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1. IntroductionIt is well known that the Bernstein operator Bn : C[0; 1]! C[0; 1], n = 1; 2; : : :, de�nedby Bnf(x) := nXk=0�nk�xk(1� x)n�kf�kn�; (1:1)reproduces the linear polynomials, which are therefore eigenfunctions corresponding tothe eigenvalue 1. There are a number of other forms for Bnf from which the remainingeigenstructure of Bn is more apparent. The simplest of these to deal with is the expansionin terms of the monomials (see, e.g., Widder [Wi41:p.155])Bnf(x) = nXj=0�nj�xj�j1=nf(0): (1:2)Here �jh is the j{th order forward di�erence operator�jhf(x) := jXi=0(�1)j�i � ji � f(x+ ih);which annihilates polynomials of degree < j. Let ek be the monomial x 7! xk. It followsfrom (1.2) that Bn maps polynomials of degree k = 0; 1; : : : ; n to polynomials of degree k(is degree reducing), and so has an eigenfunction of degree k corresponding to the eigenvalue�(n)k = �nk ��k1=nek(0) = n!(n� k)! 1nk ; k = 0; 1; : : : ; n: (1:3)This observation can be found in Berens and DeVore [BD80]. Let p(n)k denote the corre-sponding monic eigenfunction of degree k, and takep(n)0 (x) := 1; p(n)1 (x) := x� 1=2: (1:4)The paper is set out as follows.In Section 2, we give an explicit description of this diagonal form of the Bernstein op-erator. This includes a formula for the eigenfunctions p(n)k in terms of the monomial basis,and a description of the dual functionals to them, together with some symmetry proper-ties. Previously, the only member of the Bernstein family for which the eigenfunctionswere known explicitly was the Bernstein{Durrmeyer operator, which is self adjoint.In Section 3, we use the theory of totally positive matrices to show that p(n)k hask distinct real roots in the interval [0; 1], and to describe their location. It is observednumerically that the zeros of successive eigenfunctions of Bn interlace, but a proof of thisfact using the oscillatory properties of the Bernstein kernel has yet to be given.1



In Section 4, we show that p(n)k converges as n ! 1 to a polynomial related to aJacobi polynomial. Limits of the dual functionals are also obtained. These results arecompared with the eigenstructure of the Bernstein{Durrmeyer operator.Sections 5, 6 and 7 contain applications of the previous sections. Simple and illu-minating proofs of results for iterated Boolean sums of Bn, limits of iterates of Bn, andrepresentations of an associated C0{semigroup are given. The eigenstructure is used tocompare the approximation properties of Bn with Ln, the operator of Lagrange interpo-lation at the same n + 1 equally spaced points. This allows the possibility of de�ning afamily Bernstein quasi{interpolants which vary from Bn to Ln. The eigenstructure of theKantorovich operator is deduced from the eigenstructure of the Bernstein operator.We conclude with some comments about the multivariate Bernstein operator. Tosimplify the presentation, a number of examples, including an alternative method forcomputing the dual functionals, are arranged in the appendix.2. The diagonalisation and description of the eigenfunctionsSince Bn is degree reducing, writing the eigenfunction equationBnp(n)k = �(n)k p(n)k (2:1)relative to a basis fb0; b1; � � � ; bng of �n, with the degree of bj equal to j, leads to an uppertriangular system. We now solve this system when the bj are the monomials ej .The shifted factorial function is de�ned by(x)j := x(x+ 1) � � � (x+ j � 1); j = 1; 2; : : : ; (x)0 := 1;and the Stirling numbers of the second kind S(k; j) are de�ned byxk = kXj=0 S(k; j)x(x� 1) � � � (x� j + 1):Note the well known identityS(k; j) = 1j! jXi=0 � ji � (�1)j�iik; 0 � j � k: (2:2)Theorem 2.3 (Diagonalisation). The Bernstein operator Bn can be represented in thediagonal form Bnf = nXk=0�(n)k p(n)k �(n)k (f); 8f 2 C[0; 1]; (2:4)with �(n)k and p(n)k its eigenvalues and eigenfunctions, and �(n)k the dual functionals to p(n)k .2



The eigenvalues are given by�(n)k := n!(n� k)! 1nk = 1�1� 1n��1� 2n� � � ��1� k � 1n � ; k = 0; : : : ; n; (2:5)and they satisfy 1 = �(n)0 = �(n)1 > �(n)2 > �(n)3 > � � � > �(n)n > 0:The eigenfunction for �(n)k is a polynomial of degree k given byp(n)k (x) = kXj=0 c(j; k; n)xj = xk � k2xk�1 + lower order terms; (2:6)where the coe�cients can be computed using the recurrence formulac(k; k; n) := 1; c(k � 1; k; n) := �k=2;c(k � j; k; n) := 1(n�k+1)j � nj j�1Xi=0 ni S(k � i; k � j) c(k � i; k; n); j = 2; : : : ; k: (2:7)The dual functional �(n)k 2 spanff 7! f(j=n) : j = 0; 1; : : : ; ng; de�ned on C[0; 1], satis�es�(n)k (p(n)i ) = �ik; 8i; k; (2:8)and is given by �(n)k (f) = nXj=0 v(j; k; n)f� jn�; k = 0; : : : ; n; (2:9)where the (n+ 1)� (n+ 1) matrix of coe�cients V := [v(j; k; n)]nj;k=0 is the inverse ofP := [p(n)i (j=n)]ni;j=0:The eigenfunctions and dual functionals have the symmetriesp(n)k (x) = (�1)kp(n)k (1� x); �(n)k (f) = (�1)k�(n)k (f �R); (2:10)where R : x 7! 1 � x is reection about the point 1=2. The eigenfunctions of degree � 2can be factored as followsp(n)2j (x) = x(x� 1)q(x� 1=2);p(n)2j+1(x) = x(x� 1=2)(x� 1)q(x� 1=2); j = 1; 2; : : : ; (2:11)where in each case q is an even monic polynomial.Proof: We have already seen that the eigenvalues of Bn are given by (2.5), andthe linear polynomials are eigenfunctions for eigenvalue �(n)0 = �(n)1 = 1, for which the3



