

)
,

(
ω

ω2

)
〉 ≈ D3, Sym(Ψ) = 〈

(
1

ω

)
〉 ≈ C3.

In view of (3.3) and the fact |D3| = 3!, no tight frame of 3 vectors in C||2 can have more
symmetries than Φ.

Example 4. The symmetry group of the isometric tight frame given by the nth roots of
unity in IR2 is isomorphic to the dihedral group

Dn := 〈a, b : an = 1, b2 = 1, b−1ab = an−1〉 (3.5)

of order 2n, and is generated by a rotation a through 2π/n and a reflection b.

4. The Gram matrix of a transitive tight frame

Recall that an isometric tight frame Φ is transitive if its symmetry group Sym(Φ)
acts transitively on Φ, and a tight frame is determined by its Gramian (Theorem 2.7).
Thus transitivity should be expressible in terms of the Gram matrix. This is the content
of Theorem 4.2 below, which enables us to recognise whether an isometric tight frame is
transitive by looking at the entries of its Gramian.

To simplify the presentation, it is convenient (for this section only) to consider tight
frames where the vectors may be repeated, i.e., Φ is a multiset, rather than a set. We will
refer to such tight frames as ones with multiplicities.

Definition. We say that Φ an isometric tight frame with multiplicities is generated by
a group G of unitary transformations if

G · φ := (gφ : g ∈ G) = Φ (equality of multisets), ∀φ ∈ Φ.

Clearly, Ψ the set of vectors in an isometric tight frame Φ with multiplicities generated
by G is a transitive frame whose symmetries contain G, and for any subgroup G of Sym(Ψ)
which acts transitively on Ψ the multiset G ·φ, φ ∈ Φ is Ψ repeated some number of times.

Definition. Let G be a finite group. We say that a matrix A = [aij]ni,j=1 is G–circulant
if there exists a bijection {1, . . . , n} → G : i 7→ gi and a map ν : G→ C|| for which

aij = ν(g−1
i gj), ∀i, j.

It is elementary if ν can not be factored ν = η ◦ θ where θ : G → H is a group
homomorphism with |H| < |G| and η : H → C||.

When G is a cyclic group a G–circulant matrix is a circulant matrix (cf Davis [Da79]).
Each row of a G–circulant matrix A is a permutation of the values ν(g1), . . . , ν(gn), and ν
is constant on the cosets given by the normal subgroup

N := {g ∈ G : ν(h1gh2) = ν(h1h2), ∀h1, h2 ∈ G}. (4.1)
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It can be shown that A is elementary if and only if N = {1}.
The Gramian of Φ is a G–circulant matrix if and only if there exists a bijection

G→ Φ : g 7→ φg for which

〈φhg1 , φhg2〉 = 〈φg1 , φg2〉, ∀g1, g2, h ∈ G.
This can be interpreted as condition of ‘equal spacing’.

Theorem 4.2 (Transitive frames). Let Φ be an isometric tight frame with multiplicities
for H. Then the following are equivalent

1. Φ generated by some group G ⊂ U(H).
2. The Gramian of Φ is an elementary G–circulant matrix for some group G.
3. There exists a group G and a bijection G→ Φ : g 7→ φg for which

〈φhg1 , φhg2〉 = 〈φg1 , φg2〉, ∀g1, g2, h ∈ G, (4.9)

φgh = φh, ∀h ∈ G =⇒ g = 1. (4.4)

The groups G above can be taken to be the same.

Proof: (1 =⇒ 2). Suppose that Φ is generated by G ⊂ U(H), i.e., for each φ ∈ Φ,

Φ = (φ1, . . . , φn) = (g1φ, . . . , gnφ)

where {1, . . . , n} → G : i 7→ gi is a bijection. Then the entries of the Gramian of Φ are

〈φi, φj〉 = 〈giφ, gjφ〉 = 〈φ, g−1
i gjφ〉 = ν(g−1

i gj), ν(g) := 〈φ, gφ〉, ∀g ∈ G,
and so it is G–circulant. Moreover, it is elementary since

N : = {g ∈ G : ν(h1gh2) = ν(h1h2), ∀h1, h2 ∈ G}
= {g ∈ G : 〈φ, h1gh2φ〉 = 〈φ, h1h2φ〉, ∀h1, h2 ∈ G}
= {g ∈ G : 〈h−1

1 φ, gh2φ〉 = 〈h−1
1 φ, h2φ〉, ∀h1, h2 ∈ G}

= {g ∈ G : gh2φ = h2φ, ∀h2 ∈ G}
= {1}.

(2 =⇒ 3). Suppose the Gramian of Φ is a G–circulant matrix, i.e., 〈φi, φj〉 = ν(g−1
i gj),

which is elementary. Let g 7→ φg be the bijection given by gi 7→ φi, so 〈φgi
, φgj

〉 = ν(g−1
i gj),

and we have

〈φhg1 , φhg2〉 = ν
(
(hg1)−1(hg2)

)
= ν(g−1

1 g2) = 〈φg1 , φg2〉, ∀g1, g2, h ∈ G,
and, since the Gramian is elementary,

N : = {g ∈ G : ν(h1gh2) = ν(h1h2), ∀h1, h2 ∈ G}
= {g ∈ G : 〈φh−1

1
, φgh2〉 = 〈φh−1

1
, φh2〉, ∀h1, h2 ∈ G}

= {g ∈ G : φgh2 = φh2 , ∀h2 ∈ G}
= {1},
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which implies (4.4).
(3 =⇒ 1). Suppose that such a bijection exists. Let c > 0 be the common scaling

factor for Φ, so that
f = c

∑
g∈G

〈f, φg〉φg, ∀f ∈ H. (4.5)

For each h ∈ G, define a linear operator Uh by

Uhf := c
∑
g∈G

〈f, φg〉φhg, ∀f ∈ H.

It follows that Uh is unitary and satisfies

Uhφg = φhg, ∀g ∈ G, (4.6)

by the calculations

‖Uhf‖2 = 〈c
∑
g1∈G

〈f, φg1〉φhg1 , c
∑
g2∈G

〈f, φg2〉φhg2〉

= c2
∑
g1∈G

∑
g2∈G

〈f, φg1〉〈f, φg2〉〈φhg1 , φhg2〉

= c2
∑
g1∈G

∑
g2∈G

〈f, φg1〉〈f, φg2〉〈φg1 , φg2〉

= 〈c
∑
g1∈G

〈f, φg1〉φg1 , c
∑
g2∈G

〈f, φg2〉φg2〉 = ‖f‖2,

and
Uhφg = c

∑
g1∈G

〈φg, φg1〉φhg1 = c
∑
g1∈G

〈φhg, φhg1〉φhg1 = φhg.

which use (4.9) and (4.5). The map G→ U(H) : g 7→ Ug is a group homomorphism, since
(4.6) gives

Ug1Ug2 = Ug1g2 , g1, g2 ∈ G.
Moreover, this is an isomorphism, since by (4.4) its kernel is

{g ∈ G : Ug = 1} = {g ∈ G : Ugφh = φh, ∀h ∈ G} = {1}.

