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ABSTRACT

We give a generalisation of the multivariate beta integral. This is used to show that the
(multivariate) Bernstein–Durrmeyer operator for a Jacobi weight has a limit as the weight
becomes singular. The limit is an operator previously studied by Goodman and Sharma.
From the elementary proof given, it follows that this operator inherits many properties
of the Bernstein–Durrmeyer operator in a natural way. In particular, we determine its
eigenstructure and give a differentiation formula for it which is new.

Key Words: Bernstein–Durrmeyer operator, multivariate beta integral, Jacobi polyno-
mials

AMS (MOS) Subject Classifications: primary 33B15, 41A10, secondary 15A18,
33C45, 41A36

0



1. Introduction

The Bernstein operator Bn : C[0, 1] → Πn, which is defined by

Bnf(x) :=
n∑

k=0

(
n

k

)
xk(1− x)n−kf

(k

n

)
, (1.1)

can be modified to obtain Mµ
n the Bernstein–Durrmeyer operator for a Jacobi weight

Mµ
n f(x) :=

n∑
k=0

(
n

k

)
xk(1− x)n−kcµ

k(f),

where

cµ
k(f) :=

∫ 1

0
xk+µ1(1− x)n−k+µ2f(x) dx∫ 1

0
xk+µ1(1− x)n−k+µ2 dx

, µ = (µ1, µ2), µ1, µ2 > −1.

The multivariate version of this operator, where the interval [0, 1] is replaced by a simplex
T in IRs, is defined below. By using a generalisation of the multivariate beta integral∫ 1

0

∫ 1−x1

0

· · ·
∫ 1−x1−···−xs−1

0

xβ1−1
1 · · ·xβs−1

s (1− x1 − · · · − xs)β0−1 dxs · · · dx2 dx1

=
Γ(β0)Γ(β1) · · ·Γ(βs)
Γ(β0 + β1 + · · ·+ βs)

, β0, β1, . . . , βs > 0,

(1.2)
we show that cµ

k(f) and its multivariate analogue have a limit as some or all µi → −1+.
Thus, Mµ

n f converges as µ → −1+, with the limit operator inheriting many properties in
a natural way. It turns out that this limit operator is one previously studied by Chen in
the univariate case, and Goodman–Sharma in the multivariate case. Hence we provide a
simple explanation as to why this operator has properties which are so close to those of
the Bernstein–Durrmeyer operator, and a simple proof of these properties. In particular,
we determine its eigenstructure and give a differentiation formula for it which is new.

Definitions

Let V be the set of s + 1 vertices of an s–simplex T in IRs, and ξ = (ξv)v∈V be the
corresponding barycentric coordinates. We will use standard multi–index notation with
indices from ZZV

+ and ZZs
+, so, for example,

ξα :=
∏
v∈V

ξαv
v , α ∈ ZZV

+, β! := β1!β2! · · ·βs!, β ∈ ZZs
+ .

The value of α at v is denoted by αv or α(v), depending on which is most aesthetic.
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The Bernstein operator of degree n for the simplex T with vertices V is defined by

Bn,V f :=
∑
|α|=n

α∈ZZV
+

(
n

α

)
ξαf(vα), ∀f ∈ C(T ), (1.3)

where (
n

α

)
:=

n!
α!(n− |α|)! , vα :=

∑
v∈V

α(v)
|α| v ∈ T.

To describe Durrmeyer’s modification of this operator, we define the linear functional

f 7→
∫

[θ0,...,θk]

f :=
1

k! volk(S)

∫
S

f ◦A, (1.4)

where S is any k–simplex in IRd with (k–dimensional) volume volk(S), and A : IRd → IRs

is any affine map taking the k + 1 vertices of S onto the points θ0, . . . , θk in IRs (this is
independent of the choice of S and A). For the points V , taking S = T and A as the
identity gives ∫

V

f =
1

s! vols(T )

∫
T

f. (1.5)

For µv > −1, ∀v ∈ V , the weight ξµ :=
∏

v∈V ξµv
v is integrable on T . We denote the

corresponding weighted inner product space by L2(T, ξµ), and use the inner product

〈f, g〉µ :=
∫

V

fg ξµ =
1

s! vols(T )

∫
T

fg ξµ, ∀f, g ∈ L2(T, ξµ).

