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We give details of the 1-1 correspondence between equiangular

frames of n vectors for Rd and graphs with n vertices. This has been

studied recently for tight equiangular frames because of applica-

tions to signal processing and quantum information theory. The

nontight examples given here (which correspond to graphs with

more than2eigenvalues) have thepotential for similar applications,

e.g., the frame corresponding to the 5-cycle graph is the unique

Grassmannian frame of 5 vectors in R3. Further, the associated

canonical tight frames have a small number of angles inmany cases.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Equiangular tight frames have important applications to signal processing because of their robust-

ness to erasures (see [8,9,2]), and to quantum information theory (see [13,12]). When such frames do

not exist (cf. [15]) closely related classes of frames have been suggested as substitutes, most notably

Grassmannian frames andmutually unbiased bases (see [16,1,11]). In this direction,we consider nontight

equiangular frames of n vectors for Rd. These are in 1-1 correspondence with graphs on n vertices.
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The associated dual and canonical tight frames are not equiangular, but are often equal-norm frames

with a just a few angles.

The paper is set out as follows. Next we give the basic theory of finite frames, and define (possibly

nontight) equiangular frames. We then consider the 1-1 correspondence between an equiangular

frame and its so called signature matrix (which defines it up to unitary equivalence). We show if the

frame is tight, then the equiangularity condition reduces to a system of quadratic equations. We solve

these equations in a fewcases. This leads to exampleswhich indicate complex equiangular tight frames

are likely to be more numerous than is generally believed. Understanding the subfield of the complex

numbers the entries of the signature matrix can or must come from may be pivotal in understanding

complex equiangular tight frames (cf. [10,15,3]).

The remainder of the paper considers the special case of real equiangular frames. Here the entries

of the signature matrix are ±1, and so it can be thought of as the Seidel (adjacency) matrix of a

graph. These ideas date back to the foundations of algebraic graph theory (see [7,14]), with most

attention spent on the case of tight equiangular frames (see [16,9]). These correspond to graphs with 2

eigenvalues,which in turncome fromasubclassof the strongly regular graphs (with certainparameters

given here) with an additional point added. We conclude with a number of examples of nontight

equiangular tight frames given by graphs with few eigenvalues, such as the strongly regular graphs

themselves (which have 3 eigenvalues).

2. The basic theory of finite frames

The following definitions and observations are well known (cf. [6,17]). Let H be a real or complex

Hilbert space of finite dimension d. A finite sequence of n� d vectors Φ = (fj)j∈J in H is a frame for

H if it spansH, and is a tight frame forH if there is a c > 0 with

f = c
∑
j∈J

〈f , fj〉fj , ∀f ∈ H. (2.1)

The above c > 0 is unique, and given by

c = d∑
j∈J ‖fj‖2

. (2.2)

A tight frame is normalised (the term Parseval frame is also used) if it has been scaled so that c = 1.

Frames with a countable number of vectors (for a finite or infinite dimensional space) can be defined

by the so called frame bounds, i.e., that there exists A, B > 0 with

A‖f‖2 �
∑
j∈J

|〈f , fj〉|2 � B‖f‖2, ∀f ∈ H.

This is easily seen to be equivalent to the definition above for J finite.

The synthesis operator for a finite sequence (fj)j∈J inH is the linear map

V :=[fj]j∈J : �2(J) → H : a �→ ∑
j∈J

ajfj ,

and its frame operator is the linear map S = VV∗ : H → H given by

Sf := ∑
j∈J

〈f , fj〉fj , ∀f ∈ H.

With I = IH the identity onH, the tight frame condition (2.1) can be expressed as

S = VV∗ = cI. (2.3)

If Φ = (fj)j∈J is a frame, then S is invertible, and the (canonical) dual frame Φ̃ = (f̃j) is defined by

f̃j :=S−1fj , ∀j ∈ J, (2.4)
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and the canonical tight frame Φcan = (f canj ) by

f canj = S− 1
2 fj , ∀j ∈ J. (2.5)

A frame and its dual satisfy the expansion

f = ∑
j∈J

〈f , fj〉f̃j = ∑
j∈J

〈f , f̃j〉fj , ∀f ∈ H,

and the canonical tight frame is a normalised tight frame, i.e.,

f = ∑
j∈J

〈f , f canj 〉f canj , ∀f ∈ H.

Frames Φ = (fj)j∈J and Ψ = (gj)j∈J for H, with the same index set J, are unitarily equivalent if

there is a unitary transformationH → Hwith Ψ = UΦ :=(Ufj)j∈J , i.e.,

gj = Ufj , ∀j ∈ J, (2.6)

and are similar if there is an invertible linear map Q : H → H with Ψ = QΦ . Clearly, these are

equivalence relations on the set of frames for H, indexed by a given set J. In view of definitions (2.4)

and (2.5), a frame, its dual and canonical tight frame are all similar. A simple calculation shows that

normalised tight frames are similar if and only if they are unitarily equivalent.