Thus, {Ug : g ∈ G} ⊂ U(H) is isomorphic to G and generates Φ since

(Ugφh : g ∈ G) = (φhg : g ∈ G) = Φ, ∀φh ∈ Φ.
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Theorem 4.2 can be stated for frames, i.e., without multiplicities. This requires the
notion of augmented G–circulant matrices.

Definition. LetG be a finite group. We say that a matrix A = [aij]ni,j=1 is an augmented
G–circulant matrix if there is a function ν : G→ C|| and a subgroup H of G such that

ν(h1gh2) = ν(g) ∀h1, h2 ∈ H ∀g ∈ G, (4.7)

and there exists a set {g1, . . . gn} of left coset representatives of H in G with

aij = ν(g−1
i gj) 1 ≤ i, j ≤ n.

If H is trivial, then A is simply a G-circulant matrix.

Theorem 4.8 (Transitive tight frames II). Let Φ be an isometric tight frame for H.
Then the following are equivalent

1. Φ is transitive.
2. The Gramian of Φ is an augmented G–circulant matrix for some group G.
3. There exists a group G and a surjection ρ : G → Φ : g 7→ φg for which all the values
|ρ−1(φg)| are equal, and

〈φhγ1 , φhγ2〉 = 〈φγ1 , φγ2〉, ∀γ1, γ2, h ∈ G. (4.9)

In particular, if Φ is G–circulant then Φ is transitive.

Example 1. The Gram matrices of (2.14) are clearly circulant, and hence G–circulant for
G = C3 the cyclic group of order 3.

Example 2. Let G ⊂ U(IR2) be the nonabelian group generated by a the rotation through
2π/3 and b the reflection in the y–axis, i.e.,

G := 〈a, b : a3 = 1, b2 = 1, b−1ab = a2〉, a :=
1
2

(−1 −√3√
3 −1

)
, b :=

(−1
1

)
,

which is the dihedral group D3. It follows from later results on irreducible groups, that

Φ := Gφ = {φ, aφ, a2φ, bφ, abφ, a2bφ} (4.10)

is an isometric tight frame for all nonzero φ ∈ IR2. Suppose ‖φ‖ = 1. If |Φ| = 6, then its
Gram matrix is

Gram(Φ) =


1 −1/2 −1/2 α+ β −α −β

−1/2 1 −1/2 −β α+ β −α
−1/2 −1/2 1 −α −β α+ β
α+ β −β −α 1 −1/2 −1/2
−α α+ β −β −1/2 1 −1/2
−β −α α+ β −1/2 −1/2 1


where φ = (x, y), and

−α :=
1
2
x2 −

√
3xy − 1

2
y2, −β :=

1
2
x2 +

√
3xy − 1

2
y2, α+ β = y2 − x2.

Here the entries are indexed in the order given by (4.10), and so the G–circulant structure
of Gram(Φ) is apparent. Otherwise, Φ is the 3rd–roots of unity in IR2, cf (2.14).
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Corollary 4.11 (Distinct entries of the Gramian). Let Φ be a real isometric tight
frame generated by a group G which has κ(G) elements of order less than or equal to two,
and let N(Φ) be the number of distinct entries of the Gramian of Φ. Then

N(Φ) ≤ |G|+ κ(G)
2

.

Proof: Suppose Φ = {gφ}g∈G. The entries of the Gramian of Φ are the values of
ν : G→ IR : g 7→ 〈gφ, φ〉. Let A := {g ∈ G : g2 = 1}. For g ∈ G \ A, we have g−1 ∈ G \A
with g−1 6= g and

ν(g−1) = 〈g−1φ, φ〉 = 〈φ, gφ〉 = 〈gφ, φ〉 = ν(g),

so that ν can take on at most

|A|+ |G \A|
2

= κ(G) +
|G| − κ(G)

2
=
|G|+ κ(G)

2

distinct values.

Since κ(G) depends only on the isomorphism class of G, this result can be used to
show that certain isometric tight frames are not generated by particular abstract groups.

Example 3. Let Φ be the real isometric tight frame (4.10) of the previous example, where
φ = (x, y) satisfies xy 6= 0 and |x/y| 6= √

3, 1/
√

3. Then Φ consists of 6 distinct vectors,
and its Gramian has 5 distinct entries. It cannot therefore be generated by an abelian
group of order 6, since C6 is the only abelian group of order 6 and it satisfies

|C6|+ κ(C6)
2

=
6 + 2

2
= 4 < 5.

This gives a counterexample to a theorem claimed (but not proved) in [E02:Th. 4].
This result states that a set of real vectors Φ has a permuted Gram matrix (one in which
the rows are permutations of the entries of the first row) if and only if the vectors in Φ
are the orbit of an abelian group of unitary matrices. The Gram matrix of the Φ of this
example is G–circulant, and so, in particular, is a permuted matrix. But as we have just
proved it is not the orbit of any abelian group of unitary matrices.

5. Cyclic and Harmonic frames

The character table of the cyclic group G = C3 of order 3 is 1 1 1
1 ω ω2

1 ω2 ω

 , ω 6= 1, ω3 = 1,
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which has orthogonal rows/columns of equal length. Since the orthogonal projection of
an orthonormal basis is a tight frame and |ω| = 1, ruling out rows of the above character
table gives a submatrix whose columns are an isometric tight frame, e.g., removing rows
1,2,3 gives

{
[

1
1

]
,

[
ω
ω2

]
,

[
ω2

ω

]
}, {

[
1
1

]
,

[
1
ω

]
,

[
1
ω2

]
}, {

[
1
1

]
,

[
1
ω2

]
,

[
1
ω

]
},

which are the isometric tight frames for C||2 of (2.11).
Here we show the same construction works for any abelian group G, and refer to the

resulting isometric tight frames as ‘harmonic frames’ (and ‘cyclic frames’ when G is cyclic).
We will show that the harmonic frames are precisely those isometric tight frames which
are orbits of an abelian group (of symmetries), and that real cyclic frames of n vectors in
IRd exist for all n ≥ d.

