
EXTREMAL GROWTH OF POLYNOMIALS

LEN BOS, SIONE MA’U, AND SHAYNE WALDRON

Abstract. We give an exposition of some simple but applicable cases of worst-

case growth of a polynomial in terms of its uniform norm on a given compact set

K ⊂ Cd. Included is a direct verification of the formula for the pluripotential
extremal function for a real simplex. Throughout we attempt to make the

exposition as accessible to a general (analytic) audience as possible, avoiding

wherever possible the finer details of Pluripotential Theory.

1. Introduction

In this expository article we discuss the following basic problem. Suppose that
K ⊂ Cd is compact and that p ∈ C[z], z ∈ Cd, is a (complex) polynomial such that
‖p‖K := maxz∈K |p(z)| ≤ 1. Then

how big can |p(z0)| be for z0 ∈ Cd\K?

The best answer to this question is given by the celebrated Siciak-Zaharjuta
extremal function of Pluripotential Theory which may be defined as
(1)

VK(z) = sup

{
1

deg(p)
log |p(z)| : p(z) is a non-constant polynomial, ‖p‖K ≤ 1

}
.

Consequently, for any p ∈ C[z] and z0 ∈ Cd\K

(2) |p(z0)| ≤ ‖p‖K exp(deg(p)VK(z0)),

and the extremal function indeed gives the worst-case growth of a polynomial at a
point outside K relative to its maximum norm on K.

In dimension d = 1 the (uppersemicontinuous regularization of the) extremal
function is identical to the exterior Green’s function for K with pole at infinity and
thus generalizes this important function to several variables. We mention three of
its important applications.

1. Siciak’s Generalization of the Bernstein-Walsh Approximation Theo-
rem.

Theorem 1.1. (Siciak [16]) Let K ⊂ Cd be compact with VK continuous on Cd.
Let R > 1, and let ΩR := {z : VK(z) < logR}. Let f be continuous on K. Then
for the best approximation errors

Dn(f,K) := inf{‖f − p‖K : p is a polynomial of degree at most n},

lim sup
n→∞

Dn(f,K)1/n ≤ 1/R

if and only if f is the restriction to K of a function holomorphic in ΩR.
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2. Baran’s Generalization of Bernstein-Markov Polynomial Inequalities.

Theorem 1.2. (Baran [2]) Let K be a compact set in Rd with nonempty interior.
Then for every x ∈ int(K) we have the following inequality for a real polynomial p

|Djp(x)| ≤ (degP )D+
j VK(x)(‖p‖2K − p2(x))1/2 for j = 1, · · · , d.

Here Djp is the partial derivative with respect to xj and

D+
j VK(x) := lim inf

ε→0+

1

ε
VK(x+ iεej)

with ej ∈ Rd, the j-th elementary coordinate vector.

3. The Asymptotics of Fekete Points.

For a given compactK ⊂ Cd the polynomials of degree at most n, when restricted
to K, form a vector space of dimension Nn, say. Suppose that {P1, P2, · · · , PNn

} is
a basis for this space. Then the associated Vandermonde determinant is defined by

vdm(x1, · · · , xNn
) := det([Pi(xj)]1≤i,j≤Nn

), x1, x2, · · · , xNn
∈ Rd.

A set of points {z1, · · · , zNn
} ⊂ K for which

|vdm(z1, · · · , zNn
)| = max

x1,··· ,xNn∈K
|vdm(x1, · · · , xNn

)|

is said to be a set of Fekete points of degree n for K. Such sets of points are nearly
optimal for polynomial interpolation (cf. [6]) and, in particular, are used in the
Spectral Element Method for the numerical solution of PDEs. Recently it has been
shown that their asymptotics are given by the so-called equilibrium measure of K
given by the (non-linear) complex Monge-Ampere operator (cf. [11]) applied to VK .

Theorem 1.3. (Berman, Boucksom and Nystrom [5]) Suppose that K ⊂ Cd is

compact and such that VK is continuous on Cd. For each n ∈ N let {z(n)
1 , . . . , z

(n)
Nn
}

be a set of Fekete points of degree n for K. Let µK be the pluripotential equilibrium
measure of K. Then the sequence of equally weighted discrete probability measures
based on Fekete points

lim
n→∞

1

Nn

Nn∑
k=1

δ
z
(n)
k

= µK

in the weak-* sense.
Here, for z ∈ Cd, δz denotes the Dirac measure supported at z.

We hope that we have persuaded the reader of the value of the extremal function.
Its general theory is an intimate part of Pluripotential Theory which an interested
reader may pursue in Klimek’s excellent monograph [11].

However, in some cases the answer to our basic question may be provided using
entirely elementary means. It is on these special cases that we focus on in this
article, with a special emphasis on when K ⊂ Rd is a real simplex. Throughout,
the Chebyshev polynomials (of the first kind) will play an important role. They
may be defined by either

1. Tn(x) = cos(nθ), x = cos(θ) ∈ [−1, 1]

2. Tn(z) =
1

2

((
z +

√
z2 − 1

)n
+
(
z −

√
z2 − 1

)n)
, z ∈ C

3. Tn+1(z) = 2zTn(z)− Tn−1(z), T0(z) = 1, T1(z) = z, z ∈ C.
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2. The univariate case

We begin with the classical univariate case of K = [−1, 1]. As is well-known
(see e.g. Rivlin [15, §2.7]), the Chebyshev polynomials have minimal growth inside
[−1, 1] and maximal growth outside [−1, 1]. Specifically

Proposition 2.1. Suppose that p ∈ R[x] is a real (univariate) polynomial such
that ‖p‖[−1,1] ≤ 1. Then, for x0 ∈ R\[−1, 1],

|p(x0)| ≤ |Tn(x0)|, n = deg(p)

which is attained precisely for p(x) = ±Tn(x).

It is perhaps less well-known that, as shown by Erdos [10], the Chebyshev poly-
nomials are also extremal in this sense at points z ∈ C, |z| ≥ 1.

Proposition 2.2. Suppose that p ∈ R[x] is a real (univariate) polynomial such
that ‖p‖[−1,1] ≤ 1. Then, for z0 ∈ C such that |z0| ≥ 1,

|p(z0)| ≤ |Tn(z0)|, n = deg(p)

which is attained precisely for p(x) = ±Tn(x).

Proof. For completeness we give a self-contained proof, expanding on the indica-
tions given in [10]. Suppose then that p ∈ R[x] is such that ‖p‖[−1,1] ≤ 1 and let
n := deg(p). The Chebyshev polynomial Tn(z) has extreme points xk := cos(kπ/n),
k = 0, 1, · · · , n, in the interval [−1, 1]. We will actually prove the more general state-
ment that if p ∈ R[x] is such that |p(xk)| ≤ 1, k = 0, 1 · · · , n, then

|p(z0)| ≤ |Tn(z0)|, |z0| ≥ 1.