The Gramian of a sequence of n vectors (fj)j∈J is the n × n matrix

Gram(Φ):=V∗V = [〈fk , fj〉]j,k∈J .

Frames Φ and Ψ are unitarily equivalent if and only if their Gramians are equal, and they are similar

if and only if the Gramians of their canonical tight frames are equal, i.e.,

Gram(Φcan) = Gram(Ψ can).

A sequence of vectors is a normalised tight frame (for its span) if and only if its Gramian matrix P

is an orthogonal projection matrix, i.e., P2 = P and P = P∗. Note that P = P∗ holds for any Gramian

matrix. We say that two frames Φ and Ψ are complementary (or complements of each other) if the

Gramians of the associated canonical tight frames are complementary projection matrices, i.e.,

Gram(Φcan) + Gram(Ψ can) = I. (2.7)

The complement of a frame is well defined up to similarity, and the complement of a tight frame in

the class of normalised tight frames is well defined up to unitary equivalence.

We say that (fj) is an equal-norm frame if all its vectors have the same length, and is equiangular

(cf. [16]) if addition there is a C � 0 with

|〈fj , fk〉| = C, ∀j /= k.

The dual and canonical tight frames of a nontight equal-norm frame is in general not an equal-norm

frame, but can be, see, e.g., Theorem 6.2.

3. Equiangular frames and their signature matrices

Since frames are determined up to unitary equivalence by their Gramian matrices, the Gramian of

an equiangular frame with C > 0 has the form

G =

⎛⎜⎜⎜⎜⎜⎜⎝
r Cz12 Cz13 · · · Cz1n

Cz12 r Cz23 · · · Cz2n
Cz13 Cz23 r

...
...

. . .

Cz1n Cz2n r

⎞⎟⎟⎟⎟⎟⎟⎠ = rI + CΣ , r > 0, |zjk| = 1.

We call any n × n Hermitian matrix Σ of the above form, i.e., with zero diagonal and off diagonal

entries of modulus 1 a signature matrix. Let F stand for R or C. The n × n signature matrices are in
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1-1 correspondence with the equiangular frames of n vectors. For completeness, we state and proof

this well known result in the frame terminology.

Theorem 3.1. Let Σ be an n × n signature matrix (over F), with smallest eigenvalue −λ of multiplicity

n − d, then

A:=r

(
I + 1

λ
Σ

)
= r

λ
(Σ − (−λ)I), r > 0

is the Gramian matrix of an equiangular frame of n vectors for Fd, and every Gramian of an equiangular

frame of n > d vectors for Fd can be constructed in this way. Further, the frame is tight if and only if Σ has

(exactly) two eigenvalues.

Proof. By construction, the matrix A is positive semidefinite of rank d > 0, and so has a positive

square root B = A
1
2 . Since A = B2 = B∗B, A is the Gramian matrix of the frame given by the columns

of B (which span a d-dimensional space).

A frame of n > d vectors is tight if only if its Gramian has exactly one nonzero eigenvalue, and so

an equiangular frame is tight if and only if its signature matrix has exactly two eigenvalues. �

If an equiangular frame is tight, then the λ above is given by

λ =
√
d(n − 1)

n − d
,

which leads to a system of 1
2
n(n − 1) equations in the entries of Σ .

Corollary 3.2 [2, Theorem 4.2]. Let (zjk)1� j<k � n be scalars of modulus 1, then the signature matrix

Σ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 z12 z13 · · · z1n
z12 0 z23 · · · z2n
z13 z23 0
...

...
. . .

z1n z2n 0

⎞⎟⎟⎟⎟⎟⎟⎠
gives an equiangular tight frame if and only if

(n − 2d)

√
n − 1

d(n − d)
zjk =

j−1∑
i=1

zijzik +
k−1∑

i=j+1

zjizik +
n∑

i=k+1

zjizki, 1� j < k � n. (3.3)

Proof. The signaturematrix has two eigenvaluesλ1 = −λ andλ2 if and only if it satisfies theminimal

polynomial

Σ2 − (λ1 + λ2)Σ + λ1λ2I = 0. (3.4)

In particular, by considering a diagonal entry, we must have

λ1λ2 = −(n − 1).

Since Σ has zero trace and λ1 has multiplicity n − d, we have

(n − d)λ1 + dλ2 = 0.

Solving these gives

λ1 = −λ = −
√
d(n − 1)

n − d
, λ2 =

√
(n − d)(n − 1)

d
. (3.5)
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From the entries of the matrix equation (3.4), we therefore obtain n2 equations in the zjk , with coeffi-

cients depending only on n and d. Those from the diagonal entries hold automatically, and since the

(j, k) and (k, j) entries are complex conjugates, we obtain the equivalent system

(λ1 + λ2)zjk = (Σ2)jk , 1� j < k � n,

which can be written as (3.3). �

When F = R the right hand side of (3.3) is the inner product between the j and k columns of Σ ,

and so the columns of the signaturematrix of a equiangular tight frame for Rd are an equiangular tight

frame of n vectors (which are orthogonal if n = 2d).