The following basic facts can be found in any standard book on character theory or
Fourier analysis on abelian groups, e.g., [JL93] and [Ru62]. Let G be a finite abelian group.
The characters of G are the group homomorphisms ξ : G → C|| \ {0}, where C|| \ {0} is a
group under multiplication. Here we think of them as vectors ξ ∈ C||G (with the Euclidean
inner product), which satisfy

ξ(g1 + g2) = ξ(g1)ξ(g2), ∀g1, g2 ∈ G. (5.1)

It follows from (5.1) that ξ(g) is a |G|–th root of unity. It can be shown that the characters
of G form an orthogonal basis for C||G, and the square matrix with these vectors as rows is
referred to as the character table of G (and by some as the Fourier matrix when G is
cyclic).

Definition. Let G be a finite abelian group with characters (ξj)nj=1, J ⊂ {1, . . . , n} and

U : C||J → H unitary. Then the isometric tight frame for H given by

Φ := U
{

(ξj(g))j∈J : g ∈ G}
(5.2)

is called a harmonic frame. If G is cyclic, then Φ is called a cyclic frame.

This definition extends those of [CK01]. There G is the cyclic group of order n and
the Φ of (5.2) is called a harmonic tight frame when U = I and a general harmonic frame
when U = D with D diagonal (these are both cyclic frames in our terminology).

Example 1. The character table of the cyclic group of order n is
1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

 (5.3)
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where ω is primitive n–th root of unity. Since ω−j = ω̄j , taking the second and last rows
of the table gives the harmonic frame for C||2

{
[

1
1

]
,

[
ω
ω̄

]
,

[
ω2

ω̄2

]
, . . . ,

[
ωn−1

ω̄n−1

]
},

which was given in [B98:Sect. 4, Ex. 1]. This is a real cyclic frame, since

〈
[
ωj

ω̄j

]
,

[
ωk

ω̄k

]
〉 = ωjω̄k + ω̄jωk = 2<(ωj−k) ∈ IR,

which is equivalent to the nth roots of unity in IR2.

Example 2. The smallest noncyclic abelian group is C2 × C2. Its character table is
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
Taking any pair of the last three rows gives the harmonic frame

{
[

1
1

]
,

[−1
1

]
,

[−1
−1

]
,

[
1
−1

]
},

of four vectors in IR2, and taking the first and any other gives

{
[

1
1

]
,

[
1
−1

]
},

which is an orthogonal basis.

Example 3. There exist harmonic frames which are not cyclic. Let ω be a primitive third
root of unity, then the following 2 rows of the character table for C3 ×C3 give a harmonic
frame for C||2 which is not cyclic

Φ = {
[

1
1

]
,

[
ω
1

]
,

[
ω2

1

]
,

[
1
ω

]
,

[
1
ω2

]
,

[
ω
ω

]
,

[
ω
ω2

]
,

[
ω2

ω

]
,

[
ω2

ω2

]
}.

This can be proved by showing any unitary matrix which permutes these vectors must
have order dividing 6. (Briefly, let

g =
(
a b
c d

)
∈ Sym(Φ)

Then {a+ b, a+ bω, a+ bω2} ⊂ {1, ω, ω2}, whence a = 0 or b = 0. Similarly, c = 0 or d = 0
and the nonzero entries of g are 3rd roots of unity).
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Definition. We say that Φ an isometric tight frame is generated by a group G of unitary
transformations if Φ is a G–orbit, i.e.,

Gφ := {gφ : g ∈ G} = Φ, ∀φ ∈ Φ.

If Φ is generated by an abelian group G, then |Φ| = |G| since for g1, g2 ∈ G:

g1φ = g2φ =⇒ g1hφ = g2hφ, ∀h ∈ G =⇒ g1 = g2.

Theorem 5.4 (Harmonic frames). Let Φ be an isometric tight frame for H. Then the
following are equivalent

1. Φ is harmonic (obtained from the character table of G) and |Φ| = |G|.
2. Φ is generated by an abelian group G ⊂ U(H).
3. There exists an abelian group G and a bijection G→ Φ, g 7→ φg for which

〈φhg1 , φhg2〉 = 〈φg1 , φg2〉, ∀g1, g2, h ∈ G.

The group G in each equivalence can be taken to be the same, but it need not be unique.

Proof: (1 =⇒ 2). Suppose without loss of generality that the Φ of (5.2) is

Φ =
{

(ξj(g))j∈J : g ∈ G}
.

For each g ∈ G, define a diagonal unitary J × J matrix by Ug := diag(ξj(g) : j ∈ J).
Since ξj(g1g2) = ξj(g1)ξj(g2), the map g 7→ Ug is a group homomorphism, and the group
UG := {Ug : g ∈ G} generates Φ, since

Ug
(
(ξj(h))j∈J

)
= (ξj(g)ξj(h))j∈J = (ξj(gh))j∈J , ∀g, h ∈ G.

Since the vectors in Φ are distinct, only U1 leaves them unchanged, so the kernel of g 7→ Ug
is {1} and UG is an isomorphic image of G.

(2 =⇒ 1). Suppose that Φ is generated by an abelian group G ⊂ U(H). For such
a commuting family of normal matrices there is a unitary V for which all Dg := V gV ∗

are diagonal (with diagonal entries of modulus 1), see, e.g., [HJ85:Th. 2.5.5]. Hence, for
φ ∈ Φ,

Φ = {gφ : g ∈ G} = V ∗Ψ, Ψ := {Dgψ : g ∈ G}, ψ := V φ.

Since Ψ is a unitary image of Φ, Ψ is an isometric tight frame, and so the matrix with these
vectors as columns has orthogonal rows of equal length. The length of row j is

√
n|ψj | > 0,

so the components of ψ have equal modulus, and we may write

Φ = V ∗ diag(ψ1, . . . , ψd) {Dg~1 : g ∈ G}, ~1 := (1, . . . , 1)T ,

where diag(ψ1, . . . , ψd) is a scalar multiple of a unitary matrix. It remains only to show

ξj : g 7→ (Dg~1)j = (Dg)jj , 1 ≤ j ≤ d

14



are characters of G, which follows since

ξj(g1g2) = (Dg1g2)jj = (Dg1Dg2)jj = (Dg1)jj(Dg2)jj = ξj(g1)ξj(g2).

(2 =⇒ 3). Suppose Φ is generated by G. Define φg := gφ. This is a bijection G→ Φ
that satisfies the required condition.

