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ABSTRACT

We give details of the 1–1 correspondence between equiangular frames of n vectors for
IRd and graphs with n vertices. This has been studied recently for tight equiangular frames
because of applications to signal processing and quantum information theory. The nontight
examples given here (which correspond to graphs with more than 2 eigenvalues) have the
potential for similar applications, e.g., the frame corresponding to the 5–cycle graph is the
unique Grassmannian frame of 5 vectors in IR3. Further, the associated canonical tight
frames have a small number of angles in many cases.

Key Words: finite frame, tight frame, Grassmannian frame, mutually unbiased basis,
two angle frame, Seidel matrix, adjacency matrix, algebraic graph theory,

AMS (MOS) Subject Classifications: primary 42C15, 05C50, secondary 05C90,
52B15,

0



1. Introduction

Equiangular tight frames have important applications to signal processing because of
their robustness to erasures (see [GKK01], [HP04], [BP05]), and to quantum information
theory (see [RBSC04], [R05]). When such frames do not exist (cf [STDH07]) closely related
classes of frames have been suggested as substitutes, most notably Grassmannian frames
and mutually unbiased bases (see [SH03], [BK06], [KR04]). In this direction, we consider
nontight equiangular frames of n vectors for IRd. These are in 1–1 correspondence with
graphs on n vertices. The associated dual and canonical tight frames are not equiangular,
but are often equal–norm frames with a just a few angles.

The paper is set out as follows. Next we give the basic theory of finite frames, and
define (possibly nontight) equiangular frames. We then consider the 1–1 correspondence
between an equiangular frame and its so called signature matrix (which defines it up to
unitary equivalence). We show if the frame is tight, then the equiangularity condition
reduces to a system of quadratic equations. We solve these equations in a few cases. This
leads to examples which indicate complex equiangular tight frames are likely to be more
numerous than is generally believed. Understanding the subfield of the complex numbers
the entries of the signature matrix can or must come from may be pivotal in understanding
complex equiangular tight frames (cf [K06], [STDH07], [BPT08]).

The remainder of the paper considers the special case of real equiangular frames.
Here the entries of the signature matrix are ±1, and so it can be thought of as the Seidel
(adjacency) matrix of a graph. These ideas date back to the foundations of algebraic graph
theory (see [GR01], [S91]), with most attention spent on the case of tight equiangular
frames (see [SH03], [HP04]). These correspond to graphs with 2 eigenvalues, which in
turn come from a subclass of the strongly regular graphs (with certain parameters given
here) with an additional point added. We conclude with a number of examples of nontight
equiangular tight frames given by graphs with few eigenvalues, such as the strongly regular
graphs themselves (which have 3 eigenvalues).

2. The basic theory of finite frames

The following definitions and observations are well known (cf [C03], [W09]). Let H
be a real or complex Hilbert space of finite dimension d. A finite sequence of n ≥ d vectors
Φ = (fj)j∈J in H is a frame for H if it spans H, and is a tight frame for H if there is a
c > 0 with

f = c
∑

j∈J

〈f, fj〉fj , ∀f ∈ H. (2.1)

The above c > 0 is unique, and given by

c =
d

∑

j∈J ‖fj‖2
. (2.2)
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A tight frame is normalised (the term Parseval frame is also used) if it has been scaled so
that c = 1. Frames with a countable number of vectors (for a finite or infinite dimensional
space) can be defined by the so called frame bounds, i.e., that there exists A,B > 0 with

A‖f‖2 ≤
∑

j∈J

|〈f, fj〉|2 ≤ B‖f‖2, ∀f ∈ H.

This is easily seen to be equivalent to the definition above for J finite.
The synthesis operator for a finite sequence (fj)j∈J in H is the linear map

V := [fj ]j∈J : ℓ2(J) → H : a 7→
∑

j∈J

ajfj ,

and its frame operator is the linear map S = V V ∗ : H → H given by

Sf :=
∑

j∈J

〈f, fj〉fj , ∀f ∈ H.

With I = IH the identity on H, the tight frame condition (2.1) can be expressed as

S = V V ∗ = cI. (2.3)

If Φ = (fj)j∈J is a frame, then S is invertible, and the dual frame Φ̃ = (f̃j) is defined by

f̃j := S−1fj , ∀j ∈ J, (2.4)

and the canonical tight frame Φcan = (f can
j ) by

f can
j = S− 1

2 fj , ∀j ∈ J. (2.5)

A frame and its dual satisfy the expansion

f =
∑

j∈J

〈f, fj〉f̃j =
∑

j∈J

〈f, f̃j〉fj , ∀f ∈ H,

and the canonical tight frame is a normalised tight frame, i.e.,

f =
∑

j∈J

〈f, fcan
j 〉f can

j , ∀f ∈ H.