Example 1. Forn = 4, d = 2, Eq. (3.3) gives6equations. Let z12 = a, z13 = b, z14 = c. Then the (j, k) =
(1, 2) and (1, 3) equations are

z13z23 + z14z24 = 0, z13z23 + z14z34 = 0 
⇒ z24 = −b̄cz23, z34 = −ācz23.

Making the above substitutions for z24 and z34 reduces the other 4 equations to one

(ab̄z23)
2 = −1 
⇒ z23 = ±iāb.

Hence there is a three parameter family of unitarily inequivalent equiangular tight frames of four

vectors for C2 given by the signature matrices

Σ =
⎛⎜⎜⎝
0 a b c

ā 0 ±iāb ∓iāc

b̄ ∓iab̄ 0 ±ib̄c

c̄ ±iac̄ ∓ibc̄ 0

⎞⎟⎟⎠ , |a| = |b| = |c| = 1. (3.6)

A copy of this frame in C2 can be obtained by observing that (up to a scalar) the columns of the

Gramian matrix I + 1
λ
Σ = I + 1√

3
Σ gives such a frame. Hence, by expressing this frame in terms

of the orthonormal basis obtained by applying Gram–Schmidt to its first two vectors we obtain the

following unit-norm copy⎧⎨⎩
(
1

0

)
,

⎛⎝ 1√
3
a√
2√
3

⎞⎠ ,

⎛⎝ 1√
3
b√

2√
3
ζ±1āb

⎞⎠ ,

⎛⎝ 1√
3
c√

2√
3
ζ∓1āc

⎞⎠⎫⎬⎭ , ζ :=e
2π i
3 = −1

2
+

√
3

2
i. (3.7)

Taking a = b = c = −1 in (3.7) gives the example of [15].

The appearance of the third root of unity ζ here is incidental. If equiangular tight frames are thought

of as sums of rank one orthogonal projections (averaging to a multiple of the identity), rather than as

the vectors defining these projections, then the natural equivalence between Φ = (fj) and Ψ = (gj)
is to extend the unitary equivalence (2.6) to

gj = αjUfj , ∀j,
where αj are scalars of unit modulus. This is the type III equivalence of [9] (without reordering). The

frames Φ and Ψ are equivalent under this if and only if their Gramians satisfy

Gram(Ψ ) = Λ∗Gram(Φ)Λ, Λ = diag(αj).

For equiangular tight frames, (3.4) can be used to express this condition in terms of the signature

matrices

ΣΨ = Λ∗ΣΦΛ.

Hence every equiangular tight frame is type III equivalant to one with a signature matrix of the form

ΛΣΛ∗ =
(
0 �1∗
�1 Σ̂

)
, Λ := diag(1, z12, z13, . . . , z1n), �1:=(1, 1, . . . , 1)∗. (3.8)
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Wewill call the abovematrix Σ̂ the reduced signaturematrixof the frame (and its type III equivalence

class). The reduced signature matrix of (3.6) is

Σ̂ =
⎛⎝ 0 ±i ∓i

∓i 0 ±i

±i ∓i 0

⎞⎠ .

Thus there are just two equiangular tight frames of four vectors in C2 up to the type III equivalence.

Moreover, these can be obtained from each other by taking the entrywise complex conjugate of the

reduced signature matrix.

The factorisation (3.8) allows the number of variables in (3.3) to be reduced by n − 1 to 1
2
(n −

1)(n − 2). We express these equations in terms of the reduced signature matrix.

Proposition 3.9. There exists an equiangular tight frame of n vectors for Fd with reduced signature matrix

Σ̂ if and only if

(λ1 + λ2)Σ̂ = Σ̂2 + J − (n − 1)I, λ1 + λ2 :=(n − 2d)

√
n − 1

d(n − d)
, J :=�1�1∗,

and �1 is an eigenvector of Σ̂ for the eigenvalue λ1 + λ2.

Proof. Substitute

Σ =
(
0 �1∗
1 Σ̂

)

into (3.4), and equate the blocks. �

4. Real equiangular frames and their graphs

The Seidel matrix (see [7]) Σ of a graph G with n vertices is the n × n matrix with a −1 in the

(j, k)-entry if the j and k vertices are adjacent (connected by an edge), a 1 if they are nonadjacent, and

0 diagonal entries. Clearly, Seidel matrices are signature matrices over R, and vice versa.

For F = R, there are finitelymany possible n × n signature matrices, and hence finitely many real

equiangular frames of n vectors. Each of these is in 1-1 correspondencewith a graph, namely the graph

whose Seidel matrix is the signature matrix of this frame.