p(n)0 ; p(n)1 of (1.4) are clearly a basis which satis�es (2.6) and (2.7). It remains only toconsider the 1{dimensional �(n)k {eigenspace of polynomials of exact degree k = 2; 3; : : : ; n.By (1.2) and (2.2), Bnek(x) = kXj=0 a(j; k; n)xj; (2:12)where a(j; k; n) = �nj ��j1=nek(0) = S(k; j)n!nk(n� j)! ; 0 � j � k � n: (2:13)Note that a(k; k; n) = �(n)k ; 0 � k � n: (2:14)Express the eigenfunctions in the formp(n)k (x) = kXr=0 c(r; k; n)xr; c(k; k; n) := 1:Then the eigenfunction equation (2.1) gives�(n)k kXs=0 c(s; k; n)xs = kXr=0 c(r; k; n) rXs=0 a(s; r; n)xs= kXs=0 kXr=s c(r; k; n)a(s; r; n)xs:Equating the coe�cients of xs above gives�(n)k c(s; k; n) = kXr=s c(r; k; n)a(s; r; n):Into this substitute s = k � j and r = k � i, to obtain�(n)k c(k � j; k; n) = jXi=0 c(k � i; k; n)a(k� j; k � i; n);which, for k > 1, can be solved for c(k � j; k; n) to givec(k� j; k; n) = 1�(n)k � a(k � j; k � j; n) j�1Xi=0 c(k� i; k; n) a(k� j; k� i; n); j = 1; : : : ; k:Equation (2.7) now follows from this using (2.5) and (2.13). Taking j = 1 in (2.7), givesc(k � 1; k; n) = S(k; k � 1)�k + 1 = �k2 ; (2:15)4



which is (2.6). Using (2.9), the biorthogonality condition �k(pi) = �ik can be written asnXj=0 p(n)i � jn�v(j; k; n) = �ik;i.e., PV = I, and so V = P�1.Let R be x 7! 1� x, i.e., reection about the point 1=2. From (1.1), it follows thatBn(f �R) = (Bnf) �R; (2:16)so that Bn(p(n)k �R) = (Bnp(n)k ) �R = �(n)k (p(n)k �R);and p(n)k �R is a �(n)k {eigenfunction. For k = 0; 1 the symmetry property of p(n)k is obvious,and for k � 2 the eigenfunction p(n)k �R must be a scalar multiple of p(n)k (the eigenspaceis 1{dimensional), which by equating powers of xk must bep(n)k = (�1)kp(n)k �R: (2:17)In other words, p(n)k is even (resp. odd) about the point 1=2 when k is even (resp. odd).In particular, the zeros of p(n)k are symmetric about 1=2. Similarly, (2.16) implies thatnXk=0�(n)k p(n)k �(n)k (f �R) = nXk=0�(n)k (p(n)k �R)�(n)k (f) = nXk=0�(n)k (�1)kp(n)k �(n)k (f);and equating coe�cients of p(n)k in the above gives�(n)k (f) = (�1)k�(n)k (f �R): (2:18)Taking j = k in (2.7) and using S(m; 0) = 0, m � 1, givesc(0; k; n) = 0; k � 2:Hence, for k � 2, x = 0 is a zero of p(n)k , and by the symmetry property (2.17) so is x = 1.Further, when k is odd the symmetry property of the zeros implies that x = 1=2 must bea zero of p(n)k , which proves the factorisations (2.11). This completes the proof.5



A list of the �rst few eigenfunctions and their dual functionals, and an explicit formulafor V = P�1 is given in the appendix.
p(6)0 ; p(6)1 ; : : : ; p(6)6
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Fig. 2.1. The eigenfunctions p(6)k , k=0,...,6, for the Bernstein operator B6 (scaled tohave the same absolute maxima). Note the symmetries, and interlacing of the zeros.3. Zeros of the eigenfunctionsNext we determine the distribution of roots the eigenfunctions by using the theory ofoscillating kernels (total positivity). The kernel de�ning the Bernstein operatorKn(k; x) := �nk �xk(1� x)n�k (3:1)is extended totally positive ETP(x) in k = 0; 1; : : : ; n and 0 < x < 1 (see Karlin [K68:p.298]).The current theory of totally positive kernels (see the survey of Pinkus [P96]) cannot beapplied directly, since this kernel is discrete in the �rst variable and continuous in the6



second (a case not yet considered), and it is not totally positive if the values x = 0; 1 areallowed. We circumvent these di�culties by considering the truncated Bernstein operatorB�n de�ned by B�n f(x) := n�1Xk=1�nk �xk(1� x)n�kf�kn�; n = 2; 3; : : : ; (3:2)as a matrix operator.Theorem 3.3 (Zeros of the eigenfunctions). The eigenfunction p(n)k , k = 0; 1; : : : ; nhas k simple real roots contained in [0; 1], which we denote by�(n)1;k < �(n)2;k < � � � < �(n)k;k :More generally, for any nontrivial (am1; : : : ; am2), 2 � m1 � m2 � n,m1 � Z  m2Xk=m1 ak p(n)k ! � m2;where Z counts the number of zeros in [0; 1]. The zeros are symmetric about 1=2, i.e.,�(n)i;k + �(n)k+1�i;k = 1; 8i: (3:4)For k � 2, there are common roots of 0 and 1, i.e.,�(n)1;k = 0; �(n)k;k = 1; k � 2; (3:5)and the roots inside (0; 1) satisfy the inclusionsi� 1n < �(n)i;k < 1� (k � i)n ; 2 � i � k � 1: (3:6)Proof: The result is clearly true for k = 0; 1, and (3.4), (3.5) follow from (2.11).We now consider the case k � 2. Since p(n)k vanishes at 0 and 1,B�n p(n)k = Bnp(n)k = �(n)k p(n)k ; k = 2; 3; : : : ; n;and so the eigenvalues of B�n are �(n)k , k = 2; : : : ; n, with p(n)k a basis for the corresponding1{dimensional eigenspace. Consider the matrix representation of B�nA = [aij] : IRn�1 ! IRn�1 : �f(i=n)�n�1i=1 7! �B�n f(i=n)�n�1i=1 (3:7)which is given by aij := �nj � (i=n)j(1� i=n)n�j :7