(3 =⇒ 2). Suppose (3) holds. Then by the proof of (4.2), Φ is generated by a group
UG which is a homomorphic image of G, hence is abelian. In the notation of Theorem 4.2,
UG = {Ug : g ∈ G} where Ugφh = φgh for g, h ∈ G. Since g 7→ φg is a bijection, we see
that g 7→ Ug is in fact an isomorphism G→ UG.

Example 4. To show that the group G in Theorem 5.4 need not be unique, let Φ be the
isometric tight frame of 4 equally spaced vectors in IR2

Φ := {
[

1
0

]
,

[
0
1

]
,

[−1
0

]
,

[
0
−1

]
},

which has symmetry group Sym(Φ) = D4 ⊂ U(IR2) as in (3.5), where

a =
(

0 −1
1 0

)
, b =

(
0 1
1 0

)
.

It is generated by the nonisomorphic abelian subgroups

〈a2, b〉 ≈ C2 × C2, 〈a〉 ≈ C4

Corollary 5.5 (Cyclic frames). Let Φ be an isometric tight frame of n vectors in C||d.
Then the following are equivalent

1. Φ is cyclic (obtained from the character table of a cyclic group G with |G| = |Φ|).
2. Φ is generated by a cyclic group.

3. There is a bijection ZZn → Φ, j 7→ φj for which

〈φj , φk〉 = 〈φj+l, φk+l〉, ∀j, k, l ∈ ZZn .

4. Φ can be ordered (φ1, . . . , φn) so that

〈φj , φk〉 = 〈φj+1, φk+1〉, ∀1 ≤ j, k < n.

The equivalence of 1 and 4 above was proved in [CK01:Prop. 2.4].
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Corollary 5.6 (Existence of real cyclic frames). For all d and n ≥ d, there exists a
cyclic frame of n vectors in IRd.

Proof: Let ω be a primitive n–th root of unity, and

v :=



ω
ω̄
ω2

ω̄2

...
ωd/2

ω̄d/2


(d even) v :=



1
ω
ω̄
ω2

ω̄2

...
ω(d−1)/2

ω̄(d−1)/2


(d odd).

Then Φ := (φj)n−1
j=0 , φj := (vj1, . . . , v

j
d)
T is a cyclic frame for C||d, generated by the cyclic

group G = 〈g〉, where

g :=


v1

v2
. . .

vd

 .

The inner product of any two elements of Φ is a sum of n–th roots of unity and their
conjugates, which is real. Hence by Theorem 2.13, there exists a unitary U mapping Φ
into IRd, and so giving a real cyclic frame.

This real tight frame has been considered by several authors, including [Z01] and
[CFKLT03] (who refer to it as the real harmonic frame).

Example 5. The unitary U of Corollary 5.6 can be constructed taking a block diagonal
matrix with all diagonal blocks given by

B :=
1√
2

(
1 1
−i i

)
, B

[
z
z

]
=
√

2
[<z
=z

]
,

except for d odd, when the last block is [1]. For example, when d is odd and ω := e2πi/n,
multiplying [φ0, . . . , φn−1] by 1√

2
U gives



1 cos(2π 1
n ) cos(2π 2

n ) · · · cos(2π n−1
n )

0 sin(2π 1
n
) sin(2π 2

n
) · · · sin(2π n−1

n
)

1 cos(2π 2
n
) cos(2π 4

n
) · · · cos(2π 2(n−1)

n
)

0 sin(2π 2
n
) sin(2π 4

n
) · · · sin(2π 2(n−1)

n
)

...
...

...
...

1 cos(2π kn ) cos(2π 2k
n ) · · · cos(2π (n−1)k

n )
0 sin(2π kn ) sin(2π 2k

n ) · · · sin(2π (n−1)k
n )

1√
2

1√
2

1√
2

· · · 1√
2


, k :=

d− 1
2

. (5.7)
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This example is well-known and more details can be found in [GVT98] and [Z01]. We can
now add the observation that this isometric tight frame is generated by a cyclic group of
order n.

Example 6. The d+ 1 vertices of the regular simplex in IRd form a cyclic frame, namely
the one obtained by deleting the first row of 1’s in (5.3).

It is possible to obtain tight frames from the character table of a nonabelian group
in a similar way to our construction of harmonic frames. However, the tight frames so
obtained are in general not isometric, and seem not to have symmetries related to the
group they were obtained from.

6. Construction of transitive tight frames

Here we answer the question: given a finite subgroup G of U(H), which G–orbits are
isometric tight frames? Such frames are in general not harmonic. Our results are later
used to construct examples of transitive tight frames with given symmetries.

Many highly symmetric configuarations of vectors such as the nth roots of unity in IR2

and the vertices of the platonic solids in IR3 are known to be isometric tight frames with
large symmetry groups (see eg. [BF03]). We first show how to construct such examples
as group orbits.

Definition 6.1. A finite group G ⊂ U(H) is irreducible if for every φ 6= 0, φ ∈ H

span(Gφ) = H, (6.2)

otherwise it is said to be reducible.

Theorem 6.3 (Irreducible frames). Let G ⊂ U(H) be an irreducible finite group.
Then the G–orbit of every nonzero φ ∈ H is an isometric tight frame for H.

Proof: Suppose G is irreducible. Let φ ∈ H, φ 6= 0, and define a linear map
Sφ : H → H by

Sφ(f) :=
∑
g∈G

〈f, gφ〉gφ

As each element of Gφ occurs the same number of times in the list (gφ)g∈G, we need
only show that Sφ is a scalar multiple of the identity. It is easily shown that Sφ is positive
definite, hence has a positive eigenvalue λ. It is also easy to see that Sφ commutes with
every element of G, hence the λ– eigenspace ker(S−λI) is a nontrivial G-invariant subspace
of H, which must be all of H since G is irreducible. Thus

f =
1
λ
Sφ(f) =

1
λ

∑
g∈G

〈f, gφ〉gφ = c
∑
ψ∈Gφ

〈f, ψ〉ψ, ∀f ∈ H,

for some c > 0, so Gφ is an isometric tight frame
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A more detailed proof of this result, together with an historical discussion, can be
found in [VW03]. In that paper, we obtain as immediate applications of (6.3) the facts
that the nth roots of unity, vertices of the platonic solids, and vertices of the truncated
icosahedron are tight frames. Of course, there are many other examples.

We now show that there are many examples of isometric tight frames generated by
irreducible groups which are not harmonic frames, and therefore cannot be generated by
an abelian group.