Theorem 4.1. Let G be a graph with n vertices, and Σ be its Seidel matrix. If −λ is the smallest eigenvalue

of Σ , and has multiplicity n − d, then

r

(
I + 1

λ
Σ

)
= r

λ
(Σ − (−λ)I)

is the Gramian matrix of an equiangular frame of n vectors for Rd, and this frame is tight if and only if Σ

has two eigenvalues. Conversely, every equiangular frame of n vectors for Rd can be constructed from a

graph in this way.

This 1-1 correspondence between real equiangular frames and graphs has recently been studied in

the case of tight equiangular frames (see, e.g., [16,2,15]). We summarise the implications in the next

section. After that we consider, for the first time, nontight equiangular frames.

Graphs G1, G2 with Seidel matrices Σ1,Σ2 are switching equivalent if there is a diagonal matrix

Λ with diagonal entries ±1 for which Λ−1Σ1Λ is the Seidel matrix of the (unlabelled) graph G2. The

collection of graphs which are switching equivalent to a given G is called the switching class of G (or
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Fig. 1. The graphs in the switching class of the complete graph K3, and the corresponding equiangular (tight) frames of three

vectors in R2.

a two-graph). The equiangular frames corresponding to a switching class of graphs differ from each

other (up to unitary equivalence) only by the multiplication of their vectors by ±1 (as given by Λ).

Example 2. If G is the complete graph Kn, then its Seidel matrix Σ has two eigenvalues: −(n − 1) of
multiplicity 1, and 1. The corresponding tight frame of n vectors in Rn−1 is given by vectors which

are the vertices of a regular simplex (see Fig. 1). Similarly, its complement, the empty graph, gives the

equiangular tight frame for R1 consisting of a nonzero vector repeated n times.

5. Tight equiangular frames

Let Σ be the Seidel matrix of a graph G, and Σ̂ given by (3.8) be its reduced Seidel matrix. The

condition that Σ have two eigenvalues, and hence give a real equiangular tight frame, is most easily

expressed in terms of the graph with Seidel matrix Σ̂ (see [9, Theorem 3.10] for a description in terms

of the switching class containing G).

A regular graph of degree kwith ν vertices is said to be strongly regular, or a srg(ν , k, λ,μ), if there
are integers λ and μ such that

• Every two adjacent vertices have λ common neighbours.

• Every two non-adjacent vertices have μ common neighbours.

The adjacencymatrix A (which has a 1 for adjacency, and a 0 otherwise) of a strongly regular graph

G which is not complete or empty is characterised by

AJ = kJ, A2 + (μ − λ)A + (μ − k)I = μJ, (5.1)

where J = Jν is the ν × ν matrix of all 1’s and I = Iν is the identity.

Theorem 5.2. LetΣ be the Seidel matrix of a graph G on n vertices which is not switching equivalent to the

complete or empty graph, and Σ̂ be given by (3.8). Then Σ has two eigenvalues (and so corresponds with

an equiangular tight frame of n > d + 1 vectors for Rd) if and only if Σ̂ is the Seidel matrix of a strongly

regular graph Ĝ of the type

srg(n − 1, k, λ,μ), λ = 3k − n

2
, μ = k

2
.

The n, k, d above are related as follows

d = 1

2
n − 1

2

n(n − 2k − 2)√
(n − 2k)2 + 8k

> 1, k = 1

2
n − 1 +

(
1 − n

2d

)√
d(n − 1)

n − d
. (5.3)

Proof. We adapt the relevant parts of the proof of [7, Theorem 11.6.1].

By Proposition 3.9, Σ has two eigenvalues (i.e., gives rise to an equiangular tight frame for Rd), if

and only if �1 is an eigenvector of Σ̂ for the eigenvalue λ1 + λ2, and

(λ1 + λ2)Σ̂ = Σ̂2 + J − (n − 1)I, J :=�1�1∗. (5.4)
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Thus �1 is an eigenvector of the adjacency matrix A = 1
2
(J − I − Σ̂) of Ĝ for the eigenvalue

k = (n − 1) − 1 − (λ1 + λ2)

2
= 1

2
n − 1 +

(
1 − n

2d

)√
d(n − 1)

n − d
, (5.5)

with k a positive integer (since the nonzero entries of A are 1). Hence Ĝ is a regular graph of degree k,

which is not complete or empty (by our assumption). Using Σ̂ = J − I − 2A, AJ = JA = kJ and (5.5),

we can rewrite (5.4) as

A2 +
(
n

2
− k

)
A − k

2
I = A2 +

(
k

2
− 3k − n

2

)
A +

(
k

2
− k

)
I = k

2
J,

which (since AJ = JA) is equivalent to Ĝ being a srg(n − 1, k, λ,μ), λ = 1
2
(3k − n),μ = k

2
.

Finally, solving (5.5) for d gives

d = 1

2
n ± 1

2

n(n − 2k − 2)√
(n − 2k)2 + 8k

,

with the choice of sign determined by the multiplicities of the eigenvalues of Σ . �

The existence and construction of equiangular tight frames in Rd can therefore be expressed in

terms of strongly regular graphs with certain parameters.