To see this we write p(z) as its own interpolant at the xk, i.e.,

p(z) =

n∑
k=0

p(xk)`k(z)

where

`k(z) :=
ωn(z)

ω′n(xk)(z − xk)
, k = 0, 1, · · · , n,

with ωn(z) := C
∏n
k=0(z − xk) (for any constant C ∈ C\{0}) are the fundamental

Lagrange polynomials. It is easy to check that we may take

ωn(z) = Tn+1(z)− Tn−1(z)

and that then

ω′n(xk) = (−1)k

{
2n k = 1, 2, · · · , (n− 1)

4n k = 0, n

so that

`k(z) =
ωn(z)

2n(z − xk)

{
(−1)k k = 1, 2, · · · , (n− 1)
1
2 (−1)k k = 0, n

and we may write

p(z) =
ωn(z)

2n

n∑′

k=0

(−1)k
p(xk)

z − xk
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and, since Tn(xk) = (−1)k,

Tn(z) =
ωn(z)

2n

n∑′

k=0

1

z − xk

where the prime on the sum denotes that the first and last terms are to be halved.
Now, as |Tn(±1)| = 1, our claim is trivial for z0 = ±1. Otherwise we must show

that for |z0| ≥ 1 ∣∣∣∣∣
n∑′

k=0

(−1)k
p(xk)

z0 − xk

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑′

k=0

1

z0 − xk

∣∣∣∣∣
for which it suffices to show that

(3)

∣∣∣∣∣
n∑′

k=0

yk
z0 − 1

z0 − xk

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑′

k=0

z0 − 1

z0 − xk

∣∣∣∣∣
for any values yk with |yk| ≤ 1, k = 0, 1, · · · , n. Now, if we write z0 = x + iy,
x, y ∈ R, then a brief calculation yields

z0 − 1

z0 − xk
=
{(x2 + y2)− (1 + xk)x+ xk}+ i(1− xk)y

|z0 − xk|2
.

We notice that

(x2 + y2)− (1 + xk)x+ xk

≥ min{(x2 + y2)− (1 + (−1))x+ (−1), (x2 + y2)− (1 + (+1))x+ (+1)}
= min{x2 + y2 − 1, (x− 1)2 + y2} ≥ 0

so that

<
(
z0 − 1

z0 − xk

)
≥ 0

for all k = 0, 1, · · · , n and the sign of =
(
z0 − 1

z0 − xk

)
depends only on the sign of

=(z0). Hence, if we write ak + ibk :=
z0 − 1

z0 − xk
, ak, bk ∈ R we have that the ak are

of constant sign and that the bk are of constant sign.
With this notation, the condition (3) becomes∣∣∣∣∣

n∑′

k=0

yk(ak + ibk)

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑′

k=0

(ak + ibk)

∣∣∣∣∣ .
But, ∣∣∣∣∣

( n∑′

k=0

ak

)
+ i

( n∑′

k=0

bk

)∣∣∣∣∣
2

=

( n∑′

k=0

ak

)2

+

( n∑′

k=0

bk

)2

=

( n∑′

k=0

|ak|

)2

+

( n∑′

k=0

|bk|

)2
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and hence, since |yk| ≤ 1,∣∣∣∣∣
n∑′

k=0

yk(ak + ibk)

∣∣∣∣∣
2

=

∣∣∣∣∣
n∑′

k=0

(ykak + iykbk)

∣∣∣∣∣
2

=

∣∣∣∣∣
( n∑′

k=0

ykak

)
+ i

( n∑′

k=0

ykbk

)∣∣∣∣∣
2

≤

∣∣∣∣∣
( n∑′

k=0

|ykak|

)
+ i

( n∑′

k=0

|ykbk|

)∣∣∣∣∣
2

≤

∣∣∣∣∣
( n∑′

k=0

|ak|

)
+ i

( n∑′

k=0

|bk|

)∣∣∣∣∣
2

=

∣∣∣∣∣
n∑′

k=0

(ak + ibk)

∣∣∣∣∣
2

.

�

Remark. For |z0| < 1 the Chebyshev polynomial Tn(z) is not always extremal.
Indeed for degree one, T1(z) = z and hence |T1(z0)| < 1 and is beaten by even
p(x) = 1. In general, if |z0| < 1, the extremal polynomial depends on the point z0

and a formula for it does not seem to be known. �

The case of a polynomial with complex coefficients p ∈ C[z] is more complicated.
In general Tn(z) is not extremal, even at points |z0| ≥ 1. For example, take p(z) :=

(1− iz)/
√

2. Then for x ∈ [−1, 1], |p(x)| =
√

1 + x2/
√

2 ≤ 1, but

|p(ir)| = 1 + r√
2

> r = |T1(ir)|, for 0 < r <
√

2 + 1.

In general the extremal polynomials are not known. But nevertheless, at real points
we have:

Corollary 2.3. Suppose that p ∈ C[z] is such that ‖p‖[−1,1] ≤ 1. Then, setting
n := deg(p),

|p(x0)| ≤ |Tn(x0)|, x0 ∈ R\[−1, 1].

Proof. Write p(z) = a(z) + ib(z) with a, b ∈ R[x]. Then for x ∈ [−1, 1],

0 ≤ a2(x) + b2(x) = |p(x)|2 ≤ 1.

It follows that q(x) := 2(a2(x) + b2(x))− 1 is a polynomial of degree 2n such that
‖q‖[−1,1] ≤ 1. Then by Proposition 2.1 we have

|q(x0)| ≤ |T2n(x0)|, x0 ∈ R\[−1, 1].

But

T2n(x) = 2T 2
n(x)− 1

as this holds for x = cos(θ) and we have

2|p(x0)|2 − 1 ≤ |2T 2
n(x0)− 1| = 2T 2

n(x0)− 1

from which the result follows easily. �
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Remark. Proposition 2.2 shows that for real polynomials p ∈ R[x] of degree at
most n and z0 ∈ C\[−1, 1], |z0| ≥ 1,

max
‖p‖[−1,1]≤1

|p(z0)| = max
‖p‖Xn≤1

|p(z0)|

where Xn ⊂ [−1, 1] is the set of extreme points of the Chebyshev polynomial
Tn(x). For complex polynomials p ∈ C[z] this is not in general true (at least for
|z0| < 1). However, max‖p‖Xn≤1 |p(z0)| can always be easily determined for any

z0 ∈ C\[−1, 1]. Indeed, write p(z) =
∑n
k=0 p(xk)`k(z) in Lagrange form so that

|p(z0)| ≤
n∑
k=0

|p(xk)| |`k(z0)| ≤
n∑
k=0

|`k(z0)|

for ‖p‖Xn ≤ 1. The extremal polynomial is given by

p(z) =

n∑
k=0

`k(z0)

|`k(z0)|
`k(z).

Remark. We also mention a result of Duffin and Schaeffer ([9], see also [7], The-
orem 5.2.1), in which Chebyshev polynomials may be used to give bounds on the
derivatives of a real polynomial. If p is a polynomial of degree at most n and
‖p‖Xn ≤ 1, then for each m = 1, . . . , n, the m-th derivative of p satisfies

|p(m)(z)| ≤ |T (m)
n (1 + =(z))|, whenever <(z) ∈ [−1, 1].

�

Despite the difficulty of identifying the precise extremal polynomials it is nev-
ertheless possible to calculate the extremal function (1) providing the bound on
polynomials (2). In fact, we show that although the Chebyshev polynomials are
not always extremal, they do determine the function V[−1,1](z).

Proposition 2.4. (cf. Bernstein’s Lemma, [14, Thm. 5.5.7]) At any point z ∈
C\[−1, 1]

V[−1,1](z) = sup
n≥1

1

n
log |Tn(z)| = log |h(z)|

where we define

h(z) := z +
√
z2 − 1

with the branch of the square root chosen so that |h(z)| ≥ 1.
Consequently, for any (complex) polynomial p ∈ C[z] and z ∈ C\[−1, 1],

|p(z)| ≤ ‖p‖[−1,1]|h(z)|n ≤ ‖p‖[−1,1](2|Tn(z)|+ 1).