Theorem 6.4. Suppose G ⊂ U(H) is an irreducible group, and let S := {φ : ‖φ‖ = 1}.
For each g ∈ G, define a map fg : S → IF by

fg(φ) := 〈φ, gφ〉, ∀φ ∈ S.

If fg is not constant for some choice of g, then some G–orbit is an isometric tight frame
for H which is not generated by an abelian group.

Proof: Suppose some such fg is not constant. Then fg(S) is a connected subset
of IF (the continuous image of a connected set) containing two distinct points, and so fg(S)
is uncountable. Thus there exists a φ ∈ S for which fg(φ) = 〈φ, gφ〉 is not a sum of roots
of unity (as only countably many such sums exist). Therefore Gφ is not a harmonic frame,
and so, by Theorem 5.4, is not generated by an abelian group.

Given a group G ⊂ U(H), it need not be the case that every G–orbit is a tight frame.
We now show that if some G–orbit spans H, then there is a G–orbit which is a tight frame.
This result was also given in [BE03], for the case of abelian G.

Theorem 6.5. Let G ⊂ U(H) be a finite group, v a vector whose G–orbit spans H, and
define

φ := S−1/2v, Sf :=
∑
g∈G

〈f, gv〉gv.

Then Gφ is a transitive isometric tight frame (whose symmetry group contains G).

Proof: It is well-known that Ψ := {S−1/2gv}g∈G is a tight frame (it is the “as-
sociated tight frame” of the spanning set Gφ). It is easy to show that S commutes with
every g ∈ G, hence so does S−1/2 (since S−1/2 can be written as a power series in S).
Therefore, Ψ = GS−1/2v is a transitive isometric tight frame generated by G, as required.

Thus we now know that given a finite group G ⊂ U(H):

1. Every G–orbit spans H if and only if every G–orbit is a tight frame (Theorem 6.3).

2. There exits a G–orbit which spans H if and only if there exists a G–orbit which is a
tight frame (Theorem 6.5).

For case 2, we now determine exactly which G–orbits are tight frames. For this, it is
natural to use the language of IFG–modules (representation theory).
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Definition. Let V be a vector space over IF and G be a group. Then V is said to be an
IFG–module if there is multiplication gv, g ∈ G, v ∈ V which is an action of G on V with
v 7→ gv being a linear map, i.e., satisfying for all u, v ∈ V , α, β ∈ IF and g, h ∈ G

1. gv ∈ V , (gh)v = g(hv), 1v = v.
2. g(αu+ βv) = α(gu) + β(gv).

We are concerned only with the case when G acts on H as unitary transformations,
i.e., each g ∈ G induces a unitary transformation H → H : v 7→ gv.

Definition. A subspace W of an IFG–module V is called an IFG–submodule of V if it
is G–invariant, i.e., gw ∈ W , ∀g ∈ G, ∀w ∈W .

Definition. An IFG–module V is irreducible if V is not zero and has no IFG–submodules
apart from {0} and V .

Thus an irreducible IFG–submodule is precisely a minimal nontrivial G–invariant subspace,
i.e., a subspace W of V for which span(Gw) = W , ∀w ∈W \ {0}.
Definition. A linear transformation σ : Vi → Vj between IFG–modules Vi and Vj is
said to be an IFG–homomorphism if it satisfies σg = gσ, ∀g ∈ G. A bijective IFG–
homomorphism is called an IFG–isomorphism and we write Vi ≈ Vj to mean that there
exists an IFG–isomorphism σ : Vi → Vj .

We now give a version of Maschke’s theorem: that an IFG–module can be written as
an algebraic direct sum of irreducible submodules, where the fact that G acts as unitary
transformations allows us to obtain an orthogonal sum.

Lemma 6.6 (Maschke). Let G be a finite group which acts on V = H as unitary
transformations, e.g., G ⊂ U(H). Then the IFG–module V can be written as an orthogonal
direct sum V = V1⊕V2⊕· · ·⊕Vk of irreducible IFG–submodules Vi, where the summands
are unique up to ordering and IFG–isomorphism, and the homogeneous components

HV (W ) :=
∑
X⊂V
X≈W

X =
⊕
Vj≈W

Vj

corresponding to an irreducible W are unique.

Proof: We use strong induction on d = dim(H). The result is trivial for d = 0.
Suppose d > 0 and let V1 6= {0} be an irreducible IFG–submodule of V . Then V = V1⊕W
with W the orthogonal complement of V1. We now show W is an IFG–submodule of V ,
which will complete the proof.

Let g ∈ G, w ∈W , then

〈gw, v〉 = 〈w, g−1v〉 = 0, ∀v ∈ V1

since g−1v ∈ V1, and so gw ∈ V ⊥1 = W .
It is easy to show the Vj are unique upto IFG–isomorphism (Jordan–Hölder), and that

HV (W ) =
⊕

Vj≈W Vj .
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Thus each V has a unique orthogonal decomposition into its homogeneous components

V =
⊕
W∈W

HV (W ),

where W is the collection of different irreducible W which appear as submodules of V .

Lemma 6.7. Let G be a finite group which acts on H as unitary transformations, and
H = V1 ⊕ V2 ⊕ · · · ⊕ Vk an orthogonal direct sum of irreducible IFG–modules. Then Gv,
v = v1 + v2 + · · ·+ vk, vi ∈ Vi, is an isometric tight frame for H if and only if

‖vi‖2
‖vj‖2 =

dim(Vi)
dim(Vj)

, ∀1 ≤ i, j ≤ k. (6.8)

∑
g∈G

〈vi, gvi〉gvj = 0, ∀i 6= j. (6.9)

Proof: Since each element of Gv appears the same number of times in the list
(gv)g∈G, we know that Gv is an isometric tight frame for H if and only if there exists a
λ > 0 such that ∑

g∈G
〈f, gv〉gv = λf, ∀f ∈ H.

We need only check this for f = fi ∈ Vi, 1 ≤ i ≤ k. We have

∑
g∈G

〈fi, gv〉gv =
∑
g∈G

〈fi, gv〉
k∑
j=1

gvj =
∑
g∈G

〈fi, gvi〉gvi +
∑
j 6=i
〈fi, gvj〉gvj. (6.10)

Equating the Vj components of (6.10), we see that (6.10) equals λfi if and only if the
following hold ∑

g∈G
〈fi, gvi〉gvi = λfi, (6.11)

∑
g∈G

〈fi, gvj〉gvj = 0 ∀j 6= i. (6.12)

To check (6.11), observe that for 1 ≤ i ≤ k, the restiction G|Vi
of G to Vi is a subgroup

of U(Vi) acting irreducibly on Vi, so we can apply (6.3) to obtain∑
g∈G

〈fi, gvi〉gvi = λifi,

for some λi > 0. To calculate λi, let {ej}1≤j≤dim(Vi) be an orthonormal basis of Vi. Then∑
g∈G

〈ej , gvi〉gvi = λiej , 1 ≤ j ≤ dim(Vi)
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which implies ∑
j

∑
g∈G

|〈ej , gvi〉|2 = λi dim(Vi) =
∑
g∈G

‖gvi‖2 = |G|‖vi‖2.