A is an oscillation matrix, i.e., is totally positive and invertible, with ai;i+1; ai+1;i > 0 (see[P96:Prop.5.1]). Hence by the (Perron{Frobenius) spectral theory of such matrices (see[P96:Th.5.2]) it follows that its eigenvectors �p(n)k (i=n)�n�1i=1 , k = 2; 3; : : : ; n satisfyr � 2 � S� sXk=r ck p(n)k ! � S+ sXk=r ck p(n)k ! � s� 2; 2 � r � s � n (some ck 6= 0);where S�(f), S+(f) count the number of sign changes in the sequencef(1=n); f(2=n); : : : ; f((n� 1)=n)with zero terms discarded (respectively assigned arbitrary values �1). In particular, theeigenvector �p(n)k (i=n)�n�1i=1 has k � 2 strong sign changes, and so in addition to 0; 1, theeigenfunction p(n)k has k � 2 real roots inside (0; 1). Clearly, �(n)2;k > 1n , �(n)2;k > 2n , : : :, i.e.,�(n)i;k > i� 1n ; 2 � i � k � 1;and similarly (or by symmetry) we obtain the other half of (3.6).Remark. When k is large with respect to n, (3.6) implies the roots of p(n)k are nearlyevenly spaced. For example, when k = n we have i�1n < �(n)i;n < in , for 2 � i � n� 1.Interlacing of zerosNumerical evidence suggests that the zeros of the eigenfunctions interlace, that is,�(n)j;k+1 < �(n)j;k < �(n)j+1;k+1; 1 < j < k: (3:8)The classical theorems for interlacing of eigenvectors and eigenfunctions of totally positivematrices and kernels can not be applied here, where the kernel (3.1) is discrete in the�rst variable and continuous in the second (a case not yet considered), and is not totallypositive if the values x = 0; 1 are allowed. By Ando [A87:Th.6.3], it follows that thenodes of consecutive eigenvectors �p(n)k (i=n)�n�1i=1 are interlacing, in the sense that zeros ofthe piecewise interpolants indicated in Fig. 3.1 are. Unfortunately, this is not enough toconclude that the roots of consecutive p(n)k are interlacing. This is the subject of furtherinvestigation. 8



0 1
Fig. 3.1. The interlacing of the zeros of the piecewise linear interpolants to p(6)5 , p(6)6 .4. Asymptotics of the eigenfunctions and their dual functionalsThe limiting eigenfunctionsWe now show that the sequence of eigenfunctions p(n)k converges as n!1.Theorem 4.1 (Limits of the eigenfunctions). For 0 � j � k,limn!1 c(j; k; n) = c�(j; k); (4:2)where c�(0; 1) := �12 ; c�(j; k) := k�jYi=1 (k + 1� i)(k � i)i(i� 2k + 1) j 6= 0; k 6= 1: (4:3)In other words, p(n)k converges uniformly on [0; 1] to p�k 2 �k as n!1, wherep�k(x) := kXj=0 c�(j; k)xj = xk � k2xk�1 + k(k � 1)(k � 2)4(2k � 3) xk�2 � � � � : (4:4)Proof: Since p(n)0 (x) = 1 = p�0(x), p(n)1 (x) = x � 1=2 = p�1(x), it is su�cient toprove the result for k � 2. To show this we prove by strong induction on j and k � 2 that9



limn!1 c(k� j; k; n) exists and is given by (4.3). Since c(k; k; n) = 1, this result holds forj = 0 and all values of k (where as usual the empty product in (4.3) is interpreted as 1).Suppose it is true for limn!1 c(k � i; k; n), i = 0; : : : ; j � 1, where 0 < j � k. Since(n� k + 1)j � nj = 12j(j � 2k + 1)nj�1 + lower order powers of n; j > 0;taking the limit as n!1 of both sides ofc(k � j; k; n) = j�1Xi=0 ni S(k � i; k � j) c(k � i; k; n)(n� k + 1)j � nj ;and using the induction hypothesis giveslimn!1 c(k � j; k; n) = 2S(k � j + 1; k � j)j(j � 2k + 1) c�(k � j + 1; k)= (k + 1� j)(k � j)j(j � 2k + 1) j�1Yi=1 (k + 1� i)(k � i)i(i� 2k + 1)= jYi=1 (k + 1� i)(k � i)i(i� 2k + 1) ;which completes the induction.We now show the p�k are closely related to the Jacobi polynomials P (�;�)k . These areby de�nition the orthogonal polynomials with respect to the weight (1� t)�(1+ t)� on theinterval t 2 [�1; 1], see, e.g., [E53:vol.2,p.168{173].Theorem 4.5 (Identi�cation of the p�k). It is immediate thatp�0(x) = 1; p�1(x) = x� 1=2: (4:6)Moreover, p�k(x) = k!(k � 2)!(2k � 2)! x(x� 1)P (1;1)k�2 (2x� 1); k � 2: (4:7)Proof: Suppose that k � 2. Thenc�(j; k) = k�jYi=1 (k + 1� i)(k � i)i(i� 2k + 1) = (�k)k�j(1� k)k�j(k � j)!(2� 2k)k�j ;and so, since c�(0; k) = 0,p�k(x) = kXj=0 c�(j; k)xj = kXj=1 (�k)k�j(1� k)k�j(k � j)!(2� 2k)k�j xj= x k�1Xj=0 (�k)k�1�j(1� k)k�1�j(k � 1� j)!(2� 2k)k�1�j xj :10



Next use (a)n�j = (a)n(�1)j(1� a� n)jwith n = k � 1 to obtainp�k(x) = x (�k)k�1(1� k)k�1(k � 1)!(2� 2k)k�1 k�1Xj=0 (1� k)j(k)j(2)jj! xj= x(�1)k�1 k!(k � 1)!(2k � 2)! 2F1(1� k; k; 2;x):Apply Euler's transformation [E53:vol.1,p.64(23)], to getp�k(x) = x(x� 1)(�1)k k!(k � 1)!(2k � 2)! 2F1(2� k; k + 1; 2;x)= x(x� 1)k!(k � 2)!(2k � 2)! P (1;1)k�2 (2x� 1): (4:8)This proves the result.It is interesting to compare this result with the spectral properties of the Bernstein{Durrmeyer operator, which is a self adjoint operator on L2[0; 1], de�ned byMnf(x) := nXk=0 pk;n(x) (n+ 1) Z 10 f(t)pk;n(t) dt; 0 � x � 1;where pk;n(x) := �nk�xk(1� x)n�k; 0 � k � n:Derriennic [D81] showed that the eigenvalues of Mn are�k;n = n!(n� k)! (n+ 1)!(n+ k + 1)! ; k = 0; 1; : : : ; n;and the corresponding eigenfunctions are the Legendre polynomialsPk(2x� 1) := P (0;0)k (2x� 1); k = 0; 1; : : : ; n:Notice that these are independent of n. Similarly, in [BX91] it was shown for Bernstein{Durrmeyer operators with Jacobi weights w(�;�)(x) := x�(1 � x)� , �; � > �1, the eigen-functions are the Jacobi polynomials P (�;�)k (2x� 1).The limiting dual functionalsBy (1.3) and Theorem 4.5, it follows that�(n)k ! 1; p(n)k ! p�k; n!1;11