Frames Φ = (fj)j∈J and Ψ = (gj)j∈J for H, with the same index set J , are unitarily
equivalent if there is a unitary transformation H → H with Ψ = UΦ := (Ufj)j∈J , i.e.,

gj = Ufj , ∀j ∈ J, (2.6)
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and are similar if there is an invertible linear map Q : H → H with Ψ = QΦ. Clearly,
these are equivalence relations on the set of frames for H, indexed by a given set J . In view
of definitions (2.4) and (2.5), a frame, its dual and canonical tight frame are all similar. A
simple calculation shows that normalised tight frames are similar if and only if they are
unitarily equivalent.

The Gramian of a sequence of n vectors (fj)j∈J is the n × n matrix

Gram(Φ) := V ∗V = [〈fk, fj〉]j,k∈J .

Frames Φ and Ψ are unitarily equivalent if and only if their Gramians are equal, and they
are similar if and only if the Gramians of their canonical tight frames are equal, i.e.,

Gram(Φcan) = Gram(Ψcan).

A sequence of vectors is a normalised tight frame (for its span) if and only if its
Gramian matrix P is an orthogonal projection matrix, i.e., P 2 = P and P = P ∗. Note
that P = P ∗ holds for any Gramian matrix. We say that two frames Φ and Ψ are
complementary (or complements of each other) if the Gramians of the associated
canonical tight frames are complementary projection matrices, i.e.,

Gram(Φcan) + Gram(Ψcan) = I. (2.7)

The complement of a frame is well defined up to similarity, and the complement of a tight
frame in the class of normalised tight frames is well defined up to unitary equivalence.

We say that (fj) is an equal–norm frame if all its vectors have the same length, and
is equiangular (cf [SH03]) if addition there is a C ≥ 0 with

|〈fj , fk〉| = C, ∀j 6= k.

The dual and canonical tight frames of a nontight equal–norm frame is in general not an
equal–norm frame, but can be, see, e.g., Theorem 6.2.

3. Equiangular frames and their signature matrices

Since frames are determined up to unitary equivalence by their Gramian matrices, the
Gramian of an equiangular frame with c > 0 has the form

G =













r cz12 cz13 · · · cz1n

cz12 r cz23 · · · cz2n

cz13 cz23 r
...

...
. . .

cz1n cz2n r













= rI + cΣ, r > 0, |zjk| = 1.

We call any n × n Hermitian matrix Σ of the above form, i.e., with zero diagonal and off
diagonal entries of modulus 1 a signature matrix. Let IF stand for IR or C. The n × n

signature matrices are in 1–1 correspondence with the equiangular frames of n vectors.
For completeness, we state and proof this well known result in the frame terminology.
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Theorem 3.1. Let Σ be an n×n signature matrix (over IF), with smallest eigenvalue −λ

of multiplicity n − d, then

A := r(I +
1

λ
Σ) =

r

λ
(Σ − (−λ)I), r > 0

is the Gramian matrix of an equiangular frame of n vectors for IFd, and every Gramian of
an equiangular frame of n > d vectors for IFd can be constructed in this way. Further, the
frame is tight if and only if Σ has (exactly) two eigenvalues.

Proof: By construction, the matrix A is positive semidefinite of rank d > 0, and
so has a positive square root B = A

1

2 . Since A = B2 = B∗B, A is the Gramian matrix of
the frame given by the columns of B (which span a d–dimensional space).

A frame of n > d vectors is tight if only if its Gramian has exactly one nonzero
eigenvalue, and so an equiangular frame is tight if and only if its signature matrix has
exactly two eigenvalues.

If an equiangular frame is tight, then the λ above is given by

λ =

√

d(n − 1)

n − d
,

which leads to a system of 1
2n(n − 1) equations in the entries of Σ.

Corollary 3.2 ([BP05:Th. 4.2]). Let (zjk)1≤j<k≤n be scalars of modulus 1, then the
signature matrix

Σ =













0 z12 z13 · · · z1n

z12 0 z23 · · · z2n

z13 z23 0
...

...
. . .

z1n z2n 0













gives an equiangular tight frame if and only if

(n− 2d)

√

n − 1

d(n − d)
zjk =

j−1
∑

i=1

zijzik +
k−1
∑

i=j+1

zjizik +
n
∑

i=k+1

zjizki, 1 ≤ j < k ≤ n. (3.3)

Proof: The signature matrix has two eigenvalues λ1 = −λ and λ2 if and only if
it satisfies the minimal polynomial

Σ2 − (λ1 + λ2)Σ + λ1λ2I = 0. (3.4)

In particular, by considering a diagonal entry, we must have

λ1λ2 = −(n − 1).
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Since Σ has zero trace and λ1 has multiplicity n − d, we have

(n − d)λ1 + dλ2 = 0.

Solving these gives

λ1 = −λ = −
√

d(n − 1)

n − d
, λ2 =

√

(n − d)(n − 1)

d
. (3.5)

From the entries of the matrix equation (3.4), we therefore obtain n2 equations in the
zjk, with coefficients depending only on n and d. Those from the diagonal entries hold
automatically, and since the (j, k) and (k, j) entries are complex conjugates, we obtain the
equivalent system

(λ1 + λ2)zjk = (Σ2)jk, 1 ≤ j < k ≤ n,

which can be written as (3.3).