Corollary 5.6. There exists an equiangular tight frame of n > d + 1 vectors for Rd if and only if there

exists a strongly regular graph Ĝ, with Seidel matrix Σ̂ , of the type

srg

(
n − 1, k,

3k − n

2
,
k

2

)
, k := 1

2
n − 1 +

(
1 − n

2d

)√
d(n − 1)

n − d
.

Moreover, all graphs G giving an equiangular tight frame of n vectors for Rd have Seidel matrices of the

form

Λ−1

(
0 �1∗
�1 Σ̂

)
Λ, Λ = diag(σ1, . . . , σn), σj = ±1, (5.7)

where Σ̂ is as above. In particular, we can take G to be Ĝ together with an isolated point.

We note that the switching class of a graph G giving an equiangular tight frame may contain

graphs consisting of an isolated point together various nonisomorphic strongly regular graphs. (this

is sometimes used as a method to construct strongly regular graphs). Thus it seems that the “reduced

signature matrix” of an equiangular frame is not unique.

The graph G consisting of a strongly regular graph Ĝ together with an isolated point is switching

equivalent to Ĝ together with a point which is adjacent to all points of Ĝ. This is illustrated in Fig.

2, which shows the switching class of the graph G obtained from Ĝ the 5-cycle, which is the unique

srg(5, 2, 0, 1). The corresponding tight frame of n = 6 vectors for R3 consists of vectors which are on

the six diagonals of the icosahedron.

Example 3. For n = 2d, i.e., k = 1
2
(n − 2), the parameters in Corollary 5.6 are those of a conference

graph on n − 1 vertices, and the matrices Σ of (5.7) are the associated (symmetric) conference

matrices of size n, i.e., (3.4) becomes

Σ2 = (n − 1)I.

The Paley graphs on n − 1 = q = pm vertices, q a prime power with q ≡ 1 (mod 4), are an important

family of conference graphs. A necessary condition for the existence of such a conference graph is that

d be odd, and 2d − 1 be a sum of squares (cf. [17, Theorem 17]).
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Fig. 2. The switching class of the graph G consisting of a 5–cycle and an isolated point.

Example 4. For n /= 2d one obtains necessary conditions on n, d from those for the existence of a

strongly regular graph Ĝ with the given parameters. Let A = 1
2
(J − I − Σ̂) be the adjacency matrix

of Ĝ, which has eigenvalues k,
−1−λ1

2
,
−1−λ2

2
, where λ1, λ2 are given by (3.5). The eigenvalues of A

must be integers, and hence λ1, λ2 are odd integers (cf. [15]). The other conditions which follow from

the theory of strongly regular graphs do not appear in the frame literature, and so we give a formal

statement.

Corollary 5.8. Suppose n /= 2d. Then the following are necessary conditions for an equiangular tight frame

of n > d + 1 vectors for Rd to exist

(a)
√

d(n−1)
n−d

,

√
(n−d)(n−1)

d
are odd integers.

(b) 1
4

n2(n−1)
d(n−d)

is a perfect square.

(c) n − 1 is odd, but not a prime.

Proof. We have already discussed (a). By [7, Lemma 10.3.3], the eigenvalues of A satisfy(−1 − λ2

2
− −1 − λ1

2

)2

= 1

4
(λ1 − λ2)

2 = 1

4

n2(n − 1)

d(n − d)
is a perfect square,

which gives (b). Since λ1 and λ2 are odd integers, so is their product −(n − 1). Further, by [7, Lemma

10.3.4], the only strongly regular graphs Ĝ with n − 1 prime are conference graphs, i.e., those with

2k + (n − 2)

(
3k − n

2
− k

2

)
= 0 ⇐⇒ n = 2d,

and we obtain (c). Clearly, (b), (c) also follow directly from (a) and the fact −λ1, λ2 > 1. �

The n, d must also satisfy the Krein bounds for a strongly regular graph (see [7, Theorem 10.7.1]),

i.e.,

θτ 2 − 2θ2τ − θ2 − kθ + kτ 2 + 2kτ � 0,

where θ , τ are
−1−λ1

2
,
−1−λ2

2
(in either order), and we recall λ1, λ2 given by (3.5) satisfy

λ1λ2 = −(n − 1), k = 1

2
n − 1 − 1

2
(λ1 + λ2).