whilst the Weierstrass density theorem implies for all f 2 C[0; 1] thatBnf = nXk=0�(n)k p(n)k �(n)k (f)! f; n!1:We now use these facts to investigate the limiting behaviour of �(n)k (f) as n!1. Let Ldenote the operator of linear interpolation at 0 and 1, i.e.,Lf(x) := (1� x)f(0) + xf(1): (4:9)Lemma 4.10 (Orthogonal expansion). Each f 2 C[0; 1] satisfyingZ 10 (f(x)� Lf(x))2 dxx(1� x) <1; (4:11)or equivalently Z 10 (f(x)� f(0))2x dx <1; Z 10 (f(x)� f(1))21� x dx <1; (4:12)can be uniquely represented by a series of the formf = 1Xk=0 p�k��k(f); (4:13)where the convergence of P1k=2 p�k��k(f) above is in the L2(dx=x(1 � x)){norm, and thelinear functionals ��k are de�ned by��0(f) := (f(0) + f(1))=2; ��1(f) := f(1)� f(0); (4:14)��k(f) := 12�2kk ��(�1)kf(0) + f(1)� k Z 10 f(x)P (1;1)k�2 (2x� 1)dx� ; k � 2: (4:15)If f is di�erentiable on [0; 1], then��k(f) = 12�2kk �Z 10 f 0(x)Pk�1(2x� 1)dx; k � 2; (4:16)where fPk(x)gk�0 are the Legendre polynomials.Proof: De�ne inner products byhg; hi := Z 10 g(x)h(x) dx; hhg; hii := Z 10 g(x)h(x)x(1� x)dx:12



Suppose that f satis�es the hypotheses of the lemma, and letg(x) := f(x)� Lf(x)x(1� x) :Then g 2 L2�x(1� x)dx; [0; 1]�, and so has a unique representationg = 1Xj=0hhg; gjiigj;where gj(x) :=s (j + 2)(2j + 3)j + 1 P (1;1)j (2x� 1); j = 0; 1; 2; : : :are orthonormal Jacobi polynomials with respect to the weight function x(1� x) on [0; 1].This can be rewritten asf(x)� Lf(x)x(1� x) = 1Xj=0hhg; gjiigj(x) = 1Xj=0hf � Lf; gjigj(x)= 1Xj=0 (j + 2)(2j + 3)j + 1 hf � Lf; P (1;1)j (2 � �1)iP (1;1)j (2x� 1)= 1x(x� 1) 1Xj=0 j + 22 �2j + 4j + 2 �hf � Lf; P (1;1)j (2 � �1)ip�j+2(x);which gives f(x) = Lf(x)� 1Xk=2 k2�2kk �hf � Lf; P (1;1)k�2 (2 � �1)ip�k(x): (4:17)Since Lf(x) = f(0) + f(1)2 + �f(1)� f(0)�(x� 1=2) = ��0(f) p�0(x) + ��1(f) p�1(x);andhLf; P (1;1)k�2 (2 � �1)i = f(0) Z 10 (1� x)P (1;1)(k�2)(2x� 1)dx+ f(1) Z 10 xP (1;1)k�2 (2x� 1)dx= f(0)(�1)kk + f(1)k ;we obtain (4.13) from (4.17), with the convergence as asserted. Equation (4.16) followsfrom (4.15) using P (1;1)k�2 (2x� 1) = 2kP 0k�1(2x� 1); k � 2;and integrating by parts. 13



Clearly, condition (4.11) is satis�ed when f is di�erentiable at 0 and 1, and so we havef = sXk=0 p�k��k(f); 8f 2 �s; (4:18)and ��k(�k�1) = 0; k = 1; 2; : : : : (4:19)These facts are now used to investigate the limiting behaviour of the dual functionals.Theorem 4.20 (Limits of the dual functionals). For every f 2 �,limn!1�(n)k (f) = ��k(f): (4:21)Proof: We prove (4.21) holds for f 2 �k+r, r = 0; 1; 2; : : :, by strong inductionon r (with the result holding for all k). Recall that�(n)k ! 1; n!1: (4:22)First suppose f 2 �k (r = 0). Because Bn is degree reducing, we haveBnf = kXj=0 �(n)j p(n)j �(n)j (f)! f = kXj=0 p�j��j (f); n!1: (4:23)Since the convergence in (4.23) takes place in the �nite{dimensional space �k, we mayequate coe�cients of xk to obtain�(n)k �(n)k (f)! ��k(f); n!1; (4:24)which by (4.22) gives (4.21).Now suppose f 2 �k+r. Since Bn is degree reducing, we haveBnf = k+rXj=0 �(n)j p(n)j �(n)j (f)! f = k+rXj=0 p�j��j (f); n!1:Since the convergence above is in �k+r, equating coe�cients of xk gives�(n)k �(n)k (f)+ rXj=1 �(n)k+jc(k; k+ j; n)�(n)k+j(f)! ��k(f)+ rXj=1 c�(k; k+ j)��k+j(f); n!1:(4:25)By the inductive hypothesis together with (4.2) and (4.22), we haverXj=1 �(n)k+jc(k; k + j; n)�(n)k+j(f)! rXj=1 c�(k; k + j)��k+j(f);and so (4.25) gives (4.24) as before. This completes the induction.14