Remark. To understand the function h(z) a bit better, consider the so-called
Joukowski transformation

J(z) :=
1

2

(
z +

1

z

)
.

For |z| = r,

J(reiθ) =
1

2
(r + 1/r) cos(θ) + i

1

2
(r − 1/r) sin(θ)

and we see that J maps the unit circle |z| = 1 to the interval [−1, 1] and the
circle |z| = r, r 6= 1 to the ellipse (x/a)2 + (y/b)2 = 1 with a = (1/2)(r + 1/r),
b = (1/2)|r−1/r|. In particular J maps the exterior of the unit disk to the exterior of
the interval [−1, 1] and is one-to-one and onto there. The function h(z) is precisely
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the inverse of J(z), mapping the exterior of the interval to the exterior of the unit
disk, i.e., |h(z)| ≥ 1. Since J(z) is analytic, h(z) is also analytic. Also, the level sets
{z ∈ C\[−1, 1] : |h(z)| = ρ} are exactly the ellipses described above with r = ρ.
These having foci ±1, may also be described as {z ∈ C : |z − 1| + |z + 1| = 2a},
i.e.,

a =
1

2
(|z − 1|+ |z + 1|) ≥ 1

is a point on the same ellipse (level set of |h(z)|) as is z. In other words, we may
evaluate

|h(z)| = h

(
|z − 1|+ |z + 1|

2

)
.

We also remark that the second definition of the Chebyshev polynomials given in
the introduction may be interpreted as

Tn(z) = J(hn(z)), z ∈ C.

Perhaps it is also worth noting that from this it easily follows that

hn(z) = Tn(z) + Un−1(z)
√
z2 − 1

where Un−1(z) = (1/n)T ′n(z) is the Chebyshev polynomial of the second kind. �

Proof of the Proposition. We have two things to prove:

(1) that if p ∈ C[z] is such that ‖p‖[−1,1] ≤ 1 then
1

deg(p)
log |p(z)| ≤ log |h(z)|,

(2) that sup
n≥1

1

n
log |Tn(z)| = log |h(z)|,

both for z ∈ C\[−1, 1].
Let U be the domain U := C\[−1, 1].
To see (1) note that log |h(z)| is harmonic on U and zero on the boundary of

U, i.e., ∂U = [−1, 1], while
1

deg(p)
log |p(z)| is harmonic on U except at zeros of

p inside U, making it technically subharmonic on U and ≤ 0 on ∂U. For α > 1
consider then the function

fα(z) :=
1

deg(p)
log |p(z)| − α log |h(z)|.

It then is also subharmonic on U, ≤ 0 on [−1, 1] and moreover

lim
|z|→∞

fα(z) = −∞.

Hence, by the maximum principle for subharmonic functions (see e.g. Ransford
[14]), we have that fα(z) ≤ 0, ∀z ∈ U, i.e.,

1

deg(p)
log |p(z)| ≤ α log |h(z)|, z ∈ U.

Property (1) then follows from the fact that α > 1 was arbitrary.
To see (2), we use the second formula for Chebyshev polynomials given in the

Introduction

Tn(z) =
1

2

((
z +

√
z2 − 1

)n
+
(
z −

√
z2 − 1

)n)
= J(hn(z)), z ∈ C.
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Clearly then

lim
n→∞

1

n
log |Tn(z)| = |h(z)|.

Since by (1) we also know that (1/n) log |Tn(z)| ≤ log |h(z)|, the result (2) follows.
The final inequality follows by noting that hn(z) = 2Tn(z) − h−n(z) and that

|h(z)| ≥ 1. �

Remark. A C2 subharmonic function u(z) is characterized by having a non-
negative Laplacian,

∆u(z) ≥ 0.

If we change the usual Cartesian coordinates x, y to the complex coordinates z, z
with partial derivatives defined by

∂u

∂z
:=

1

2

(
∂u

∂x
− i∂u

∂y

)
,
∂u

∂z
:=

1

2

(
∂u

∂x
+ i

∂u

∂y

)
then we may write the Laplacian as

∆u = 4
∂2u

∂z∂z
.

These second mixed partial derivatives play an important role in the multivariate
case. �

We now consider the other standard univariate case, that of K ⊂ C, the unit
disk.

Proposition 2.5. Suppose that K = {z ∈ C : |z| ≤ 1} is the unit disk and that
p ∈ C[z] is such that ‖p‖K ≤ 1. Then for any z0 ∈ C\K, i.e., |z0| > 1,

|p(z0)| ≤ |zn0 | = |z0|n, n := deg(p).

Moreover,

VK(z) = log |z|, z ∈ C\K.

Proof. The argument is really the same as for Proposition 2.4 (but easier), replac-
ing Tn(z) by zn. Indeed, in this case, for any α > 1, we set

fα(z) :=
1

deg(p)
log |p(z)| − α log |z|

and note that fα(z) is subharmonic outside the unit disk, is negative on the bound-
ary of the disk, and

lim
|z|→∞

fα(z) = −∞.

Hence, for |z| ≥ 1, fα(z) ≤ 0, i.e.,

1

deg(p)
log |p(z)| ≤ α log |z|, |z| ≥ 1.

The result follows from the fact that α > 1 was arbitrary. �
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3. The case of K ⊂ Rd the unit ball of a norm

Suppose that

K = {x ∈ Rd : ‖x‖ ≤ 1}
is the unit ball for some norm ‖x‖ on Rd (or, equivalently, that K ⊂ Rd is a convex
body, symmetric with respect to the origin). The polar of K is defined as

(4) K◦ := {y ∈ Rd : xty ≤ 1, ∀x ∈ K}.
(Here xt denotes the transpose of x considered as a column vector, so that xty is
the (real) inner product of x and y.) We note that the so-called dual form of the
norm is

‖x‖ = max{ytx : y ∈ K◦}.

Proposition 3.1. Suppose that K ⊂ Rd is the unit ball of the norm ‖x‖ and that
p ∈ C[x], x ∈ Rd, is such that ‖p‖K ≤ 1. Then for any x0 ∈ Rd with ‖x0‖ > 1, we
have

|p(x0)| ≤ Tn(‖x0‖), n := deg(p).

Further, let y0 ∈ K◦ be such that ‖x0‖ = yt0x0. Then the polynomial

Tn(yt0x) ∈ R[x]

is extremal.
Moreover,

VK(x0) = log h(‖x0‖).

Proof. First suppose that p(x) ∈ R[x], i.e., is a real polynomial. Consider the two
points

a := − x0

‖x0‖
and b :=

x0

‖x0‖
.

Clearly ‖a‖ = ‖b‖ = 1 and so a,b ∈ K. It is also easy to confirm that

x0 =
1− t0

2
a +

1 + t0
2

b, t0 := ‖x0‖ > 1.

Consider the line given by

x(t) :=
1− t

2
a +

1 + t

2
b, t ∈ R;

we have (by the convexity of K) x(t) ∈ K for −1 ≤ t ≤ 1 and x(t0) = x0. Now let

q(t) := p(x(t)) ∈ R[t].