It is not clear whether the following necessary condition (cf [5])

2d + 1 + √
8d + 1

2
� n�

1

2
d(d + 1) (5.9)

implies the Krein bounds. It is conjectured in [15] that (a) together with (5.9) implies the existence

of a corresponding equiangular tight frame, and there is no evidence to refute this. However, the

case n = 76, d = 19, which satisfies both bounds, is equivalent to the existence of a srg(75, 32, 10, 16)
which is a long standing open question in algebraic graph theory, and so this conjecture is unlikely to

be decided without considerable insight.
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Since the tables of equiangular tight frames given in [15,5] contain omissions and additions, in

Table 1 we give all equiangular tight frames known to exist for d � 50. This was determined from the

literature on strongly regular graphs as summarised in Brouwer [4], and the associated internet page

http : //www.win.tue.nl/˜aeb/graphs/srg/

In particular, we note that whether there exist conference graphs srg(65, 32, 15, 16) and srg(85, 42,
20, 21) are still open questions. In Table 1, the # column gives the number of strongly regular graphs Ĝ

known to exist, following the notation of [4]: ! (exactly one exists), + (at least one exists), ? (existence

unknown), m! (m exist).

Table 1

The equiangular tight frames of n vectors forRd (d � 50), for n /= 2d and n = 2d. Here # gives the number of associated strongly

regular graphs Ĝ.

d n /= 2d # λ1 λ2 Ĝ

6 16 ! -3 5 srg(15, 6, 1, 3)

10 16 ! -5 3 srg(15, 8, 4, 4)

7 28 ! -3 9 srg(27, 10, 1, 5)

21 28 ! -9 3 srg(27, 16, 10, 8)

15 36 + -5 7 srg(35, 16, 6, 8)

21 36 + -7 5 srg(35, 18, 9, 9)

19 76 ? -5 15 srg(75, 32, 10, 16)

20 96 ? -5 19 srg(95, 40, 12, 20)

21 126 + -5 25 srg(125, 52, 15, 26)

22 176 + -5 35 srg(175, 72, 20, 36)

23 276 ! -5 55 srg(275, 112, 30, 56)

28 64 + -7 9 srg(63, 30, 13, 15)

36 64 + -9 7 srg(63, 32, 16, 16)

35 120 + -7 17 srg(119, 54, 21, 27)

37 148 ? -7 21 srg(147, 66, 25, 33)

41 246 ? -7 35 srg(245, 108, 39, 54)

42 288 ? -7 41 srg(287, 126, 45, 63)

43 344 + -7 49 srg(343, 150, 53, 75)

45 100 + -9 11 srg(99, 48, 22, 24)

45 540 ? -7 77 srg(539, 234, 81, 117)

46 736 ? -7 105 srg(735, 318, 109, 159)

d n = 2d # 2d − 1 Ĝ

3 6 ! 12 + 22 Paley(5)

5 10 ! 02 + 32 Paley(9)

7 14 ! 22 + 32 Paley(13)

9 18 ! 12 + 42 Paley(17)

13 26 15! 02 + 52 = 32 + 42 Paley(25)

15 30 41! 22 + 52 Paley(29)

19 38 + 12 + 62 Paley(37)

21 42 + 42 + 52 Paley(41)

23 46 + 32 + 62 Conference

25 50 + 02 + 72 Paley(49)

27 54 + 22 + 72 Paley(53)

31 62 + 52 + 62 Paley(61)

33 66 ? 12 + 82 = 42 + 72 Conference

37 74 + 32 + 82 Paley(73)

41 82 + 02 + 92 Paley(81)

43 86 ? 22 + 92 = 62 + 72 Conference

45 90 + 52 + 82 Paley(89)

49 98 + 42 + 92 Paley(97)
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6. Nontight equiangular frames

For a frame (fj) of n equal-norm vectors, we define its angles to be the set

{|〈fj , fk〉| : j /= k}.
In this terminolgy, an equiangular frame is characterised by having one angle, and a set of (more than

one) mutually unbiased bases has two angles. Theminimal angle between (the lines defined by) a set

Φ = (fj) of nonzero vectors is

θ(Φ):= min
j /=k

cos−1(|〈fj , fk〉|) ∈
[
0,

1

2
π

]
. (6.1)

For a nontight equal-norm frame the dual and canonical tight frames do not have equal norms (in

general). Here we will show that certain classes of equiangular frames do have this property, and in

addition they have a small number of angles.

By way of motivation, consider the equiangular frame Φ for R3 given by the 5-cycle, which has

Seidel matrix

Σ =

⎛⎜⎜⎜⎜⎝
0 −1 1 1 −1

−1 0 −1 1 1

1 −1 0 −1 1

1 1 −1 0 −1

−1 1 1 −1 0

⎞⎟⎟⎟⎟⎠ ,

with eigenvalues −√
5,−√

5, 0,
√

5,
√

5. This has Gramian matrix I + 1√
5
Σ , and is not tight. It is the

first such example of a Grassmannian frame, i.e., a frame of unit vectors maximising (6.1) the minimal

angle (see [1]). The Gramian matrix of the dual frame is obtained by taking the pseudoinverse

(
I + 1√

5
Σ

)†

=

⎛⎜⎜⎜⎜⎜⎜⎝

2
5

a b b a

a 2
5

a b b

b a 2
5

a b

b b a 2
5

a

a b b a 2
5

⎞⎟⎟⎟⎟⎟⎟⎠ , a:= 3 − √
5

20
, b:= 3 + √

5

20
,

and the Gramian of the canonical tight frame is

(
I + 1√

5
Σ

)† (
I + 1√

5
Σ

)
=

⎛⎜⎜⎜⎜⎜⎜⎝

3
5

−a b b −a

−a 3
5

−a b b

b −a 3
5

−a b

b b −a 3
5

−a

−a b b −a 3
5

⎞⎟⎟⎟⎟⎟⎟⎠ , a:=
√

5 − 1

10
, b:=

√
5 + 1

10
.