When IF = IR the right hand side of (3.3) is the inner product between the j and k

columns of Σ, and so the columns of the signature matrix of a equiangular tight frame for
IRd are an equiangular tight frame of n vectors (which are orthogonal if n = 2d).

Example 1. For n = 4, d = 2, (3.3) gives 6 equations. Let z12 = a, z13 = b, z14 = c.
Then the (j, k) = (1, 2) and (1, 3) equations are

z13z23 + z14z24 = 0, z13z23 + z14z34 = 0 =⇒ z24 = −bcz23, z34 = −acz23.

Making the above substitutions for z24 and z34 reduces the other 4 equations to one

(abz23)
2 = −1 =⇒ z23 = ±iab.

Hence there is a three parameter family of unitarily inequivalent equiangular tight frames
of four vectors for C2 given by the signature matrices

Σ =







0 a b c

a 0 ±iab ∓iac

b ∓iab 0 ±ibc

c ±iac ∓ibc 0






, |a| = |b| = |c| = 1. (3.6)

A copy of this frame in C2 can be obtained by observing that (up to a scalar) the
columns of the Gramian matrix I+ 1

λ
Σ = I+ 1√

3
Σ gives such a frame. Hence, by expressing

this frame in terms of the orthonormal basis obtained by applying Gram–Schmidt to its
first two vectors we obtain the following unit–norm copy

{

(

1
0

)

,

(

1√
3
a

√
2√
3

)

,

(

1√
3
b

√
2√
3
ζ±1ab

)

,

(

1√
3
c

√
2√
3
ζ∓1ac

)

}

, ζ := e
2πi

3 = −1

2
+

√
3

2
i. (3.7)

Taking a = b = c = −1 in (3.7) gives the example of [STDH07].
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The appearance of the third root of unity ζ here is incidental. If equiangular tight
frames are thought of as sums of rank one orthogonal projections (averaging to a multiple
of the identity), rather than as the vectors defining these projections, then the natural
equivalence between Φ = (fj) and Ψ = (gj) is to extend the unitary equivalence (2.6) to

gj = αjUfj , ∀j.

where αj are scalars of unit modulus. This is the type III equivalence of [HP04] (without
reordering). The frames Φ and Ψ are equivalent under this if and only if their Gramians
satisfy

Gram(Ψ) = Λ∗ Gram(Φ)Λ, Λ = diag(αj).

For equiangular tight frames, (3.4) can be used to express this condition in terms of the
signature matrices

ΣΨ = Λ∗ΣΦΛ.

Hence every equiangular tight frame is type III equivalant to one with a signature matrix
of the form

ΛΣΛ∗ =

(

0 ~1∗

~1 Σ̂

)

, Λ := diag(1, z12, z13, . . . , z1n), ~1 := (1, 1, . . . , 1)∗. (3.8)

We will call the above matrix Σ̂ the reduced signature matrix of the frame (and its
type III equivalence class). The reduced signature matrix of (3.6) is

Σ̂ =





0 ±i ∓i

∓i 0 ±i

±i ∓i 0



 .

Thus there are just two equiangular tight frames of four vectors in C2 up to the type III
equivalence. Moreover, these can be obtained from each other by taking the entrywise
complex conjugate of the reduced signature matrix.

The factorisation (3.8) allows the number of variables in (3.3) to be reduced by n− 1
to 1

2 (n − 1)(n − 2). We express these equations in terms of the reduced signature matrix.

Proposition 3.9. There exists an equiangular tight frame of n vectors for IFd with reduced
signature matrix Σ̂ if and only if

(λ1 + λ2)Σ̂ = Σ̂2 + J − (n − 1)I, λ1 + λ2 := (n − 2d)

√

n − 1

d(n − d)
, J := ~1~1∗,

and ~1 is an eigenvector of Σ̂ for the eigenvalue λ1 + λ2.

Proof: Substitute

Σ =

(

0 ~1∗

1 Σ̂

)

into (3.4), and equate the blocks.
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4. Real equiangular frames and their graphs

The Seidel matrix (see [GR01]) Σ of a graph G with n vertices is the n × n matrix
with a −1 in the (j, k)–entry if the j and k vertices are adjacent (connected by an edge),
a 1 if they are noadjacent, and 0 diagonal entries. Clearly, Seidel matrices are signature
matrices over IR, and vice versa.

For IF = IR, there are finitely many possible n × n signature matrices, and hence
finitely many real equiangular frames of n vectors. Each of these is in 1–1 correspondence
with a graph, namely the graph whose Seidel matrix is the signature matrix of this frame.

Theorem 4.1. Let G be a graph with n vertices, and Σ be its Seidel matrix. If −λ is the
smallest eigenvalue of Σ, and has multiplicity n − d, then

r(I +
1

λ
Σ) =

r

λ

(

Σ − (−λ)I
)

is the Gramian matrix of an equiangular tight frame of n vectors for IRd, and this frame is
tight if and only if Σ has two eigenvalues. Conversely, every equiangular frame of n vectors
for IRd can be constructed from a graph in this way.