Then ‖q‖[−1,1] ≤ ‖p‖K ≤ 1 and so

|p(x0)| = |q(t0)| ≤ Tn(t0) = Tn(‖x0‖).
If p ∈ C[z], i.e., is a complex polynomial, then exactly the same argument as used
in the proof of Corollary 2.3 shows that, also in this case,

|p(x0)| ≤ Tn(‖x0‖).
If p(x) := Tn(yt0x) ∈ R[x] then, as y0 ∈ K◦, |yt0x| ≤ 1 for x ∈ K and so ‖p‖K ≤ 1.
Further, p(x0) = Tn(yt0x0) = Tn(‖x0‖) showing that Tn(yt0x) is indeed extremal.

Finally we show that VK(x0) = log h(‖x0‖). To see this, as the Chebyshev poly-
nomials are extremal, we must show that

sup
n

(Tn(t0))1/n = h(t0), t0 ≥ 1.
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Note that we have already remarked that limn→∞(Tn(t0))1/n = h(t0) but here we
are asking for a bit more. However, the extremal property of Chebyshev polynomials
for K = [−1, 1] also yields (Tn(t0))m ≤ Tmn(t0) for all m ∈ N, so that

Tn(t0) ≤ (Tmn(t0))1/m.

Consequently,

(Tn(t0))1/n ≤ lim
m→∞

(Tmn(t0))1/(mn) = lim
k→∞

(Tk(t0))1/k = h(t0).

�

Remark. By Proposition 2.2 we do know the extremal polynomial at special points
z0 ∈ Cd\K. Indeed, if it is the case that

z0 =
1− t0

2
a +

1 + t0
2

b

for some a,b ∈ K and t0 ∈ C with |t0| ≥ 1, then for ‖p‖K ≤ 1,

|p(z0)| ≤ |Tn(t0)|.

However, in general, the value of the extremal function VK(z) at complex points
z ∈ Cd\K is considerably more complicated. The interested reader may find some
examples in Klimek [11]. We also mention that for K a real ball the study of
the extremal function at complex points is one of the main topics of Baran’s very
interesting 1988 thesis [3].

We give the result (without proof) for K = [−1, 1]d, a cube, i.e., the unit ball
for the `∞ norm.

Proposition 3.2. (Siciak, 1962, [16]) Suppose that K = [−1, 1]d. Then

VK(z) = max
1≤j≤d

log |h(zj)|.

At the end of this work we will briefly return to the case of K ⊂ Rd, the Euclidean
unit ball. �

4. The case of K ⊂ Cd the unit ball of a complex norm

Here we suppose that ‖z‖ is a norm on Cd. In the complex case, the notion of
polar set requires but the replacement of the transpose by the complex conjugate.

Proposition 4.1. Suppose that K ⊂ Cd is the unit ball of the norm ‖z‖ and that
p ∈ C[z], z ∈ Cd, is such that ‖p‖K ≤ 1. Then for any z0 ∈ Cd with ‖z0‖ > 1, we
have

|p(z0)| ≤ ‖z0‖n, n := deg(p).

Further, let w0 ∈ K◦ be such that ‖z0‖ = w∗0z0. Then the polynomial

(w∗0z)n ∈ C[z]

is extremal.
Moreover, VK(z0) = log ‖z0‖.

Proof. The proof is almost identical to that for the case of a real ball. We again
let

a := − z0

‖z0‖
and b :=

z0

‖z0‖
.
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so that ‖a‖ = ‖b‖ = 1 and so a,b ∈ K. As before, we have that

z0 =
1− t0

2
a +

1 + t0
2

b, t0 := ‖z0‖ > 1

and now consider the complex line given by

z(t) :=
1− t

2
a +

1 + t

2
b, t ∈ C.

We confirm that for |t| ≤ 1,

‖z(t)‖ = ‖1− t
2

a +
1 + t

2
b‖

= ‖
(
−
(

1− t
2

)
+

1 + t

2

)
b‖

= ‖tb‖ = |t| ‖b‖ ≤ 1.

Thus q(t) := p(z(t)) ∈ C[t] is a polynomial bounded by one on the unit disk and
hence by Proposition 2.5 |p(z0)| = |q(t0)| ≤ |t0|n = ‖z0‖n and from this the rest of
the Proposition follows easily. �

5. The real simplex at real points

Here we discuss the case of K = Sd ⊂ Rd a real simplex, i.e., the convex hull of
d+ 1 vertices vj ∈ Rd, 0 ≤ j ≤ d, in general position. Note that Sd is not the unit
ball of a norm. It is of course convex.

First some notation. For a point x ∈ Rd let λj(x), 0 ≤ j ≤ d, denote the
barycentric coordinates of x with respect to Sd. Recall that these are the linear
functions of x characterized by

x = λ0(x)v0 + · · ·+ λd(x)vd, λ0(x) + · · ·+ λd(x) = 1,

with λj(x) ≥ 0 for all x ∈ Sd.
Set

I(x) := {j : λj(x) > 0} and I ′(x) := {j : λj(x) ≤ 0}.
We note that at any point x ∈ Rd\Sd both I(x) and I ′(x) are non-empty. Further,
we may write

d∑
j=0

|λj(x)| =
∑
j∈I(x)

λj(x)−
∑

j∈I′(x)

λj(x) = 2

 ∑
j∈I(x)

λj(x)

− 1 ≥ 1

as
∑d
j=1 λj(x) = 1. In fact there is equality in the above if and only if x ∈ Sd so

that, in particular, for x ∈ Rd\Sd,

2

 ∑
j∈I(x)

λj(x)

− 1 > 1.

Proposition 5.1. (cf. Kroo and Schmidt [12] and also [8]) Suppose that p ∈ C[x],
x ∈ Rd, is such that ‖p‖Sd

≤ 1 and that x0 ∈ Rd\Sd. Then

|p(x0)| ≤ Tn
( d∑
j=0

|λj(x0)|
)
, n := deg(p).
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Moreover, this upper bound is attained by

p(x) := Tn
(
2
∑

j∈I(x0)

λj(x)− 1
)
.

Further, the extremal function at real points is given by

(5) VSd
(x) = log

(
h
( d∑
j=0

|λj(x)|
))
.

Proof. Just as in the univariate case, it suffices to prove this for p ∈ R[x], i.e., a real
polynomial, the argument being a consequence of the properties of the Chebyshev
polynomials and not the underlying domain. Suppose then that p ∈ R[x] and that
‖p‖Sd

≤ 1. The idea of the proof is, just as in the case of K a unit ball, to find
two points a,b ∈ Sd so that a,b,x0 are collinear and then restrict p to this line,
obtaining a univariate problem to analyze.

Specifically, set

t0 := 2
∑

j∈I(x0)

λj(x0)− 1 =

d∑
j=0

|λj(x0)| > 1

and

s0 :=
1∑

j∈I(x0) λj(x0)
=

2

1 + t0
∈ (0, 1).

We define the point a by assigning it barycentric coordinates

µj =

{
0 if j ∈ I(x0)
s0
s0−1λj(x0) if j ∈ I ′(x0)

.

Clearly each µj , so defined, is non-negative. We also confirm that

d∑
j=0

µj =
∑

j∈I′(x0)

µj

=
s0

s0 − 1

 ∑
j∈I′(x0)

λj(x0)


=

s0

s0 − 1

1−
∑

j∈I(x0)

λj(x0)


=

s0

s0 − 1

(
1−

(
t0 + 1

2

))
=

2/(1 + t0)

2/(1 + t0)− 1

(
1− t0

2

)
=

2

1− t0
1− t0

2
= 1

so that the µj are indeed the barycentric coordinates of a point a ∈ Sd.
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We now define b := s0x0 + (1− s0)a and calculate

λj(b) = s0λj(x0) + (1− s0)µj

=

{
s0λj(x0) if j ∈ I(x0)

s0λj(x0) + (1− s0) s0
s0−1λj(x0) if j ∈ I ′(x0)

=

{
s0λj(x0) if j ∈ I(x0)

0 if j ∈ I ′(x0)

≥ 0.