The �rst few ��k are listed in the appendix.Remark. We conjecture that (4.21) holds for all f 2 C[0; 1], which is equivalent to thesequence (k�(n)k k)1n=0 being bounded.5. Application to iterates of the Bernstein operatorThere have been a number of papers dealing with iterates of the Bernstein operator:Kelisky and Rivlin [KR67], Karlin and Ziegler [KZ70], Micchelli [M73], da Silva [Si85],Gonska and Zhou [GZ94], Sevy [Se95] and Wenz [W97]. We now investigate those resultsrelevant to this work in terms of the diagonal form of Bn. By Theorem 2.3,Bjnf = nXk=0(�(n)k )j p(n)k �(n)k (f); 8f 2 C[0; 1]; j = 0; 1; 2; : : : : (5:1)Theorem 1 of [KR67] is thatlimj!1Bjnf = Lf; 8f 2 C[0; 1];where Lf is de�ned by (4.9). This follows immediately from (5.1) since �(n)k < 1, k � 2.More generally we have:Corollary 5.2 (Limits for n �xed). Suppose (gj) is a sequence of polynomials, withlimj!1 gj(�(n)k ) = G(k; n); k = 0; 1; : : : ; n;then limj!1 gj(Bn) f = nXk=0G(k; n)p(n)k �(n)k (f); 8f 2 C[0; 1]; (5:3)with the convergence above in the uniform norm.Proof: The appropriate linear combination of (5.1) givesgj(Bn)f = nXk=0 gj(�(n)k ) p(n)k �(n)k (f); 8f 2 C[0; 1]: (5:4)Taking the limit j !1 then gives (5.3). 15



Let Ln denote the operator of Lagrange interpolation at the equally spaced pointsf0; 1=n; 2=n; : : : ; 1g, Lnf(x) := nXk=0n nYj=0j 6=k x� jnkn � jn of�kn�:The biorthogonality condition (2.8) implies that f 7! Pnk=0 p(n)k �(n)k (f) reproduces �n,and so Lnf = nXk=0 p(n)k �(n)k (Lnf) = nXk=0 p(n)k �(n)k (f): (5:5)In Sevy [Se95] the particular sequence of polynomialsgj(x) := 1� (1� x)j; j = 1; 2; : : :was considered. For these limj!1 gj(�(n)k ) = 1; (5:6)(since 0 � 1� �(n)k < 1) so that Corollary 5.2, together with (5.5), giveslimj!1 �1� (1� Bn)j� f = nXk=0 p(n)k �(n)k (f) = Lnf; 8f 2 C[0; 1]; (5:7)which is [Se95:Th.1] (also see Wenz [W97:Th.3] for a generalisation to the Bernstein{Schoenberg operator). The above operator has been studied by many, sometimes viewedas an iterated Boolean sum of Bn�jBn = gj(Bn) = 1� (1� Bn)j(see Gonska and Zhou [GZ94] and the references therein). Since1� �(n)k = O� 1n�; n!1;using (5.4) and (5.5) one obtains that 8f 2 C[0; 1]kLnf ��jBnfk1 = k nXk=0(1� �(n)k )jp(n)k �(n)k (f)k1 = kLnfk1O� 1nj �; n!1: (5:8)From (5.8), and its pointwise analog, it is then possible to obtain approximation orderresults for �jBn (large n) by appropriately modifying those for Ln (cf. [GZ94:Th.1]).16



Lemma 5.9 (Limits of powers of the eigenvalues). Suppose that jn is a sequence ofpositive integers with limn!1 jnn = t; (5:10)then limn!1(�(n)k )jn = e� 12k(k�1)t; 8k; 0 � t <1; (5:11)and limn!1(�(n)k )jn = 0; 8k � 2; t =1: (5:12)Proof: Lety = (�(n)k )jn�nt = �(1� 1n )(1� 2n ) � � � (1� k � 1n )�jn�nt:Then log y = (jn � nt)�log(1� 1n) + log(1� 2n ) + � � � log(1� k � 1n )�= �jnn � t���k(k � 1)2 + O( 1n)�! 0; (n!1):Therefore limn!1(�(n)k )jn�nt = limn!1 y = 1: (5:13)But limn!1(�(n)k )nt = limn!1(1� 1n )nt(1� 2n )nt � � � (1� k � 1n )nt = e� 12k(k�1)t: (5:14)Combining (5.13) and (5.14) gives (5.11). Let k !1 to obtain (5.12).Theorem 2 of [KR67] shows that if (5.10) holds, then Bjnn (es) converges to a polyno-mial of degree s which is given explicity. We o�er the following extension of this result.Corollary 5.15 (Limits for 0 � t � 1). Suppose thatlimn!1 jnn = t;then for 0 � t <1 limn!1Bjnn f = sXk=0 e� 12k(k�1)tp�k��k(f)= 1Xk=0 e� 12k(k�1)tp�k��k(f); 8f 2 �s; (5:16)17



and for t =1 limn!1Bjnn f = Lf = 1Xk=0 p�k��k(f) 8f 2 �; (5:17)with the convergence in (5.16) and (5.17) being in the uniform norm.Proof: Suppose that f 2 �s. Since Bn is degree reducing (5.1) givesBjnn f = sXk=0(�(n)k )jnp(n)k �(n)k (f); n � s:Take the limit as n ! 1 in the above, and use Lemma 5.9 , Theorem 4.1 and Theorem4.20 to obtain (5.17) and the �rst equality in (5.16). The second equality in (5.16) followsfrom (4.19).Since the operators Bjnn : C[0; 1]! C[0; 1] have norm 1 and the polynomials are densein C[0; 1], the limits in (5.16) and (5.17) exist for all f 2 C[0; 1]. It has been shown thatthere exists a semigroup fBt : t � 0g of class (C0) on C[0; 1] such thatlimn!1Bjnn f = Btf; whenever limn!1 jnn = t; (5:18)for all t � 0 and f 2 C[0; 1], and fBt : t � 0g is a positive contraction semigroup (seeKarlin and Ziegler, [KZ70] and Micchelli [M73:Th.3.1]). Corollary 5.15 gives an explicitrepresentation of this semigroup on the polynomials. This representation can be extendedtrivially to C[0; 1] in the case (5.17) and in the case (5.16) as follows.Corollary 5.19 (Representation of fBtg). The semigroup fBt : t � 0g de�ned by(5.18) has the representationBtf(x) = Lf(x) + x(1� x) Z 10 Gt(x; y)(f � Lf)(y) dy; 8f 2 C[0; 1]; (5:20)where the kernel Gt is given byGt(x; y) := 1Xk=2 k(2k � 1)k � 1 e� 12k(k�1)tP (1;1)k�2 (2x� 1)P (1;1)k�2 (2y � 1): (5:21)Proof: Suppose �rst that f 2 �. From (4.14), ��0(f � Lf) = ��1(f � Lf) = 0,while by (4.19), ��k(Lf) = 0, k � 2. Therefore (5.16) givesBtf = Bt(Lf) + Bt(f � Lf)= 1Xk=0 e� 12k(k�1)tp�k��k(Lf) + 1Xk=0 e� 12k(k�1)tp�k��k(f � Lf)= 1Xk=0 p�k��k(Lf) + 1Xk=2 e� 12k(k�1)tp�k��k(f � Lf):18