This 1–1 correspondence between real equiangular frames and graphs has recently
been studied in the case of tight equiangular frames (see, e.g., [SH03], [BP05], [STDH07]).
We summarise the implications in the next section. After that we consider, for the first
time, nontight equiangular frames.

Graphs G1, G2 with Seidel matrices Σ1, Σ2 are switching equivalent if there is
a diagonal matrix Λ with diagonal entries ±1 for which Λ−1Σ1Λ is the Seidel matrix
of the (unlabelled) graph G2. The collection of graphs which are switching equivalent
to a given G is called the switching class of G (or a two–graph). The equiangular
frames corresponding to a switching class of graphs differ from each other (up to unitary
equivalence) only by the multiplication of their vectors by ±1 (as given by Λ).

Example 2. If G is the complete graph Kn, then its Seidel matrix Σ has two eigenvalues:
−(n − 1) of multiplicity 1, and 1. The corresponding tight frame of n vectors in IRn−1 is
given by vectors which are the vertices of a regular simplex (see Figure 1). Similarly, its
complement, the empty graph, gives the equiangular tight frame for IR1 consisting of a
nonzero vector repeated n times.

Fig. 1. The graphs in the switching class of the complete graph K3, and the
corresponding equiangular (tight) frames of three vectors in IR2.
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5. Tight equiangular frames

Let Σ be the Seidel matrix of a graph G, and Σ̂ given by (3.8) be its reduced Seidel
matrix. The condition that Σ have two eigenvalues, and hence give a real equiangular
tight frame, is most easily expressed in terms of the graph with Seidel matrix Σ̂ (see
[HP04:Th. 3.10] for a description in terms of the switching class containing G).

A regular graph of degree k with ν vertices is said to be strongly regular, or a
srg(ν, k, λ, µ), if there are integers λ and µ such that

• Every two adjacent vertices have λ common neighbours.
• Every two non-adjacent vertices have µ common neighbours.

The adjacency matrix A (which has a 1 for adjacency, and a 0 otherwise) of a strongly
regular graph G which is not complete or empty is characterised by

AJ = kJ, A2 + (µ − λ)A + (µ − k)I = µJ, (5.1)

where J = Jν is the ν × ν matrix of all 1’s and I = Iν is the identity.

Theorem 5.2. Let Σ be the Seidel matrix of a graph G on n vertices which is not
switching equivalent to the complete or empty graph, and Σ̂ be given by (3.8). Then Σ has
two eigenvalues (and so corresponds with an equiangular tight frame of n > d + 1 vectors
for IRd) if and only if Σ̂ is the Seidel matrix of a strongly regular graph Ĝ of the type

srg(n − 1, k, λ, µ), λ =
3k − n

2
, µ =

k

2
.

The n, k, d above are related as follows

d =
1

2
n − 1

2

n(n − 2k − 2)
√

(n − 2k)2 + 8k
> 1, k =

1

2
n − 1 +

(

1 − n

2d

)

√

d(n − 1)

n − d
. (5.3)

Proof: We adapt the relevant parts of the proof of [GR01:Th. 11.6.1].
By Proposition 3.9, Σ has two eigenvalues (i.e., gives rise to an equiangular tight frame
for IRd), if and only if ~1 is an eigenvector of Σ̂ for the eigenvalue λ1 + λ2, and

(λ1 + λ2)Σ̂ = Σ̂2 + J − (n − 1)I, J := ~1~1∗. (5.4)

Thus ~1 is an eigenvector of the adjacency matrix A = 1
2 (J − I − Σ̂) of Ĝ for the eigenvalue

k =
(n − 1) − 1 − (λ1 + λ2)

2
=

1

2
n − 1 +

(

1 − n

2d

)

√

d(n − 1)

n − d
, (5.5)

with k a positive integer (since the nonzero entries of A are 1). Hence Ĝ is a regular graph
of degree k, which is not complete or empty (by our assumption). Using Σ̂ = J − I − 2A,
AJ = JA = kJ and (5.5), we can rewrite (5.4) as

A2 + (
n

2
− k)A − k

2
I = A2 + (

k

2
− 3k − n

2
)A + (

k

2
− k)I =

k

2
J,

which (since AJ = JA) is equivalent to Ĝ being a srg(n−1, k, λ, µ), λ = 1
2 (3k−n), µ = k

2 .
Finally, solving (5.5) for d gives

d =
1

2
n ± 1

2

n(n − 2k − 2)
√

(n − 2k)2 + 8k
,

with the choice of sign determined by the multiplicities of the eigenvalues of Σ.
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The existence and construction of equiangular tight frames in IRd can therefore be
expressed in terms of strongly regular graphs with certain parameters.

Corollary 5.6. There exists an equiangular tight frame of n > d + 1 vectors for IRd if
and only if there exists a strongly regular graph Ĝ, with Seidel matrix Σ̂, of the type

srg(n − 1, k,
3k − n

2
,
k

2
), k :=

1

2
n − 1 +

(

1 − n

2d

)

√

d(n − 1)

n − d
.