Hence

λi =
|G|‖vi‖2
dim(Vi)

So (6.11) holds if and only if

λ = λi =
|G|‖vi‖2
dim(Vi)

, 1 ≤ i ≤ k ⇐⇒ ‖vi‖2
dim(Vi)

=
‖vj‖2

dim(Vj)
, 1 ≤ i, j ≤ k

as required.
Similarly, (6.12) holds ∀fi ∈ Vi iff it holds for the spanning set {hvi}h∈G ⊂ Vi, i.e.∑

g∈G
〈hvi, gvi〉gvj = h

∑
g∈G

〈vi, h−1gvi〉h−1gvj = 0,

giving (6.9).

We now describe a special case of the orthogonal decomposition of H into irreducible
IFG–modules, which makes (6.9) easy to check.

Let HomIFG(V,W ) be the space of IFG–homomorphisms from V to W , which is a
finite dimensional vector space over IF.

Lemma 6.13 (Schur). If V and W are irreducible IFG–modules, with G finite, then
HomIFG(V,W ) = 0 if V and W are not IFG–isomorphic, otherwise HomIFG(V,W ) is a
division ring.

An IRG–module can be made into a C||G–module by complexifying the underlying vector
space in the usual way. Thus an IFG–module V can always be thought of as a C||G–module.
If V is irreducible as a C||G–module then it is said to be absolutely irreducible.

Lemma 6.14. Let G be a finite subgroup of U(H), and Vi, Vj be irreducible IFG–modules.
Choose vi ∈ Vi and vj ∈ Vj nonzero, and define

S : Vi → Vj , Sf :=
∑
g∈G

〈f, gvi〉gvj.

Then S = 0 if Vi and Vj are not IFG–isomorphic. If σ : Vi → Vj is an IFG–isomorphism
and Vi is absolutely irreducible, then

Sf =
|G|‖vi‖2

dim(Vi)‖σvi‖2 〈vj , σvi〉 σf, ∀f ∈ Vi. (6.15)

Proof: Observe that S commutes with every g ∈ G, since

gS(f) = g
∑
h∈G

〈f, hvi〉hvj =
∑
h∈G

〈gf, ghvi〉ghvj = S(gf), (6.16)
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and so is an IFG–homomorphism. By Schur’s Lemma, it follows that S = 0 if Vi and Vj
are not IFG–isomorphic.

Suppose now Vi and Vj are IFG–isomorphic, and write S =
∑
k ckσk where {σk} is a

basis for HomIFG(Vi, Vj) over IF. We then compute

〈Svi, σrvi〉 = 〈
∑
g∈G

〈vi, gvi〉gvj, σrvi〉 =
∑
g∈G

〈vi, gvi〉〈gvj, σrvi〉

=
∑
g∈G

〈g−1vi, vi〉〈vj , σrg−1vi〉 = 〈vj , σr
∑
g∈G

〈vi, g−1vi〉g−1vi〉.

Since Vi is irreducible, the G–orbit of vi 6= 0 is an isometric tight frame for Vi, giving∑
g∈G

〈vi, g−1vi〉g−1vi =
|G|

dim(Vi)
‖vi‖2vi.

Hence the coefficients {ck} satisfy the invertible square linear system∑
k

ck〈σkvi, σrvi〉 =
|G|

dim(Vi)
‖vi‖2〈vj , σrvi〉, ∀r. (6.17)

This is invertible since the coefficient matrix is the Gramian of the vectors {σkvi} in Vj ,
which are linearly independent (since {σk} is linearly independent and nonzero elements
of HomIFG(Vi, Vj) are invertible). If Vi is absolutely irreducible, then HomIFG(Vi, Vj) is
one–dimensional, say spanned by σ1 = σ, and we can solve to obtain

c1 =
|G|‖vi‖2

dim(Vi)‖σvi‖2 〈vj , σvi〉

as required.

Theorem 6.18. Let G be a finite group which acts on H as unitary transformations, and
H = V1⊕V2⊕· · ·⊕Vk an orthogonal direct sum of irreducible IFG–modules for which the
summands that occur more than once are absolutely irreducible. If v = v1 + v2 + · · ·+ vk,
vi ∈ Vi, then Gv is an isometric tight frame for H if and only if

‖vi‖2
‖vj‖2 =

dim(Vi)
dim(Vj)

, ∀i, j (6.19)

and in the case Vi is IFG–isomorphic to Vj , i 6= j via σ : Vi → Vj that

〈σvi, vj〉 = 0. (6.20)

Proof: By Lemma 6.7, necessary and sufficient conditions for Gv to be an iso-
metric tight frame for H are (6.19), and, in the notation of Lemma 6.14, that Svi = 0. By
Lemma 6.14, this last condition holds by virtue of the fact S = 0, except in the case that
there is an IFG–isomorphism σ : Vi → Vj between absolutely irreducibles, whence (6.15)
gives

S(vi) =
|G|‖vi‖2

dim(Vi)‖σvi‖2 〈vj , σvi〉 σvi = 0 ⇐⇒ 〈σvi, vj〉 = 0.
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In particular, if isomorphic one–dimensional irreducibles occur in the orthogonal de-
composition of H, then no G–orbit can be a tight frame (since a 1–dimensional irreducible
is absolutely irreducible).

Next we use Theorem 6.18 to construct transitive tight frames of orthogonal polyno-
mials of several variables which share symmetries of the weight. In each of our examples
no irreducible occurs more than once, and so there is no need to check (6.20).

7. Applications to orthogonal polynomials

Here we apply our results to construct tight frames of orthogonal polynomials of
several variables which share the symmetries of the weight.

Let Π := Π(IRd) denote the polynomials in d real variables, and Πk := Π(IRd) those
of degree ≤ k. The most general definition of orthogonal polynomials, see, [DX01], is in
terms of a moment functional λ : Π → IR. For simplicity, we suppose λ is given by a
suitable measure µ, i.e., one with

λ : Π → IR : f 7→
∫
f dµ <∞,

and denote the corresponding inner product on polynomials by

〈f1, f2〉µ :=
∫
f1f2 dµ, ∀f1, f2 ∈ Π.