Hence b ∈ Sd as well. We note that both a,b are on the boundary of Sd as they
each have at least one zero barycentric coordinate.

By construction, a,b and x0 are collinear and it is easy to verify that, in fact,

x0 =
1− t0

2
a +

1 + t0
2

b.

We now let

q(t) := p(
1− t

2
a +

1 + t

2
b), t ∈ R

be the univariate restriction of p to the line defined by a,b and x0. Note that q(t) is
a univariate polynomial of degree at most n := deg(p) and such that q(−1) = p(a)
and q(+1) = p(b) while q(t0) = p(x0). Further, since the segment [a,b] ⊂ Sd, we
have ‖q‖[−1,1] ≤ 1. Hence, since t0 > 1, by the univariate case of the interval,

(6) |p(x0)| = |q(t0)| ≤ |Tn(t0)| = Tn

 d∑
j=0

|λj(x0)|

 .

To show that this upper bound is attained by

p(x) := Tn
(
2
∑

j∈I(x0)

λj(x)− 1
)

we need only note that for x ∈ Sd,

2
∑

j∈I(x0)

λj(x)− 1 ∈ [−1, 1]

and hence ‖p‖Sd
≤ 1, while

p(x0) = Tn
(
2
∑

j∈I(x0)

λj(x0)− 1
)

= Tn
( d∑
j=0

|λj(x0)|
)
.

The formula for the extremal function (5) now follows by the arguments we have
made about the Chebyshev polynomials in the univariate case. �

6. The real simplex at complex points

For any compact set K ⊂ Rd a “naive” candidate for the extremal function
at complex points would always be the complexified version of the real formula.
Unfortunately, this does not in general give the correct formula, notably in the case
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of the real ball (see the end of the paper). But, remarkably, it does work in the
case of a simplex. Indeed we have, setting

Σ(z) :=

d∑
j=0

|λj(z)|,

(7) VSd
(z) = log

(
h
( d∑
j=0

|λj(z)|
))

= log
(
h
(
Σ(z)

))
, z ∈ Cd\Sd

as has been shown by Baran [1] (see also Klimek [11, Example 5.4.7]).
The proof given by Baran is somewhat indirect as it is based on the corresponding

formula for the real ball and the so-called coordinate square map. In this section
we give a direct verification of the formula (7). Indeed, we will show, just as in
the univariate case, that for any α > 1, and every polynomial p ∈ C[z] such that
‖p‖S ≤ 1

(8)
1

deg(p)
log |p(z0)| ≤ α log h(Σ(z0)), z0 ∈ Cd\S

(with log(0) := −∞). The argument depends on the following observations:

1. if p(z0) = 0 there is nothing to do.
2. if z0 is such that some λj(z0) = 0 then z0 is in the hyperplane of S defined

by λj(z) = 0. The intersection of S with this hyperplane is a lower dimensional
simplex, and hence by an induction argument we can assume that (8) holds
there.

3. at any point where λj(z) 6= 0 for j = 0, 1, · · · , d, log h(Σ) is a real C2 function
and there exists a direction vector u ∈ Cd such that log h(Σ) restricted to the
line Lz := {y ∈ Cd : y = z + tu, t ∈ C} satisfies

∂2

∂t∂t̄
log h(Σ(z + tu))

∣∣∣
t=0

= 0.

(We remark that the technical term for this property is that log h(Σ) is maximal.)
Moreover, the direction vector u = u(z) depends continuously on the point z.

Actually, the verification of 3. will require somewhat lengthy, but elementary,
calculations, that although not trivial, have a certain elegance. We give them below,
but for the moment suppose that 3. holds. We first show how then (8) follows.
Indeed, consider

fα(z) :=
1

deg(p)
log |p(z)| − α log h((Σ(z)).

On S itself, fα(z) ≤ 0 as log h(Σ) = 0 there and ‖p‖S ≤ 1. Further,

lim
|z|→∞

fα(z) = −∞.

Hence by (semi-)continuity, fα(z) will attain its maximum at some point z0 ∈ Cd.
By observation 2., if λj(z0) = 0 for some j then this maximum is negative and we
will be done. Otherwise, we may apply 3.. We may use this to determine a contin-
uous complex curve γ(t), defined by γ′(t) = u(γ(t)), γ(0) = z0 in a neighbourhood
of t = 0 ∈ C. By construction t 7→ log h(Σ(u(γ(t)))) is harmonic and, moreover, as
by observation 1. we may assume that p(z0) 6= 0, fα(γ(t)) is also harmonic in a
neighbourhood of t = 0 ∈ C and has maximum value at t = 0, a contradiction. �
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We now proceed to verify 3.. In general,

∂2

∂t∂t
f(z + tu) =

d∑
j,k=1

∂2f

∂zj∂zk
ujuk = u∗H(d)u

where H(d) ∈ Cd×d is the complex Hessian of f defined by

H
(d)
jk :=

∂2f

∂zj∂zk
, 1 ≤ j, k ≤ d

Hence 3. follows from the existence of a vector u = u(z) ∈ Cd in the kernel of H
with continuous dependence on z. This is what we show below.

There being d+ 1 barycentric coordinates, some of the calculations will be done
in Cd+1 and others in Cd. To keep things straight we will use capital letters to
denote vectors in Cd+1 and lower case letters for vectors in Cd.

To begin let us write

F (Σ) := log(h(Σ))

for convenience. Differentiating in barycentric coordinates,

∂

∂λj
F (Σ) =

1

2
F ′(Σ)λ̄j/|λj |.

The second partials are given by

∂2F (Σ)

∂λj∂λ̄k
=

1

4
F ′′(Σ)

λ̄jλk
|λj ||λk|

if k 6= j,(9)

∂2F (Σ)

∂λj∂λ̄j
=

1

4
F ′′(Σ) +

1

4

F ′(Σ)

|λj |
(10)

for all j = 0, . . . , d.
A calculation gives the following formulas:

(11) F ′(Σ) =
1√

Σ2 − 1
, F ′′(Σ) = − Σ

(Σ2 − 1)3/2
, and

F ′′(Σ)

F ′(Σ)
= −

(
Σ

Σ2 − 1

)
.

Let H
(d+1)
jk = ∂2F (Σ)/∂λj∂λ̄k and write H(d+1) = [Hjk]dj,k=0 ∈ C(d+1)×(d+1) to

denote the complex Hessian in barycentric coordinates, considered as independent
coordinates. Indeed, (9) and (10) may be written as

4H(d+1) = F ′′(Σ)


λ̄0

|λ0|
...
λ̄d

|λd|

[ λ0

|λ0| · · ·
λd

|λd|

]
+ F ′(Σ)


1
|λ0| 0 · · · 0

0 1
|λ1| · · · 0

...
. . .

. . .
...