Thus the dual and canonical tight frames have two angles.

The minimal angles for the sets of vectors Φ , Φ̃ and Φcan are

cos−1 1√
5

≈ 63.4349◦, cos−1 3 + √
5

8
≈ 49.1176◦, cos−1 1 + √

5

6
≈ 57.3610◦.

It is easy to verify that Φ consists of vectors that lie in five of the six diagonals of the iscosahedron,

and that the tight frame Φcan is the harmonic frame given by the lifted fifth roots of unity (see [17]).

The above properties follow from the fact that the 5-cycle is a strongly regular graph – the unique

srg(5, 2, 0, 1).

Theorem 6.2. LetG be a strongly regular graph srg(ν , k, a, c), andΦ the real equiangular frameofν vectors

for Rd that it determines. Then Φ is tight if and only if

a − c − 2k + ν = ±
√

(a − c)2 + 4(k − c). (6.3)
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Otherwise, either√
(a − c)2 + 4(k − c) > c − a + 2k − ν , (6.4)

and the dual and the canonical tight frames are equal-norm frames with two angles, where

d = 1

2

⎛⎝ν + 1 + 2k + (ν − 1)(a − c)√
(a − c)2 + 4(k − c)

⎞⎠ , (6.5)

or d = ν − 1.

Proof. Let G be a srg(ν , k, a, c), with adjacency and Seidel matrices A and Σ . Then the eigenvalues of

A are

θ = a − c + √
�

2
, τ = a − c − √

�

2
, �:=(a − c)2 + 4(k − c),

with multiplicities

mθ = 1

2

(
ν − 1 − 2k + (ν − 1)(a − c)√

�

)
, mτ = 1

2

(
ν − 1 + 2k + (ν − 1)(a − c)√

�

)
, (6.6)

and k with eigenvector �1 (see [7]). Thus Σ = J − I − 2A, J :=�1�1∗, has eigenvalues
−1 − 2θ , −1 − 2τ , ν − 1 − 2k

with the corresponding eigenspaces. These are distinct, unless −1 − 2θ or −1 − 2τ equals ν − 1 −
2k, which is equivalent to (6.3), and by Theorem 4.1 we have that Φ is tight.

Otherwise, the minimal eigenvalue of Σ is −λ = −1 − 2θ (with multiplicity mθ ) when −1 −
2θ < ν − 1 − k, i.e., (6.4) holds. In this case, the spectral decomposition of the symmetric matrix Σ

is

Σ = −λPθ + (−1 − 2τ)Pτ + (ν − 1 − 2k)
J

ν
,

where Pθ and Pτ are the orthogonal projections onto the θ and τ eigenspaces of A. Hence the Gramian

of the associated equiangular frame for Rd, d = n − mθ , has the form

I + 1

λ
Σ = αPτ + β

J

n
, α = 2θ − 2τ

1 + 2θ
, β = 2θ − ν − 2k

1 + 2θ
.

In particular, we observe Pτ has a constant diagonal, and off diagonal entries taking twopossible values

(all entries of J are 1). The dual and canonical tight frames have Gramians(
I + 1

λ
Σ

)†

= 1

α
Pτ + 1

β

J

n
,

(
I + 1

λ
Σ

)† (
I + 1

λ
Σ

)
= Pτ + J

n
,

and so are equal-norm frames with two angles (indeed the off diagonal entries of their Gramians take

just two values). The only remaining case iswhen ν − 1 − k < −1 − 2θ , and themimimal eigenvalue

ν − 1 − k has multiplicity one, and so d = ν − 1. �

The above argument can be extended to any connected regular graphwith three eigenvalues – here

the eigenvalue corresponding to �1 is simple.

The list of all the equiangular frames of n� 50 vectors that can be constructed from strongly regular

graphs by Theorem 6.2 is given in Table 2.