Moreover, all graphs G giving an equiangular tight frame of n vectors for IRd have Seidel
matrices of the form

Λ−1

(

0 ~1∗

~1 Σ̂

)

Λ, Λ = diag(σ1, . . . , σn), σj = ±1, (5.7)

where Σ̂ is as above. In particular, we can take G to be Ĝ together with an isolated point.

We note that the switching class of a graph G giving an equiangular tight frame may
contain graphs consisting of an isolated point together various nonisomorphic strongly
regular graphs. (this is sometimes used as a method to construct strongly regular graphs).
Thus it seems that the “reduced signature matrix” of an equiangular frame is not unique.

The graph G consisting of a strongly regular graph Ĝ together with an isolated point
is switching equivalent to Ĝ together with a point which is adjacent to all points of Ĝ.
This is illustrated in Figure 2, which shows the switching class of the graph G obtained
from Ĝ the 5–cycle, which is the unique srg(5, 2, 0, 1). The corresponding tight frame of
n = 6 vectors for IR3 consists of vectors which are on the six diagonals of the icosahedron.

Fig. 2. The switching class of the graph G consisting of a 5–cycle and an isolated
point.

Example 3. For n = 2d, i.e., k = 1
2 (n − 2), the parameters in Corollary 5.6 are those

of a conference graph on n − 1 vertices, and the matrices Σ of (5.7) are the associated
(symmetric) conference matrices of size n, i.e., (3.4) becomes

Σ2 = (n − 1)I.

The Paley graphs on n − 1 = q = pm vertices, q a prime power with q ≡ 1 (mod 4), are
an important family of conference graphs. A necessary condition for the existence of such
a conference graph is that d be odd, and 2d−1 be a sum of squares (cf [STDH07:Th. 17]).

9



Example 4. For n 6= 2d one obtains necessary conditions on n, d from those for the
existence of a strongly regular graph Ĝ with the given parameters. Let A = 1

2 (J − I − Σ̂)

be the adjacency matrix of Ĝ, which has eigenvalues k, −1−λ1

2 , −1−λ2

2 , where λ1, λ2 are
given by (3.5). The eigenvalues of A must be integers, and hence λ1, λ2 are odd integers (cf
[STDH07]). The other conditions which follow from the theory of strongly regular graphs
do not appear in the frame literature, and so we give a formal statement.

Corollary 5.8. Suppose n 6= 2d. Then the following are necessary conditions for an
equiangular tight frame of n > d + 1 vectors for IRd to exist

(a)
√

d(n−1)
n−d

,
√

(n−d)(n−1)
d

are odd integers.

(b) 1
4

n2(n−1)
d(n−d) is a perfect square.

(c) n − 1 is odd, but not a prime.

Proof: We have already discussed (a). By [GR01:Lem. 10.3.3], the eigenvalues of
A satisfy

(−1 − λ2

2
− −1 − λ1

2

)2

=
1

4
(λ1 − λ2)

2 =
1

4

n2(n − 1)

d(n − d)
is a perfect square,

which gives (b). Since λ1 and λ2 are odd integers, so is their product −(n − 1). Further,
by [GR01:Lem. 10.3.4], the only strongly regular graphs Ĝ with n−1 prime are conference
graphs, i.e., those with

2k + (n − 2)
(3k − n

2
− k

2

)

= 0 ⇐⇒ n = 2d,

and we obtain (c). Clearly, (b),(c) also follow directly from (a) and the fact −λ1, λ2 > 1.

The n, d must also satisfy the Krein bounds for a strongly regular graph (see
[GR01:Th. 10.7.1]), i.e.,

θτ2 − 2θ2τ − θ2 − kθ + kτ2 + 2kτ ≥ 0,

where θ, τ are −1−λ1

2 , −1−λ2

2 (in either order), and we recall λ1, λ2 given by (3.5) satisfy

λ1λ2 = −(n − 1), k =
1

2
n − 1 − 1

2
(λ1 + λ2).

It is not clear whether the following necessary condition (cf [CRT08])

2d + 1 +
√

8d + 1

2
≤ n ≤ 1

2
d(d + 1) (5.9)

implies the Krein bounds. It is conjectured in [STDH07] that (a) together with (5.9)
implies the existence of a corresponding equiangular tight frame, and there is no evidence
to refute this. However, the case n = 76, d = 19, which satisfies both bounds, is equivalent
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to the existence of a srg(75, 32, 10, 16) which is a long standing open question in algebraic
graph theory, and so this conjecture is unlikely to be decided without considerable insight.

Since the tables of equiangular tight frames given in [STDH07] and [CRT08] contain
omissions and additions, in Table 1 we give all equiangular tight frames known to exist for
d ≤ 50. This was determined from the literature on strongly regular graphs as summarised
in Brouwer [B07], and the associated internet page

http://www.win.tue.nl/~aeb/graphs/srg/

In particular, we note that whether there exist conference graphs srg(65, 32, 15, 16) and
srg(85, 42, 20, 21) are still open questions. In Table 1, the # column gives the number of
strongly regular graphs Ĝ known to exist, following the notation of [B07]: ! (exactly one
exists), + (at least one exists), ? (existence unknown), m! (m exist).