0 0 · · · 1
|λd|


=: F ′′(Σ)UU∗ + F ′(Σ)D.
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Then, in particular, it follows that

Z∗H(d+1)Z =
1

4
(F ′′(Σ)Z∗UU∗Z + F ′(Σ)Z∗DZ)

=
1

4

(
F ′′(Σ)|Z∗U|2 + F ′(Σ)Z∗DZ

)
=

1

4
F ′(Σ)

(
F ′′(Σ)

F ′(Σ)
|Z∗U|2 + Z∗DZ

)
=

1

4
F ′(Σ)

(
−
(

Σ

Σ2 − 1

)
|U∗Z|2 + Z∗DZ

)
(12)

for Z ∈ Cd+1 (considered as a column vector).
We need to reduce the Hessian H(d+1) in barycentric coordinates in Cd+1 to

affine coordinates in Cd. Define

f(z1, . . . , zd) = f(z) := F (λ0(z), λ1(z), . . . , λd(z))

with λ0(z) = 1− z1−· · ·− zd and λj(z) = zj for j = 1, . . . , d. The chain rule yields

∂2f

∂zj∂z̄k
=

∂2F

∂λj∂λ̄k
− ∂2F

∂λj∂λ̄0
+

∂2F

∂λ0∂λ̄0
− ∂2F

∂λ0∂λ̄k

=
[
−1 1

]  ∂2F
∂λ0∂λ̄0

∂2F
∂λ0∂λ̄k

∂2F
∂λj∂λ̄0

∂2F
∂λj∂λ̄k

[−1
1

]
.

Let H
(d)
f := [∂2f/∂zj∂z̄k]dj,k=1 denote the Hessian of f ; then the above calculation

yields

H
(d)
f = B∗H(d+1)B, where B =


−1 −1 · · · −1
1 0 · · · 0
0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 1

 ∈ C(d+1)×d.

Proposition 6.1. Let z ∈ Cd \ Sd. The complex Hessian H
(d)
f = B∗H(d+1)B ∈

Cd×d is non-negative definite and singular at z. In particular, the vector v ∈ Cd
with components vj = |λj | − λ̄jΣ, where λj = λj(z) for each j = 1, . . . , d, is in the

kernel of H
(d)
f .

Proof. For w = (w1, · · · , wd) ∈ Cd let

w0 := −
d∑
j=1

wj , and W := [w0,w] ∈ Cd+1

so that

w∗H
(d)
f w = W∗H(d+1)W.
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Note that for the specific vector v, defined above,

v0 = −
d∑
j=1

{|λj | − λ̄jΣ}

= −{(Σ− |λ0|)− (1− λ̄0)Σ}
= |λ0| − λ̄0Σ.

Hence the vector V := [v0,v] ∈ Cd+1 is given by

Vj = |λj | − λ̄jΣ, 0 ≤ j ≤ d.

Now define the weighted scalar product

〈A,B〉λ :=

d∑
j=0

1
|λj |AjB̄j , A,B ∈ Cd+1.

Note that, with this notation,

〈W,V〉λ =

d∑
j=0

Wj(|λj | − λjΣ)

|λj |

=

d∑
j=0

Wj −

 d∑
j=0

λjWj

|λj |

Σ

= 0−

 d∑
j=0

λjWj

|λj |

Σ

= −(U∗W)Σ

while

W∗DW =

d∑
j=0

|Wj |2

|λj |
= 〈W,W〉λ.

Hence, by (12), we may write

W∗H(d+1)W =
1

4
F ′(Σ)

(
−
(

Σ

Σ2 − 1

)
|U∗W|2 + W∗DW

)
=

1

4
F ′(Σ)

(
−
(

1

Σ(Σ2 − 1)

)
|〈W,V〉λ|2 + 〈W,W〉λ

)
.(13)

Now, by the Cauchy-Schwartz inequality,

(14) |〈W,V〉λ|2 ≤ 〈V,V〉λ〈W,W〉λ
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where

〈V,V〉λ =

n∑
j=0

|Vj |2

|λj |

=

d∑
j=0

(|λj | − λ̄jΣ)(|λj | − λjΣ)

|λj |

=

d∑
j=0

|λj |2 − |λj |(λ̄j + λj)Σ + |λj |2Σ

|λj |

= (1 + Σ2)

d∑
j=0

|λj | −
(
Σdj=0λ̄j + Σdj=0λj

)
Σ

= (1 + Σ2)Σ− 2Σ = Σ(Σ2 − 1).

In other words, (
1

Σ(Σ2 − 1)

)
|〈W,V〉λ|2 ≤ 〈W,W〉λ

so by (13),

w∗H
(d)
f w = W∗H(d+1)W ≥ 0.

If W = V, i.e., w = v, then we have equality in (14) and W∗H(d+1)W = 0, i.e., v

is in the kernel of H
(d)
f . �

7. The case of K a convex body

Consider K ⊂ Rd a convex body, i.e., a compact, covex set with non-empty
interior.

As mentioned previously, the case of K ⊂ Rd a convex body, symmetric with
respect to the origin, corresponds to that of K the unit ball for some norm and is
handled in Section 3. It turns out that one may also find the extremal polynomials
at real points for not necessarily centrally symmetric convex bodies.

First recall that a real hyperplane Ha ⊂ Rd is a supporting hyperplane for K at
a ∈ ∂K if a ∈ Ha and K lies entirely in one of the two half-spaces determined by
Ha, i.e., if Ha is given by

Ha = {x ∈ Rd : `(x) = `(a)}
where ` : Rd → R is a linear functional on Rd, then `(x − a) is of constant sign
for x ∈ K. The important geometric property that we require is given by Kroo and
Schmidt [12, Cor. 1].

Theorem 7.1. (Kroo and Schmidt) Let K ⊂ Rd be a convex body. Then for each
x0 ∈ Rd\K, there exists two points a,b ∈ ∂K with respective supporting hyperplanes
Ha and Hb such that (i) a,b and x0 are collinear and (ii) Ha and Hb are parallel,
i.e., K is contained in the bi-infinite “strip” between the two parallel supporting
hyperplanes.

Note that we may rephrase this as: for each x0 ∈ Rd\K there are points a,b ∈
∂K and a linear functional ` : Rd → R such that a,b and x0 are collinear and that
`(K) = [`(a), `(b)].

From this we may easily provide a formula for extremal polynomials.



EXTREMAL GROWTH OF POLYNOMIALS 19

Proposition 7.2. ([12, Thm. 1A]) Let K ⊂ Rd be a convex body. Suppose that
p ∈ C[x] is such that ‖p‖K ≤ 1, and that x0 ∈ Rd\K. Then for the a,b and `
provided by Theorem 7.1,

|p(x0)| ≤ |Tn(2λ(x0)− 1)|, n := deg(p),

where

λ(x) :=
`(x)− `(a)

`(b)− `(a)

is the barycentric coordinate of `(x) with respect to the interval [`(a), `(b)]. More-
over, this upper bound is attained for

p(x) := Tn(2λ(x)− 1).

Proof. Suppose that p ∈ R[x] is such that ‖p‖K ≤ 1, and that x0 ∈ Rd\K First
note that, as a,b and x0 are collinear, we have

x0 = λ(x0)b + (1− λ(x0))a.