By (4.14) and (4.15), this becomesBtf = Lf + 1Xk=2 �k2 �2kk �e� 12k(k�1)tp�k(x) Z 10 P (1;1)k�2 (2y � 1)(f � Lf)(y)dy:Using the dominated convergence theorem and Theorem 4.5 , this givesBtf(x) = Lf(x)+ x(1� x) Z 10 1Xk=2 k(2k � 1)k � 1 e� 12k(k�1)tP (1;1)k�2 (2x� 1)P (1;1)k�2 (2y � 1)(f � Lf)(y)dy:This proves the result for f 2 �. The extension of (5.20) to all f 2 C[0; 1] now followsfrom the density of � in C[0; 1].This representation of the semigroup fBtg was given in [KZ70:(4.7)] and da Silva[Si85] (where total positivity properties of the kernel Gt are investigated).The in�nitesimal generator of the semigroup fBtg isAf := limt!0+ Btf � ft ;whenever this limit exists. On the polynomials (4.13) and (5.16) giveAf = limt!0+ 1Xk=2 e� 12k(k�1)t � 1t p�k��k(f) = 1Xk=2�12k(k � 1)p�k��k(f); 8f 2 �: (5:22)In [KZ70] it is shown thatAf(x) = 12x(1� x)D2f(x); 8f 2 C2[0; 1]: (5:23)Since x(x� 1)D2p�k(x) = k(k � 1)p�k(x); 8k � 2;it is clear (5.22) and (5.23) are consistent. It is possible to extend (5.22) to C[0; 1] in thefollowing way.Corollary 5.24 (In�nitesimal generator of fBtg). The in�nitesimal generator A ofthe semigroup fBt : t � 0g de�ned by (5.18) has the representationAf(x) = 12x(x� 1) Z 10 G(x; y)(f � Lf)(y) dy; 8f 2 C[0; 1]; (5:25)where the kernel G is given byG(x; y) := 1Xk=2 k2(2k � 1)P (1;1)k�2 (2x� 1)P (1;1)k�2 (2y � 1): (5:26)19



It can also be represented by (5.22) and (5.23).Proof: Suppose �rst that f 2 �. It follows from (5.22) thatAf = A(Lf) +A(f � Lf) = �12 1Xk=2 k(k � 1)p�k��k(f � Lf);and so Theorem 4.5 and (4.15) giveAf(x)= �12 1Xk=2 k(k � 1)p�k(x)�k2 �2kk �Z 10 P (1;1)k�2 (2y � 1)(f � Lf)(y) dy= 12x(x� 1) Z 10 1Xk=2 k2(2k � 1)P (1;1)k�2 (2x� 1)P (1;1)k�2 (2y � 1)(f � Lf)(y) dy:This gives (5.25) for f 2 �. The extension of (5.25) to all f 2 C[0; 1] now follows from thedensity of � in C[0; 1]. Iterates of all ordersAs in [KR67:x4], it is possible to use (5.1) to de�ne the iterates of Bn of all orders�1 < t <1, in a manner consistent with the case when t is a nonnegative integer, namelyBtnf := nXk=0(�(n)k )tp(n)k �(n)k (f); 8f 2 C[0; 1]:By (5.5), the iterate B0n eqauls Ln (Lagrange interpolation at equally spaced points, whichis the identity on �n). The inverse B�1n restricted to �n has been studied by Sablonni�ere[S92] (see next section).6. Application to Bernstein quasi{interpolantsBy (5.5), the operator of Lagrange interpolation at equally spaced points can bewritten as Lnf = nXk=0 p(n)k �(n)k (f); 8f 2 C[0; 1];while the Bernstein operator isBnf = nXk=0�(n)k p(n)k �(n)k (f); 8f 2 C[0; 1]:20



In this way the Bernstein operator can be thought of as being obtained from the Lagrangeinterpolant by `damping out' the p(n)k coe�cient (frequency) by the amount 0 < �(n)k < 1,k � 2. The failure of Lagrange interpolation at n equally spaced points to converge for allcontinuous functions (whilst the Bernstein approximants do) might then be explained byits failure to su�ciently damp out the highly oscillatory polynomials p(n)k (cf (3.6)). It isthen natural to consider operators of the formAn;�f = nXk=0�(n)k p(n)k �(n)k (f); 8f 2 C[0; 1]; (6:1)for other amounts of damping �(n)k 2 IR. Remember that An;�f depends only on the valuesf(0); f(1=n); : : : ; f(1). These operators are automatically degree reducing, and reproducethe linear polynomials if and only if �(n)0 = �(n)1 = 1. Indeed (6.1) is the diagonalised formof these operators. The linear combinations of iterates of the Bernstein operator consideredin Section 6 (including iterated Boolean sums) are operators of this type. Presumably, bychoosing the quantities �(n)k appropriately it should be possible to construct approximationprocesses inheriting some of the desirable properties of Ln (such as interpolation) and ofBn (like convergence as n!1 for all f 2 C[0; 1]). We now suggest a few possibilities.1. Continuous families. The eigenvalues of Ln could be continuously transformed viasome parameter 0 � t � 1 into those for Bn, giving a family of operators An;t, whichdepends continuously on t, with endpoints An;0 = Ln and An;1 = Bn. Depending on theproperties of the operator desired (or the smoothness of f) an appropriate value of t couldthen be chosen. A couple of such schemes for changing the eigenvalues (and correspondingoperator) areAn;tf := nXk=0((1� t) + t�(n)k )p(n)k �(n)k (f) = (1� t)Lnf + tBnf; 8f 2 C[0; 1];and An;tf := nXk=0(�(n)k )tp(n)k �(n)k (f); 8f 2 C[0; 1]:2. Polynomial reproduction. The �rst j + 1 (0 � j � n) eigenvalues could be set to 1.This then gives an operator which reproduces �j, e.g.,An;jf := jXk=0 p(n)k �(n)k (f) + nXk=j+1�(n)k p(n)k �(n)k (f); 8f 2 C[0; 1]:For this choice An;0 = An;1 = Bn and An;n = Ln. This property, together with repro-duction of �j is shared with the left Bernstein quasi{interpolant of order j of Sablonni�ere[S92], B(j)n := A(j)n �Bn;21