Table 1. The equiangular tight frames of n vectors for IRd (d ≤ 50), for n 6= 2d

and n = 2d. Here # gives the number of associated strongly regular graphs Ĝ.

d n # λ1 λ2 Ĝ
6 16 ! -3 5 srg(15, 6, 1, 3)
10 16 ! -5 3 srg(15, 8, 4, 4)
7 28 ! -3 9 srg(27, 10, 1, 5)
21 28 ! -9 3 srg(27, 16, 10, 8)
15 36 + -5 7 srg(35, 16, 6, 8)
21 36 + -7 5 srg(35, 18, 9, 9)
19 76 ? -5 15 srg(75, 32, 10, 16)
20 96 ? -5 19 srg(95, 40, 12, 20)
21 126 + -5 25 srg(125, 52, 15, 26)
22 176 + -5 35 srg(175, 72, 20, 36)
23 276 ! -5 55 srg(275, 112, 30, 56)
28 64 + -7 9 srg(63, 30, 13, 15)
36 64 + -9 7 srg(63, 32, 16, 16)
35 120 + -7 17 srg(119, 54, 21, 27)
37 148 ? -7 21 srg(147, 66, 25, 33)
41 246 ? -7 35 srg(245, 108, 39, 54)
42 288 ? -7 41 srg(287, 126, 45, 63)
43 344 + -7 49 srg(343, 150, 53, 75)
45 100 + -9 11 srg(99, 48, 22, 24)
45 540 ? -7 77 srg(539, 234, 81, 117)
46 736 ? -7 105 srg(735, 318, 109, 159)

d n # Ĝ
3 6 ! Paley(5)
5 10 ! Paley(9)
7 14 ! Paley(13)
9 18 ! Paley(17)
13 26 15! Paley(25)
15 30 41! Paley(29)
19 38 + Paley(37)
21 42 + Paley(41)
23 46 + Conference
25 50 + Paley(49)
27 54 + Paley(53)
31 62 + Paley(61)
33 66 ? Conference
37 74 + Paley(73)
41 82 + Paley(81)
43 86 ? Conference
45 90 + Paley(89)
49 98 + Paley(97)

6. Nontight equiangular frames

For a frame (fj) of n equal–norm vectors, we define its angles to be the set

{|〈fj , fk〉| : j 6= k}.
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In this terminolgy, an equiangular frame is characterised by having one angle, and a set of
(more than one) mutually unbiased bases has two angles. The minimal angle between
(the lines defined by) a set Φ = (fj) of nonzero vectors is

θ(Φ) := min
j 6=k

cos−1(|〈fj , fk〉|) ∈ [0,
1

2
π]. (6.1)

For a nontight equal–norm frame the dual and canonical tight frames do not have equal
norms (in general). Here we will show that certain classes of equiangular frames do have
this property, and in addition they have a small number of angles.

By way of motivation, consider the equiangular frame Φ for IR3 given by the 5–cycle,
which has Seidel matrix

Σ =











0 −1 1 1 −1
−1 0 −1 1 1
1 −1 0 −1 1
1 1 −1 0 −1
−1 1 1 −1 0











,

with eigenvalues −
√

5,−
√

5, 0,
√

5,
√

5. This has Gramian matrix I + 1√
5
Σ, and is not

tight. It is the first such example of a Grassmannian frame, i.e., a frame of unit vectors
maximising (6.1) the minimal angle (see [BK06]). The Gramian matrix of the dual frame
is obtained by taking the pseudoinverse

(I +
1√
5
Σ)† =











2
5 a b b a

a 2
5 a b b

b a 2
5 a b

b b a 2
5 a

a b b a 2
5











, a :=
3 −

√
5

20
, b :=

3 +
√

5

20
,

and the Gramian of the canonical tight frame is

(I +
1√
5
Σ)†(I +

1√
5
Σ) =











3
5 −a b b −a

−a 3
5 −a b b

b −a 3
5 −a b

b b −a 3
5 −a

−a b b −a 3
5











, a :=

√
5 − 1

10
, b :=

√
5 + 1

10
.

Thus the dual and canonical tight frames have two angles.
The minimal angles for the sets of vectors Φ, Φ̃ and Φcan are

cos−1 1√
5
≈ 63.4349◦, cos−1 3 +

√
5

8
≈ 49.1176◦, cos−1 1 +

√
5

6
≈ 57.3610◦.

It is easy to verify that Φ consists of vectors that lie in five of the six diagonals of the
iscosahedron, and that the tight frame Φcan is the harmonic frame given by the lifted fifth
roots of unity (see [W09]).