Now let

q(t) := p(

(
1 + t

2

)
b +

(
1− t

2

)
a), t ∈ R

be the restriction of p to the line through a,b and x0. Note that q(t0) = p(x0)
for t0 := 2λ(x0) − 1. Further, by convexity,

(
1+t

2

)
b +

(
1−t

2

)
a) ∈ K for −1 ≤

t ≤ 1. Hence ‖q‖[−1,1] ≤ ‖p‖k ≤ 1 and so by the extremal property of Chebyshev
polynomials,

|p(x0)| = |q(t0)| ≤ |Tn(t0)| = |Tn(2λ(x0)− 1)|.
If we let p(x) := Tn(2λ(x) − 1), then for x ∈ K, `(x) ∈ [`(a), `(b)] and con-

sequently, 2λ(x) − 1 ∈ [−1, 1]. It follows that ‖p‖K = 1, and obviously, p(x0) =
Tn(2λ(x0)− 1). �

Although this formula has the appearance of being quite simple, in reality it
requires the sometimes difficult determination of the special points a and b. It
turns out that the extremal polynomial may be expressed in variational form solely
in terms of the linear maps `(x).

Proposition 7.3. Let K ⊂ Rd be a convex body. Suppose that p ∈ C[x] is such
that ‖p‖K ≤ 1, and that x0 ∈ Rd\K. Then

(15) |p(x0)| ≤ max
` :Rd→R, linear

|Tn(2λ(`(x0))− 1)|, n := deg(p),

where λ(`(x)) is the barycentric coordinate of `(x) with respect to the interval `(K).
Moreover, this upper bound is attained for

p(x) := Tn(2λ(`x0(x))− 1)

where `x0
is the linear mapping for which the maximum in (15) is attained.

Proof. For any linear map ` : Rd → R consider the polynomial

q(x) := Tn(2λ(`x0(x))− 1).

Then q(x) is of degree at most n and is such that ‖q‖K ≤ 1. Hence,

max
‖p‖K≤1, deg(p)≤n

|p(x0)| ≥ max
` :Rd→R linear

|Tn(2λ(`(x0))− 1)|.
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On the other hand, in view of the special choice of ` given in Proposition 7.2,

max
‖p‖K≤1, deg(p)≤n

|p(x0)| ≤ max
` :Rd→R linear

|Tn(2λ(`(x0))− 1)|.

�

Remark. Note that λ(`(x)) remains the same if ` is replaced by a scalar multiple,
so we may assume ‖`‖K ≤ 1. If we identify linear maps `(x) = ytx, with their
“normal vectors” y ∈ Rd, this means that we may express (15) using the polar of
K, K◦, as

|p(x0)| ≤ max
`∈K◦

|Tn(2λ(`(x0))− 1)|, n := deg(p),

= Tn(max
`∈K◦

|2λ(`(x0))− 1)|)(16)

where the second statement follows from the monotinicity of |Tn(x)| outside the
interval [−1, 1].

In the special case that K is centrally symmetric with respect to the origin then
`(K) will be a symmetric interval of the form [−a, a] and the expression (16) will
be scale invariant. Thus it suffices to take the maximum in (16) over ∂K◦ and
even, since the maximum is a linear problem, over the extreme points of K◦. A
calculation also yields

`(K) = [−1, 1] and 2λ(`(x0))− 1 = `(x0), for all ` ∈ ∂K◦.

Therefore, in the case that K is centrally symmetric,

|p(x0)| ≤ Tn( max
`∈ext(K◦)

|`(x0)|).

�

In the case of K a polytope, even if K is not necessarily centrally symmetric,
the variational problem of Proposition 7.3 can often be simplified to finding the
maximum over a finite set of linear maps `.

Example. Consider K the triangle with vertices v0,v1,v2 ∈ R2. The linear maps
` that need to be considered are, by Proposition 7.2, those that provide parallel
supporting hyperplanes at two points a,b ∈ K, collinear with x0 ∈ R2\K. If one
of them, say a, is in the interior of one of the sides of the triangle K, then ` must
necessarily be that which gives the equation of that side. If instead, both a and b
are vertices, then the hyperplanes Ha and Hb need not be along a side, but they
can be rotated until one of the planes aligns with a side. Now, the equations of
the three sides are given by `j(x) := λj(x) = 1, j = 0, 1, 2 and so, in particular,
`j(K) = [0, 1], j = 0, 1, 2, so that the barycentric coordinate of `j(x0) with respect
to `j(K) = [0, 1] is just `j(x0) itself. Hence,

max
` :Rd→R, linear

|2λ(`(x0))− 1| = max
j=0,1,2

|2λj(x0)− 1|.

It is interesting to compare this expression with the corresponding one given in
Proposition 5.1, |λ0(x0)| + |λ1(x0)| + |λ2(x0)|. Although not immediately obvious
they are indeed the same for exterior points x0 ∈ R2\K. To see this, first note that

2λj(x0)− 1 = 2λj(x0)−
2∑
k=0

λk(x0)
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Figure 1. The Quadrilateral K

so that

|2λ0(x0)− 1| = ±(λ0(x0)− λ1(x0)− λ2(x0)),

|2λ1(x0)− 1| = ±(−λ0(x0) + λ1(x0)− λ2(x0)),

|2λ2(x0)− 1| = ±(−λ0(x0)− λ1(x0) + λ2(x0)).

For an exterior point x0 ∈ R2\K, the barycentric coordinates cannot all be positive,
and they cannot also all be negative as their sum is 1. Hence

max
j=0,1,2

|2λj(x0)− 1| = max
ε∈{−1,+1}3

d∑
j=0

εjλj(x0) =

2∑
j=0

|λj(x0)|.

�

Similarly, for a convex polygon in R2 one need only maximize over the linear
functionals that correspond to the edges of the polygon. A similar statement may
be made for convex polytopes in Rd, but it will be necessary to consider certain
“complementary” pairs of lower dimensional faces. We omit the (combinatorial)
details.

Finally, we mention that it is sometimes also possible to obtain simplified for-
mulas for extremal polynomials by decomposing K into simplices, instead of just
the “strips” given by parallel supporting hyperplanes.

Example. Consider K ⊂ R2 the quadrilateral with vertices (0, 0), (0, 1), (2/3, 2/3)
and (1, 0), shown in Figure 1.
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Clearly K is the intersection of the two triangles S1 and S2 shown in the figure.
Note also that each edge of K lies in an edge of either S1 or else S2. Hence, if we
let λj(x) be the barycentric coordinates with respect to S1 and µj(x) those with
respect to S2, by the extremal formula for the triangle,

|p(x0)| ≤ max

Tn(

2∑
j=0

|λj(x0)|), Tn(

2∑
j=0

|µj(x0)|


for p ∈ C[x] with ‖p‖K ≤ 1 and n := deg(p). This approach can also be used to
give formulas for the extremal function (even at complex points). The details will
be given in the forthcoming paper [13]. �

8. The case of K a real Euclidean ball

Suppose now that K is the real Euclidean unit ball, i.e., K = B := {x ∈ Rd :
‖x‖2 ≤ 1}. It turns out that given the extremal function for the real simplex one
may easily derive that for the real ball. We remark that in the literature (see e.g.
Klimek [11, Thm. 5.4.6]) what is usually done is to first compute the extremal
function for the ball, making good use of Pluripotential Theory, and then using
that to give the formula for the simplex. Ours is the reverse process, which we
maintain can be understood by more elementary means.

Proposition 8.1. For K = B the real Euclidean unit ball,

VB(z) =
1

2
log
(
h
(
‖z‖22 +

∣∣ d∑
j=1

z2
j − 1

∣∣)), z ∈ Cd.

Proof. The proof is based on the following observations:

(1) for any z0 ∈ Cd\K, there is a sequence of polynomials Pk, with

lim
k→∞

deg(Pk) =∞ and lim
k→∞

1

deg(Pk)
log
(
|Pk(z0)|

)
= VB(z0).