where A(j)n is a truncated version of B�1n thought of as a di�erential operator on �n. It isnot clear to the authors at this point how these two similar operators are related.Operators which reproduce �j can also be obtained by taking a�ne combinations ofBernstein operators Bn of various degrees n, see, e.g., [B53], [DT87] and [Z95].3. Adaptive methods. Since p(n)k is an eigenfunction of (6.1) with eigenvalue �(n)k thelimiting properties of p(n)k and �(n)k imply that for An;�f converge as n ! 1 for allcontinuous f (p�k in particular) it is necessary that �(n)k ! 1. If the rate of convergenceof �(n)k ! 1 is too fast (as in the case of Lagrange interpolation Ln, when �(n)k = 1) thenAn;�f fails to converge for some f . Hence it seems the approximation properties of An;�(large n) are controlled by the rates at which �(n)k ! 1, as n!1.A more detailed analysis of these questions seems worthy of further study.7. The spectrum of the Kantorovich operatorRecall the Kantorovich operator Kn : L1[0; 1]! C[0; 1], n = 1; 2; : : :, which is de�nedby Knf(x) := nXk=0�nk�xk(1� x)n�k(n+ 1) Z (k+1)=(n+1)k=(n+1) f(t) dt:It satis�es Kn(Df) = D(Bn+1f); 8f 2 C1[0; 1];and so in particularKn(Dp(n+1)k+1 ) = D(Bn+1p(n+1)k+1 ) = �(n+1)k+1 (Dp(n+1)k+1 ); k = 0; 1; : : : ; n;i.e., �(n+1)k+1 is an eigenvalue of Kn with corresponding eigenfunction Dp(n+1)k+1 .Corollary 7.1 (Eigenstructure of Kn). The eigenvalues of the Kantorovich operatorKn are �(n)k := �(n+1)k+1 = n!(n� k)! 1(n+ 1)k ; k = 0; 1; : : : ; n;and the corresponding eigenfunctions are polynomials of exact degree k given byq(n)k := Dp(n+1)k+1 (these have leading coe�cient k + 1):The eigenvalues of Kn are distinct�(n)0 = 1 > �(n)1 = n(n+ 1) > �(n)2 = n(n� 1)(n+ 1)2 > � � � > �(n)n = n!(n+ 1)n > 0:22



Many of the previous results for the Bernstein operator can now be adapted to the Kan-torovich operator. For example, its diagonal form isKnf = nXk=0 �(n)k q(n)k �(n+1)k+1 (D�1f); 8f 2 L1[0; 1];where D�1f(x) := Z x0 f;and the analogue of (5.7) islimj!1 �1� (1�Kn)j� f = D �Ln+1(D�1f)� ; 8f 2 L1[0; 1]: (7:2)The limit in (7.2) is the area matching map which interpolates from �n to the dataZ 1=(n+1)0 f; Z 2=(n+1)1=(n+1) f; Z 3=(n+1)2=(n+1) f; � � � ; Z n=(n+1)(n�1)=(n+1) f; Z 1n=(n+1) f:8. Multivariate Bernstein operatorsThe eigenstructure of the tensor product Bernstein operators (see [L53:p.51]) can bededuced from that of the univariate operator in the usual way. For simplicity, we illustratethis for the bivariate tensor product Bernstein operator Bn 
Bm : C([0; 1]2)! C([0; 1]2),which is de�ned by(Bn 
Bm)f(x) := nXi=0 mXj=0�ni��mj �xi(1� x)n�iyj(1� y)m�j:Corollary 8.1 (Eigenstructure of Bn 
 Bm). The eigenvalues of Bn 
 Bm are�(n;m)i;j := �(n)i �(m)j = n!(n� i)! m!(m� j)! 1nimj ; i = 0; 1; : : : ; n; j = 0; 1; : : : ;m;and the corresponding eigenfunctions p(n;m)i;j are given byp(n;m)i;j (x; y) := p(n)i (x)p(m)j (y):It follows from the analogue of (1.2), that the multivariate Bernstein operator Bn on asimplex S � IRd (see [L53:p.51]) has the same spectra as the univariate operator, and the�(n)k {eigenspaces has dimension �k+d�1d�1 �. Thus it is diagonalisable. More detailed results,including computational formul� and symmetry properties of the eigenspaces can be foundin [CW99]. 23



9. AppendixThe eigenfunctionsThe �rst 4 eigenfunctions are independent of np(n)0 (x) = 1; p(n)1 (x) = x�1=2; p(n)2 (x) = x(x�1); p(n)3 (x) = x(x�1)(x�1=2);and the others depend on n. Here are the next 3 eigenfunctions in the factored form (2.11)p(n)4 (x) = x(x� 1)�(x� 1=2)2 + 2� n4(5n� 6)� ;p(n)5 (x) = x(x� 1)(x� 1=2)�(x� 1=2)2 + 8� 3n4(7n� 12)� ;p(n)6 (x) = x(x� 1)�(x� 1=2)4 + 10� 3n2(9n� 20)(x� 1=2)2+ (n� 2)(n� 4)(6n2 � 23n+ 40)16(9n� 20)(14n3 � 71n2 + 154n� 120)�: (9:1)
Using (2.7) the �rst few coe�cients in (2.6) arec(k; k; n) = 1; 0 � k � n;c(k � 1; k; n) = �k2 ; 1 � k � n;c(k � 2; k; n) = 124 k(k � 1)(k � 2)(6n+ 5� 3k)�k2 + 3k + 2nk � 2� 3n ; 2 � k � n;c(k � 3; k; n) = � 148 k(k � 1)(k � 2)(k � 3)(2n+ 2� k)�k2 + 3k + 2nk � 2� 3n ; 3 � k � n: (9:2)