We say f ∈ Πk is an orthogonal polynomial with respect to the measure µ if

〈f, p〉µ = 0, ∀p ∈ Πk−1,

and denote the Hilbert space of such orthogonal polynomials of degree k by Vk(µ).

Definition. The symmetry group of µ is

Sym(µ) := {g ∈ Aff(IRd) :
∫
f ◦ g dµ =

∫
f dµ, ∀f ∈ Π},

where Aff(IRd) denotes the group of affine transformations on IRd.

This acts on Π via g ·f := f ◦g−1, with each g ∈ Sym(µ) inducing a unitary transformation

〈g · f1, g · f2〉µ =
∫

(f1 ◦ g−1)(f2 ◦ g−1) dµ =
∫

(f1f2) ◦ g−1 dµ =
∫
f1f2 dµ = 〈f1, f2〉µ,

which maps Vk(µ) onto itself since g ·Πk−1 = Πk−1, i.e., Vk(µ) is a G–invariant subspace.
More detail can be found in [W95].
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Definition. Let G be a subgroup of Sym(µ). We say a tight frame Φ for Vk(µ) has the
symmetries G of µ if it is G–invariant, i.e.,

g · Φ = Φ, ∀g ∈ G,

and when G = Sym(µ) that it shares the symmetries of µ.

This is equivalent to G · |Vk(µ) ⊂ Sym(Φ), where G · |Vk(µ) denotes the group of unitary
transformations Vk(µ) → Vk(µ) given by f 7→ g · f , g ∈ G. We now consider examples of
tight frames of Jacobi polynomials which share the symmetries of the weight.

Let V be a set of d+1 affinely independent points in IRd, i.e., the vertices of a d–simplex
which we denote by T . Let ξ = (ξv)v∈V be the corresponding barycentric coordinates. For
the (standard) triangle with vertices 0, e1 = (1, 0), e2 = (0, 1), these are

ξ0(x, y) = 1− x− y, ξe1(x, y) = x, ξe2(x, y) = y.

We will use standard multi–index notation for indices, so, for example,

ξκ :=
∏
v∈V

ξκv
v , κ ∈ IRV , β! :=

∏
v∈V

βv!, β ∈ ZZV+ .

For functions defined on T , we define an inner product by

〈f, g〉µ :=
∫
T

fg ξκ, κ > −1,

where the condition κv > −1 ensures the nonnegative weight ξκ is integrable over the
simplex T . The corresponding orthogonal polynomials are called the Jacobi polynomi-
als for the simplex T with weight ξκ, and Legendre polynomials when the weight is
constant, i.e., ξκ = 1.

The symmetry group of such a Jacobi measure is a group of affine maps which map
T onto T , which we represent as elements of SV the permutations on the vertices V (since
an affine map IRd → IRd is uniquely determined by its action on d+1 affinely independent
points such as V ). It is given by

G := Sym(µ) = {g ∈ SV : κgv = κv, ∀v ∈ V }.

A tight frame for Vk(µ) which shares the symmetries of this weight was given in [PW02]
(and [WX01]) and independently by [R99]. The structural form of this representation is

f =
∑
|β|=k

β∈ZZV
+

cκβ〈f, pκβ〉pκβ, ∀f ∈ Vk(µ), (7.1)

where pκβ := F (|β|+ |κ|+ d,−β, κ+ 1; ξ) with F the Lauricella function, which is clearly
G–invariant since G permutes the ξv with the same value of κv. These are not transitive
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tight frames for k ≥ 2. For the Legendre polynomials on a triangle we determine whether
or not a transitive tight frame exists.

For any measure µ an orthogonal polynomial f ∈ Vk(µ) is uniquely determined by its
leading term f↑, i.e., the homogeneous polynomial of degree k for which deg(f−f↑) < k,
via

f = f↑ − PΠk−1(f↑), PΠk−1 := orthogonal projection onto Πk−1(IRs).

Thus the space of orthogonal polynomials of (exact) degree k has

dim(Vk(µ)) =
(
k + d− 1
d− 1

)
.

Denote the Legendre polynomial with leading term (ξβ)↑, β ∈ ZZV+, |β| = k by pξβ .
The group G := Sym(µ) = SV of symmetries of the Legendre measure acts faithfully on
the Legendre polynomials of degree k ≥ 1, since the polynomials pξk

v
, v ∈ V are distinct

and each element of G permutes them in a different way. We normalise the Legendre inner
product, so that corresponding norm has ‖1‖ = 1.

Quadratic Legendre polynomials. Consider the 3–dimensional space of quadratic Leg-
endre polynomials on the triangle with vertices V = {u, v, w}. Clearly the 1–dimensional
subspace V1 spanned by

f1 := pξ2u+ξ2v+ξ2w
= pξ2u + pξ2v + pξ2w = ξ2u + ξ2v + ξ2w −

1
2
, ‖f1‖2 =

1
60

is G–invariant (G fixes f1), and its G–invariant orthogonal complement V2 := V ⊥1 is
irreducible (since otherwise G ≈ S3 would be diagonalisable and hence abelian). Hence by
Theorem 6.18 if we take a sum of components (with the appropriate norms) from each of
these subspaces the G–orbit of the resulting vector f will be a transitive tight frame. The
orthogonal projection of pξ2v onto V2 is given by

f2 := PV2(pξ2v) = pξ2v −
1
3

(
pξ2u + pξ2v + pξ2w

)
, ‖f2‖2 =

1
675

.

Since pξ2v = pξ2u + pξ2w − 2pξuξw
, this can also be expressed as

−f2 = pξuξw
+

1
6

(
pξ2u + pξ2v + pξ2w

)
= PV2(pξuξw

).

Hence the 3 vectors in the G–orbit of

f :=
f1
‖f1‖

1√
3
± f2
‖f2‖

√
2
3

= (2
√

5∓ 5
√

2)pξ2u+ξ2v+ξ2w
± 15

√
2pξ2v ,

form an orthonormal basis for the 3–dimensional space V2(µ) which shares the symmetries
of the Legendre measure. By contrast, the representation of (7.1) consists of 6 vectors with
two different scaling factors. We can also write this f in the form

f = (2
√

5∓ 5
2

√
2)pξ2u+ξ2v+ξ2w

∓ 15
√

2pξuξw
.
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We now depict the quadratic f whose orbit is an orthonormal basis, which is given by

f = (2
√

5− 5
√

2)
(
ξ2v + ξ2w + ξ2u −

1
2

)
+ 15

√
2
(
ξ2v −

4
5
ξv +

1
10

)

Fig. 1. Contour plots of f and those of its orbit showing the triangular symmetry.