(2) it may be assumed that the Pk(z) are symmetric in each variable separately,
i.e., that Pk(z1, · · · , zd) = pk(z2

1 , · · · , z2
d) for some polynomial pk(z).

(3) if Pk(z1, · · · , zd) = pk(z2
1 , · · · , z2

d) then ‖Pk‖B = ‖pk‖S where now S de-
notes the standard unit simplex

S = {x = (x1, . . . , xd) ∈ Rd :

d∑
j=1

xj ≤ 1, xj ≥ 0 ∀ j}.

(4) as deg(Pk) = 2 deg(pk)

VB(z1 · · · , zd) =
1

2
VS(z2

1 , · · · , z2
d).

Proof of (1). For fixed z0 ∈ Cd\B, let

Pk(z0) := argmax {log |P (z0)| : ‖P‖B ≤ 1, deg(P ) ≤ k} .

Then

VB(z0) = sup
‖P‖B≤1

1

deg(P )
log
(
|P (z0)|

)
= sup

k≥1

1

k
log
(
|Pk(z0)|

)
.
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We claim that there is in fact a subsequence {kn} of the integers such that kn →∞
and

lim
n→∞

1

kn
log
(
|Pkn(z0)|

)
= VB(z0).

Indeed, if there exists a k0 such that

VB(z0) =
1

k0
log
(
|Pk0(z0)|

)
then, for any m ≥ 1,

VB(z0) =
1

k0
log
(
|Pk0(z0)|

)
=

1

mk0
log
(
|(Pk0(z0))m|

)
≤ 1

mk0
log
(
|Pmk0(z0)|

)
≤ VB(z0).

In other words,
1

mk0
log
(
|Pmk0(z0)|

)
= VB(z0)

for any m ≥ 1, and consequently

1

mjk0
log
(
|Pmjk0(z0)|

)
= VB(z0)

for all j ≥ 1, m > 1. �

Proof of (2). Considering the jth variable zj , let

P ek (z1, · · · , zd) :=
Pk(z1, · · · , zj , · · · , zd) + Pk(z1, · · · ,−zj , · · · , zd)

2
,

P ok (z1, · · · , zd) :=
Pk(z1, · · · , zj , · · · , zd)− Pk(z1, · · · ,−zj , · · · , zd)

2
be the even and odd symmetrizations of Pk(z), respectively. Note that deg(P ek ) ≤
deg(Pk) and deg(P ok ) ≤ deg(Pk) with either deg(P ek ) = deg(Pk) or deg(P ok ) =
deg(Pk) (or both). Note also that, as ‖Pk‖B ≤ 1,

‖P ek‖B ≤ 1 and‖P ok ‖B ≤ 1.

We claim that either

lim
k→∞

1

deg(P ek )
log
(
|P ek (z0)|

)
= VB(z0) with lim

k→∞
deg(P ek ) =∞

or

lim
k→∞

1

deg(P ok )
log
(
|P ok (z0)|

)
= VB(z0) with lim

k→∞
deg(P ok ) =∞

(or both). Indeed,

1

deg(Pk)
log
(
|Pk(z0)|

)
=

1

deg(Pk)
log
(
|P ek (z0) + P ok (z0)|

)
≤ 1

deg(Pk)
log
(
2 max{|P ek (z0)|, |P ok (z0)}|

)
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Consequently, as deg(Pk)→∞, we have 1
deg(Pk) log 2→ 0 and

lim
k→∞

1

deg(Pk)
log
(
max{|P ek (z0)|, |P ok (z0)|}

)
= VB(z0).

But,

1

deg(Pk)
log
(
max{|P ek (z0)|, |P ok (z0)|}

)
≤ max

{
1

deg(Pk)
log
(
|P ek (z0)|

)
,

1

deg(Pk)
log
(
|P ok (z0)|

)}
≤ max

{
1

deg(P ek )
log
(
|P ek (z0)|

)
,

1

deg(P ok )
log
(
|P ok (z0)|

)}
≤ VB(z0).

Hence, passing to a subsequence if necessary, we have that indeed either

lim
k→∞

1

deg(P ek )
log
(
|P ek (z0)|

)
= VB(z0)

or

lim
k→∞

1

deg(P ok )
log
(
|P ok (z0)|

)
= VB(z0)

(or both), as claimed. If necessary, we may use the same argument as for (1) and
conclude that the limits of the degrees are also infinity.

Now, if it is the case that the odd polynomials P ok (z) give the limit, note that
we may write P ok (z) = zjQk(z) for some polynomial Qk(z) which is even in zj .
Note that then (z0)j 6= 0 for otherwise P ok (z0) = 0 and is not a competitor for the
extremal function. Hence

VB(z0) = lim
k→∞

1

deg(P ok )
log
(
|P ok (z0)|

)
= lim
k→∞

1

deg(P ok )
log
(
|(z0)j | |Qk(z0)|

)
= lim
k→∞

1

deg(P ok )
{log

(
|Qk(z0)|

)
+ log |(z0)j |}

= lim
k→∞

1

deg(P ok )
log
(
|Qk(z0)|

)
= lim
k→∞

1

deg(Qk)
log
(
|Qk(z0)|

)
.

There is one more technical point to check. The candidates for the extremal
function are those with max norm on B at most 1. What can be said about Qk(z)?
Note that, as P ok (z) = zjQk(z), we may express

Qk(z) =
P ok (z)

zj
=

∫ 1

0

∂P ok
∂zj

(z1, · · · , tzj , · · · , zd)dt

and so by Markov’s inequality on the ball (cf. [4]),

‖Qk‖B ≤ (deg(P ok ))2‖P ok ‖B ≤ (deg(P ok ))2.

Replacing Qk by Qk/(deg(P ok ))2 has no effect on the limit and hence we may assume
that ‖Qk‖B ≤ 1.
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In other words, even if the limit is given by the odd polynomials, we may replace
them by a sequence of even polynomials.

Repeating the procedure for each variable we may conclude that there is a se-
quence of polynomials Pk(z) which are even in each variable separately and such
that

lim
k→∞

1

deg(Pk)
log
(
|Pk(z0)|

)
= VB(z0).

Another way of expressing this is that

VB(z0) = sup

{
1

deg(P )
log
(
|P (z0)|

)
: ‖P‖B ≤ 1, P (z1, · · · , zd) = p(z2

1 , · · · , z2
d)

}
.

�

Proof of (3) and (4). This is simple. Just note that if p(u) is such that
P (z1, · · · , zd) = p(z2

1 , · · · , z2
d) then for the change of variables uj = z2

j , 1 ≤ j ≤ d,
u ∈ S if and only if z ∈ B. Hence we may write

VB(z0) = sup

{
1

deg(P )
log
(
|P (z0)|

)
: ‖P‖B ≤ 1, P (z1, · · · , zd) = p(z2

1 , · · · , z2
d)

}
= sup

{
1

2 deg(p)
log
(
|p(z2

0)|
)

: ‖p‖S ≤ 1

}
=

1

2
VS(z2

0).

�
The Proposition now follows by noting that since λ0 = 1−

∑d
j=1 λj , we have

VS(z2
0) = log

(
h
( d∑
j=0

|λj |
))

= log
(
h
( d∑
j=1

|(z0)j |2 +
∣∣1− d∑

j=1

(z0)2
j

∣∣))

= log
(
h
(
‖z0‖22 +

∣∣1− d∑
j=1

(z0)2
j

∣∣)).
�
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