The above properties follow from the fact that the 5–cycle is a strongly regular graph
– the unique srg(5, 2, 0, 1).
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Theorem 6.2. Let G be a strongly regular graph srg(ν, k, a, c), and Φ the real equiangular
frame of ν vectors for IRd that it determines. Then Φ is tight if and only if

a − c − 2k + ν = ±
√

(a − c)2 + 4(k − c). (6.3)

Otherwise, either
√

(a − c)2 + 4(k − c) > c − a + 2k − ν, (6.4)

and the dual and the canonical tight frames are equal–norm frames with two angles, where

d =
1

2

(

ν + 1 +
2k + (ν − 1)(a − c)
√

(a − c)2 + 4(k − c)

)

, (6.5)

or d = ν − 1.

Proof: Let G be a srg(ν, k, a, c), with adjacency and Seidel matrices A and Σ.
Then the eigenvalues of A are

θ =
a − c +

√
∆

2
, τ =

a − c −
√

∆

2
, ∆ := (a − c)2 + 4(k − c),

with multiplicities

mθ =
1

2

(

ν − 1 − 2k + (ν − 1)(a − c)√
∆

)

, mτ =
1

2

(

ν − 1 +
2k + (ν − 1)(a − c)√

∆

)

, (6.6)

and k with eigenvector ~1 (see [GR01]). Thus Σ = J − I − 2A, J := ~1~1∗, has eigenvalues

−1 − 2θ, −1 − 2τ, ν − 1 − 2k

with the corresponding eigenspaces. These are distinct, unless −1 − 2θ or −1 − 2τ equals
ν − 1 − 2k, which is equivalent to (6.3), and by Theorem 4.1 we have that Φ is tight.

Otherwise, the minimal eigenvalue of Σ is −λ = −1− 2θ (with multiplicity mθ) when
−1 − 2θ < ν − 1 − k, i.e., (6.4) holds. In this case, the spectral decomposition of the
symmetric matrix Σ is

Σ = −λPθ + (−1 − 2τ)Pτ + (ν − 1 − 2k)
J

ν
,

where Pθ and Pτ are the orthogonal projections onto the θ and τ eigenspaces of A. Hence
the Gramian of the associated equiangular frame for IRd, d = n − mθ, has the form

I +
1

λ
Σ = αPτ + β

J

n
, α =

2θ − 2τ

1 + 2θ
, β =

2θ − ν − 2k

1 + 2θ
.

In particular, we observe Pτ has a constant diagonal, and off diagonal entries taking two
possible values (all entries of J are 1). The dual and canonical tight frames have Gramians

(I +
1

λ
Σ)† =

1

α
Pτ +

1

β

J

n
, (I +

1

λ
Σ)†(I +

1

λ
Σ) = Pτ +

J

n
,

and so are equal–norm frames with two angles (indeed the off diagonal entries of their
Gramians take just two values). The only remaining case is when ν − 1 − k < −1 − 2θ,
and the mimimal eigenvalue ν − 1 − k has multiplicity one, and so d = ν − 1.
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The above argument can be extended to any connected regular graph with three
eigenvalues – here the eigenvalue corresponding to ~1 is simple.

The list of all the equiangular frames of n ≤ 50 vectors that can be constructed from
strongly regular graphs by Theorem 6.2 are given in Table 2.

Table 2. The equiangular frames of n ≤ 50 vectors for IRd constructed from
strongly regular graphs G. Here type refers to the three cases in Theorem 6.2.

n d type G
5 3 two srg(5, 2, 0, 1)
9 5 two srg(9, 4, 1, 2)
10 5 tight srg(10, 3, 0, 1)
10 5 tight srg(10, 6, 3, 4)
13 7 two srg(13, 6, 2, 3)
15 6 two srg(15, 6, 1, 3)
15 10 two srg(15, 8, 4, 4)
16 6 tight srg(16, 5, 0, 2)
16 10 tight srg(16, 10, 6, 6)
16 10 tight srg(16, 6, 2, 2)
16 6 tight srg(16, 9, 4, 6)
17 9 two srg(17, 8, 3, 4)
21 7 two srg(21, 10, 3, 6)
21 15 two srg(21, 10, 5, 4)
25 17 two srg(25, 8, 3, 2)
25 24 - srg(25, 16, 9, 12)
25 13 two srg(25, 12, 5, 6)
26 13 tight srg(26, 10, 3, 4)
26 13 tight srg(26, 15, 8, 9)
27 7 two srg(27, 10, 1, 5)
27 21 two srg(27, 16, 10, 8)
28 21 tight srg(28, 12, 6, 4)
28 7 tight srg(28,15,6,10)
29 15 two srg(29,14,6,7)
35 15 two srg(35,16,6,8)
35 21 two srg(35,18,9,9)