Example 5. For n� 50 there are 28 equal-norm tight frames with two angles that can be constructed

by Theorem 6.2. There also many equiangular tight frames that can be constructed in this way, e.g.,

for n = 10 the unique graphs srg(10, 3, 0, 1) (the Petersen graph) and srg(10, 6, 3, 4) (the Triangular
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Table 2

The equiangular frames of n� 50 vectors for Rd constructed from strongly regular graphs G. Here type refers to the three cases

in Theorem 6.2.

n d type G

5 3 two angles srg(5,2,0,1)

9 5 two angles srg(9,4,1,2)

10 5 tight srg(10,3,0,1), srg(10,6,3,4)

13 7 two angles srg(13,6,2,3)

15 6 two angles srg(15,6,1,3)

15 10 two angles srg(15,8,4,4)

16 6 tight srg(16,5,0,2), srg(16,9,4,6)

16 10 tight srg(16,6,2,2), srg(16,10,6,6)

17 9 two angles srg(17,8,3,4)

21 7 two angles srg(21,10,3,6)

21 15 two angles srg(21,10,5,4)

25 13 two angles srg(25,12,5,6)

25 17 two angles srg(25,8,3,2)

25 24 - srg(25,16,9,12)

26 13 tight srg(26,10,3,4), srg(26,15,8,9)

27 7 two angles srg(27,10,1,5)

27 21 two angles srg(27,16,10,8)

28 7 tight srg(28,15,6,10)

28 21 tight srg(28,12,6,4)

29 15 two angles srg(29,14,6,7)

35 15 two angles srg(35,16,6,8)

35 21 two angles srg(35,18,9,9)

36 15 tight srg(36,14,4,6), srg(36,20,10,12)

36 21 tight srg(36,15,6,6), srg(36,21,12,12)

36 26 two angles srg(36,10,4,2)

36 28 two angles srg(36,14,7,4)

36 35 - srg(36,21,10,15), srg(36,25,16,20)

37 19 two angles srg(37,18,8,9)

40 16 two angles srg(40,12,2,4)

40 39 - srg(40,27,18,18)

41 21 two angles srg(41,20,9,10)

45 23 two angles srg(45,22,10,11)

45 25 two angles srg(45,12,3,3)

45 36 two angles srg(45,16,8,4)

45 44 - srg(45,28,15,21), srg(45,32,22,24)

49 25 two angles srg(49,24,11,12)

49 31 two angles srg(49,18,7,6)

49 37 two angles srg(49,12,5,2)

49 48 - srg(49,30,17,20), srg(49,36,25,30)

50 22 two angles srg(50,7,0,1)

50 25 two angles srg(50,21,8,9)

50 25 tight srg(50,28,15,16)

50 49 - srg(50,42,35,36)

graph T5) give a set of 10 equiangular vectors in R5. Since there is a unique such frame up to switching

equivalence of the graphs, it follows these two graphs are switching equivalent to that obtained by

taking the Paley graph Paley(9) and adding an isolated vertex (see Fig. 3).

Example 6. For some parameters there exist many strongly regular graphs. For example, there are

3854 strongly regular graphs on 35 points which give an equal-norm tight frame of 35 vectors for R15

(or R21) with two angles and there are 32,548 strongly regular graphs which give equiangular tight

frames of 36 vectors for R15 (or R21).
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Fig. 3. Three switching equivalent graphs that give 10 lines in R5: The Paley graph on 9 vertices and a point, the Petersen graph,

and the triangular graph T5.

The 6-cycle is a regular, but not strongly regular graph. Its Seidel matrix has three eigenvalues, and

gives an equiangular frame of six vectors for R4. The dual and canonical tight frames have equal norms

(and more than two angles). This is a consequence of the 6-cycle being a circulant graph.

Let C be a subset of Zn which is closed under taking additive inverses, i.e, −c ∈ C,∀c ∈ C. Then

the circulant graph G with connection set C is the graph with vertices Zn and an edge from j to k if

j − k ∈ C. The choice C = {−1, 1} gives the n-cycle.

Theorem 6.7. Let G be a circulant graph, andΦ be the real equiangular frame that it determines. Then the

dual frame Φ̃ and canonical tight frame Φcan are equal-norm frames.

Proof. Since G is a circulant graph, the Gramian of the equiangular frame it determines is a circulant

matrix, and hence is diagonalised by the Fourier matrix F , i.e.,

F−1

(
I + 1

λ
Σ

)
F = diag(λ1, . . . , λn), F := 1√

n
[ωjk]j,k∈Zn

, ω :=e
2π i
n .

Since F is unitary, we can write this spectral decomposition as

I + 1

λ
Σ = ∑

j

λjPj , Pj := fjf
∗
j , fj := 1√

n
(ωjk)k∈Zn

.

The rank one projectionmatrices Pj have constant diagonal entries (equal to
1
n
), and so (as in the proof

of Theorem 6.2) the dual and canoncial tight frames have equal-norms. �

Example 7. For n� 5, a simple calculation shows that the Seidel matrix of the n-cycle has a minimal

eigenvalue −1 − 4 cos 2π
n

of multiplicity 2 with eigenvectors f−1, f1. The corresponding equiangular

frame is of n vectors for Rn−2, and its complement is the tight frame of n equally spaced vectors for

R2 (up to similarity).
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