Cubic Legendre polynomials. Consider the cubic Legendre polynomials on a triangle.
There is a 1–dimensional G–invariant subspace (on which G acts as the identity) given by

f1 := pξuξvξw
, ‖f1‖2 =

1
29400

,

and a 1–dimensional G–invariant subspace (on which G acts as C2) given by

f2 := pξu(ξ2v−ξ2w)+ξv(ξ2w−ξ2u)+ξw(ξ2u−ξ2v), ‖f2‖2 =
1

840
.

These spaces are orthogonal. The projection of pξ3v onto the orthogonal complement of f1
and f2 is

f3 := pξ3v − pξuξvξw
, ‖f3‖2 =

1
5880

,

which has a 2–dimensional G–orbit. Thus the G–orbit of any vector of the form

f = c1
1√
4
f1
‖f1‖ + c2

1√
4
f2
‖f2‖ + c3

√
2√
4
f3
‖f3‖ , |c1| = |c2| = |c3| = 1

is a transitive tight frame for the Legendre cubics.
Taking ci = 1, the orbit of f is

{(35
√

6− 14
√

15)f1 + c
√

210f2 + 14
√

15pξ3v : c ∈ {−1, 1}, v ∈ V },

which is a transitive tight frame of 6 vectors for the 4–dimensional space V3(µ) which
shares the symmetries of the Legendre measure. The representation of (7.1) consists of 10
vectors with three different scaling factors.
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Quartic Legendre polynomials. The quartics V4(µ) have two different IRG–isomorphic
1–dimensional G–invariant subspaces, given by

pξ4v+ξ4w+ξ4u
, pξvξ3w+ξuξ3w+ξuξ3v

and so there can be no transitive tight frame for the quartics which shares the symme-
tries of the Legendre measure. Similarly, none exists for V5(µ) because of the G–invariant
subspaces given by

pξ5v+ξ5w+ξ5u
, pξvξ4w+ξuξ4w+ξuξ4v

,

and none exists for Vk(µ), k ≥ 6 since this space has dimension k + 1 > 6 and a
G–orbit has at most |G| = 6 elements.

In the paper [Du87] the orthogonal polynomials on the hexagon are considered, i.e.,
those for µ the normalised Lebesgue integral over the hexagon H with vertices

{(sin(πj/3), cos(πj/3)) : j = 1, . . . , 6},
which has symmetry group G = D6. The method given there is to split Vk(µ) into the
orthogonal direct sum of its homogeneous components H(Vj) corresponding to different
irreducible G–invariant subspaces Vj . (If Vk(µ) = V1 ⊕ V2 ⊕ · · · ⊕ Vk is a decomposition
of Vk(µ) into a direct sum of irreducibles, the homogeneous component H(Vj) is defined
to be H(Vj) = ⊕Vr≈Vj

Vr). Then for each H(Vj) use Gram–Schmidt (in a clever way)
to construct an orthonormal basis. For example, the quadratics have a 1–dimensional
G–invariant subspace V1 (on which G acts as the identity) given by

p2,0 := x2 + y2 − 5
12
, ‖p2,0‖2 =

43
720

.

Its orthogonal complement V2 := V ⊥1 is a 2–dimensional G–invariant subspace. This is
further split V2 = V +

2 ⊕ V −2 into two 1–dimensional subspaces given by

p2,+2 := x2 − y2 + 2ixy, p2,−2 := x2 − y2 − 2ixy, ‖p2,±2‖ =
7
30
,

which are nonisomorphic irreducible C6–invariant subspaces, where C6 is the rotation sub-
group of G = D6. The resulting orthogonal basis {p2,0, p2,+2, p2,−2} is therefore invariant
under the rotations of the hexagon, with its first element also fixed by all symmetries of
the hexagon. By Theorem 6.18, the G–orbit of any vector of the form

f =
f1
‖f1‖

1√
3

+
f2
‖f2‖

√
2√
3
, f1 ∈ V1, f2 ∈ V2

is a transitive tight frame for the quadratics which shares the symmetries of the hexagon.
The size of this orbit divides |G| = 12. For the choice f = x2 − 5/24, it consists of three
vectors

Gf =
{
x2 − 5

24
,
(1

2
x−

√
3

2
y
)2

− 5
24
,
(1

2
x+

√
3

2
y
)2

− 5
24

}
, ‖f‖2 =

127
2880

,
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giving an orthonormal basis for V2(µ) which shares all the symmetries of the hexagon.

Fig. 2. Contour plots of f and those of its orbit showing the hexagonal symmetry.
As a final examples, consider the 3-dimensional space of quadratic Legendre polynomi-

als on the square [−1, 1]2 ⊂ IR2. This has symmetry group D4. It is possible to construct
a transitive tight frame of 4 vectors for this space. The orthogonal decomposition into
homogeneous components consists of three 1–dimensional subspaces given by

x2 + y2 − 2
3
, x2 − y2, xy, ‖φ‖2 =

8
45
,

8
45
,
1
9
.

On the first D4 acts as the identity, and on the others as C2. The last two are not
isomorphic irreducibles since the symmetry (x, y) 7→ (y, x) fixes xy but not x2−y2. Hence
taking any sum of vectors of equal length from these subspaces gives a vector φ whose
orbit is a transitive tight frame, e.g.,

φ :=
√

5
2

(
x2 + y2 − 2/3

)
+
√

5
2

(
x2 − y2

)
+
√

2xy =
√

5
(
x2 − 1

3

)
+
√

2 xy

gives the transitive tight frame

D4φ =
{√

5
(
x2 − 1

3

)
±
√

2 xy,
√

5
(
y2 − 1

3

)
±
√

2xy
}
, ‖φ‖2 =

2
3
. (7.2)

which clearly shares the symmetries of the square. These are hyperbolic paraboloids since

φ = −
√

5
3

+
1
2

{
(
√

5 +
√

7)

(√
5+
√

7√
2

x+ y
)2

(
√

5+
√

7)2

2
+ 1

− (
√

7−
√

5)

(√
5−√7√

2
x+ y

)2

(
√

5−√7)2

2
+ 1

}

Fig. 3. Contour plots of φ and those of its orbit showing the square symmetry.
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