n d type G
36 26 two srg(36,10,4,2)
36 35 - srg(36,25,16,20)
36 15 tight srg(36,14,4,6)
36 21 tight srg(36,21,12,12)
36 28 two srg(36,14,7,4)
36 35 - srg(36,21,10,15)
36 21 tight srg(36,15,6,6)
36 15 tight srg(36,20,10,12)
37 19 two srg(37,18,8,9)
40 16 two srg(40,12,2,4)
40 39 - srg(40,27,18,18)
41 21 two srg(41,20,9,10)
45 25 two srg(45,12,3,3)
45 44 - srg(45,32,22,24)
45 36 two srg(45,16,8,4)
45 44 - srg(45,28,15,21)
45 23 two srg(45,22,10,11)
49 37 two srg(49,12,5,2)
49 48 - srg(49,36,25,30)
49 31 two srg(49,18,7,6)
49 48 - srg(49,30,17,20)
49 25 two srg(49,24,11,12)
50 22 two srg(50,7,0,1)
50 49 - srg(50,42,35,36)
50 25 two srg(50,21,8,9)
50 25 tight srg(50,28,15,16)

Example 5. For n ≤ 50 there are 29 equal–norm tight frames with two angles that can
be constructed by Theorem 6.2. There also many equiangular tight frames that can be
constructed in this way, e.g., for n = 10 the unique graphs srg(10, 3, 0, 1) (the Petersen
graph) and srg(10, 6, 3, 4) (the Triangular graph T5) give a set of 10 equiangular vectors in
IR5. Since there a unique such frame up to switching equivalence of the graphs, it follows
these two graphs are switching equivalent to that obtained by taking the Paley graph
Paley(9) and adding an isolated vertex (see Figure 3).
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Fig. 3. Three switching equivalent graphs that give 10 lines in IR5: The Paley
graph on 9 vertices and a point, the Petersen graph, and the triangular graph T5.

Example 6. For some parameters there exist many strongly regular graphs. For example,
there are 3854 strongly regular graphs on 35 points which give an equal–norm tight frame
of 35 vectors for IR15 (or IR21) with two angles and there are 32548 strongly regular graphs
which give equiangular tight frames of 36 vectors for IR15 (or IR21).

The 6–cycle is a regular, but not strongly regular graph. Its Seidel matrix has three
eigenvalues, and gives an equiangular frame of six vectors for IR4. The dual and canonical
tight frames have equal norms (and more than two angles). This is a consequence of the
6–cycle being a circulant graph.

Let C be a subset of ZZn which is closed under taking additive inverses, i.e, −c ∈ C,
∀c ∈ C. Then the circulant graph G with connection set C is the graph with vertices
ZZn and an edge from j to k if j − k ∈ C. The choice C = {−1, 1} gives the n–cycle.

Theorem 6.7. Let G be a circulant graph, and Φ be the real equiangular frame that it
determines. Then the dual frame Φ̃ and canonical tight frame Φcan are equal–norm frames.

Proof: Since G is a circulant graph, the Gramian of the equiangular frame it
determines is a circulant matrix, and hence is diagonalised by the Fourier matrix F , i.e.,

F−1(I +
1

λ
Σ)F = diag(λ1, . . . , λn), F :=

1√
n

[ωjk]j,k∈ZZn
, ω := e

2πi

n .

Since F is unitary, we can write this spectral decomposition as

I +
1

λ
Σ =

∑

j

λjPj , Pj := fjf
∗
j , fj :=

1√
n

(ωjk)k∈ZZn
.

The rank one projection matrices Pj have constant diagonal entries (equal to 1
n
), and so

(as in the proof of Theorem 6.2) the dual and canoncial tight frames have equal–norms.

Example 7. A simple calculation shows that the Seidel matrix of the n–cycle has a
minimal eigenvalue −1− 4 cos π

n
of multiplicity 2 with corresponding eigenvectors f−1, f1.

The corresponding equiangular frame is of n vectors for IRn−2, and its complement is the
tight frame of n equally spaced vectors for IR2 (up to similarity).

15



Acknowledgement

The author would like to thank a number of colleagues for helpful email discussions:
Gordon Royle and Andries Brouwer on the strongly regular graphs, and Vern Paulsen on
the equivalence of tight frames.

References

[BK06] J. J. Benedetto and J. D. Kolesar, Geometric Properties of Grassmannian Frames for
IR2 and IR3, EURASIP J. Appl. Signal Process. 2006 (2006), 1–17.

[BP05] B. G. Bodmann and V. I. Paulsen, Frames, graphs and erasures, Linear Algebra Appl.
404 (2005), 118–146.

[BPT08] B. G. Bodmann, V. I. Paulsen, and M. Tomforde, Equiangular tight frames from com-
plex Seidel matrices containing cube roots of unity, Preprint (University of Houston),
2008.

[B07] A. E. Brouwer, Strongly regular graphs, in “Handbook of Combinatorial designs”
(Colbourn, C. J., Dinitz, J. H. Eds.), pp. 852–868, Chapman and Hall, Boca Raton,
2007.

[CRT08] P.G. Casazza, D. Redmond, and J.C. Tremain, Real equiangular frames, Information
Sciences and Systems (42nd Annual Conference on) (2008), 715–720.

[C03] O. Christensen, “An introduction to frames and Riesz bases”, Birkhäuser, Boston,
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