The dual functionalsThe matrix P of Theorem 2.3 can be inverted as follows.Lemma 9.3 (Finding V ). The j{th row of the matrix V = P�1 of Theorem 2.3, whosek{th column gives the coe�cients of the dual functional �(n)k , i.e.,�(n)k (f) = nXj=0 v(j; k; n)f� jn�; k = 0; : : : ; n;can be calculated using the recurrencev(j; n; n) = (�1)n�j nnj!(n� j)! ;v(j; n� k; n) = (�1)n�j�knn�k(n� j � k)!j!� k�1Xs=0 k!s!ns�k v(j; n� s; n) c(n� k; n� s; n); k = 1; : : : ; n; (9:4)
24



where 1(n� k � j)! := 0; j > n� k:Proof: Let `(n)j be the (Lagrange) polynomial of degree n satisfying `(n)j (i=n) =�ij , i.e., `(n)j (x) := nYi=0i6=j (x� i=n)(j=n� i=n) :Apply Bn in the form (1.1) and in the diagonal form (2.4) to `(n)j , and equate the resultsto obtain �nj �xj(1� x)n�j = nXk=0�(n)k p(n)k (x)v(j; k; n); j = 0; : : : ; n: (9:5)Equating the coe�cients of xn�k, k = 0; : : : ; n in (9.5) gives(�1)n�j�k �nj �� n� jn� j � k�= k�1Xs=0 �(n)n�s v(j; n� s; n) c(n� k; n� s; n) + �(n)n�k v(j; n� k; n):For k = 0 this gives the �rst equation in (9.4), and for k = 1; : : : ; n this can be solved forv(j; n� k; n) as followsv(j; n� k; n)= 1�(n)n�k ((�1)n�j�k �nj �� n� jn� j � k�� k�1Xs=0 �(n)n�s v(j; n� s; n) c(n� k; n� s; n))= (�1)n�j�knn�kj!(n� k � j)! � k�1Xs=0 k!s!ns�k v(j; n� s; n) c(n� k; n� s; n):giving (9.4). The columns of V correspond to the dual functionals �k, and the rows of Pto the eigenfunctions pk.The �rst few matrices V are� 1=2 �11=2 1 � ; 0@ 1=2 �1 20 0 �41=2 1 2 1A ; 0B@ 1=2 �1 9=4 �9=20 0 �9=4 27=20 0 �9=4 �27=21=2 1 9=4 9=2 1CA0BBB@ 1=2 �1 50=21 �16=3 32=30 0 �32=21 32=3 �128=30 0 �12=7 0 640 0 �32=21 �32=3 �128=31=2 1 50=21 16=3 32=3
1CCCA25



0BBBBB@ 1=2 �1 375=152 �1625=276 625=48 �625=240 0 �175=152 2375=276 �625=16 3125=240 0 �25=19 250=69 625=24 �3125=120 0 �25=19 �250=69 625=24 3125=120 0 �175=152 �2375=276 �625=16 �3125=241=2 1 375=152 1625=276 625=48 625=24
1CCCCCA0BBBBBBB@

1=2 �1 2681=1060 �63=10 252=17 �162=5 324=50 0 �981=1060 36=5 �594=17 648=5 �1944=50 0 �225=212 9=2 108=17 �162 9720 0 �115=106 0 468=17 0 �12960 0 �225=212 �9=2 108=17 162 9720 0 �981=1060 �36=5 �594=17 �648=5 �1944=51=2 1 2681=1060 63=10 252=17 162=5 324=5
1CCCCCCCAFor example,�(4)3 (f) = �16=3f(0) + 32=3f(1=4) + 0f(1=2)� 32=3f(3=4) + 16=3f(1):The dual functionals can also be computed using the symmetry properties of �(n)k and p(n)k .For example, the dual functional �(n)n�1, n � 1 must come from the 2{dimensional subspace(of spanff 7! f(j=n) : j = 0; 1; : : : ; ng) consisting of those functionals which annihilate�n�2. A basis for this space isf[0; 1=n; : : : ; (n� 2)=n; (n� 1)=n]; [1=n; 2=n; : : : ; (n� 1)=n; 1]g:Here [x0; x1; : : : ; xk] denotes the divided di�erence at the points x0; x1; : : : ; xk, which ifequally spaced equals[x; x+ h; x+ 2h; : : : ; x+ kh]f = 1k!hk�khf(x) = 1k!hk kXi=0(�1)k�i � ki � f(x+ ih): (9:6)By the symmetry conditions (2.10) and (9.6), �(n)n�1 must be a scalar multiple of[0; 1=n; : : : ; (n� 2)=n; (n� 1)=n] + [1=n; 2=n; : : : ; (n� 1)=n; 1]; (9:7)which (by the symmetry conditions) annihilates p(n)n . For (9.7) to satisfy the condition�(n)n�1(p(n)n�1) = 1, its scalar multiplier must be 1=2. Continuing to argue along these linesleads to the following. 26



Theorem 9.8. The dual functionals in (2.4) can be expressed as follows�(n)0 (f) = 12 (f(0) + f(1)) ; n � 0;�(n)1 (f) = f(1)� f(0); n � 1;�(n)n�3(f) = 18 n(n+ 1)n2 � 6 [0; 1n; : : : ; n� 3n ]f+ 18 (3n+ 8)(n� 3)n2 � 6 [ 1n; 2n; : : : ; n� 2n ]f+ 18 (3n+ 8)(n� 3)n2 � 6 [ 2n; 3n; : : : ; n� 1n ]f;+ 18 n(n+ 1)n2 � 6 [ 3n; 4n; : : : ; 1]f; n � 3;�(n)n�2(f) = 112 (n+ 1)(3n� 2)n2 � 2 [0; 1n; : : : ; n� 2n ]f+ 16 (3n+ 5)(n� 2)n2 � 2 [ 1n; 2n; : : : ; n� 1n ]f+ 112 (n+ 1)(3n� 2)n2 � 2 [ 2n; 3n; : : : ; 1]f; n � 2;�(n)n�1(f) = 12 �[0; 1n; : : : ; n� 1n ]f + [ 1n; 2n; : : : ; 1]f� ; n � 1;�(n)n (f) = [0; 1n; 2n; : : : ; 1]f; n � 0:Formul� for �(n)n�4, �(n)n�5; : : : can, in principle, also be obtained by this method, butare more complicated. There appears to be no simple closed form.The limiting dual functionalsUsing (4.14) and (4.15) to compute the �rst few ��k gives��0(f) = 12f(0) + 12f(1);��1(f) = �f(0) + f(1);��2(f) = 3f(0) + 3f(1)� 6 Z 10 f(x) dx;��3(f) = �10f(0) + 10f(1)� 120 Z 10 f(x)(x� 1=2) dx;��4(f) = 35f(0) + 35f(1)� 2100 Z 10 f(x)(x2 � x+ 1=5) dx;��5(f) = �126f(0) + 126f(1)� 35280 Z 10 f(x)(x3 � 3=2x2 + 9=14x� 1=14) dx;��6(f) = 462f(0) + 462f(1)� 582120 Z 10 f(x)(x4 � 2x3 + 4=3x2 � 1=3x+ 1=42) dx:27
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