The Bernstein–Durrmeyer operator of degree n for a Jacobi weight ξµ on T can now
be defined by

Mµ
nf :=

∑
|α|=n

(
n

α

)
ξα 〈f, ξα〉µ
〈1, ξα〉µ , ∀f ∈ L2(T, ξµ). (1.6)

This self adjoint operator on L2(T, ξµ) was first defined on L2[0, 1] by Durrmeyer [Du67]
(see also Derriennic [D81]), then for Jacobi weights by Păltănea [P83] (see also Berens and
Xu [BX91]), and the multivariate analogues in Derriennic [D85] (see also Ditzian [Di95]).
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2. A generalised multivariate beta integral

The multivariate gamma and beta functions of β ∈ ZZV
+ are defined by

Γ(β) :=
∏
v∈V

Γ(βv), B(β) :=
Γ(β)
Γ(|β|) , β > 0.

The beta integral (1.2) can be written

∫
V

ξβ−1 = B(β) =
Γ(β)
Γ(|β|) , β > 0. (2.1)

If θ0, . . . , θk of (1.4) is the points V = {v0, . . . , vs} taken with multiplicities α(vi) ≥ 0,
α 6= 0, then a change of variables shows that

∫
[v0, . . . , v0︸ ︷︷ ︸

α(v0)

,...,vs, . . . , vs︸ ︷︷ ︸
α(vs)

]

f =
1

Γ(α|)

∫
supp(α)

f ξ
α|−1

| ,
ξ| := (ξv)v∈supp(α),
α| := α|supp(α)

(2.2)

where supp(α) ⊂ V denotes the support of α.

Proposition 2.3 (Generalised beta integral). Let α ∈ ZZV
+, κ ∈ IRV . For κ > −α,

α ≥ 1 ∫
[v0, . . . , v0︸ ︷︷ ︸

α(v0)

,...,vs, . . . , vs︸ ︷︷ ︸
α(vs)

]

ξκ =
B(α + κ)

Γ(α)
=

Γ(α + κ)
Γ(|α + κ|)Γ(α)

. (2.4)

Proof: Take f = ξκ in (2.2) and use the beta integral (2.1), to obtain

∫
[v0, . . . , v0︸ ︷︷ ︸

α(v0)

,...,vs, . . . , vs︸ ︷︷ ︸
α(vs)

]

ξκ =
1

Γ(α)

∫
V

ξα+κ−1 =
B(α + κ)

Γ(α)
.

For α = 1 and κ = β−1, the integral (2.4) reduces to the classical beta integral (2.1).
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3. The limit of the Bernstein–Durrmeyer operator

The inner product 〈1, ξα〉µ, µ > −1 in (1.6) becomes unbounded as any component of
µ approaches −1, and so a limiting form of Mµ

nf as µ → −1+ (µv → −1+, ∀v ∈ V ) can
not be defined by substituting µ = −1 into (1.6). However, for f ∈ C(T ), we show that

lim
µ→−1+

〈f, ξα〉µ
〈1, ξα〉µ = (n− 1)!

∫
[v0, . . . , v0︸ ︷︷ ︸

α(v0)

,...,vs, . . . , vs︸ ︷︷ ︸
α(vs)

]

f,

and so a limiting form can be defined in a natural way.
The multivariate shifted factorial (Pochhammer symbol) is defined by

(µ)α :=
∏
v∈V

(µv)αv
, α ∈ ZZV

+, (µv)αv
:= µv(µv + 1) · · · (µv + αv − 1),

and satisfies
Γ(µ + α)

Γ(µ)
= (µ)α, µ > 0. (3.1)

We extend |µ| to vectors µ ∈ IRV (which may have negative entries) via |µ| := ∑
v∈V µv.

Lemma 3.2. Let κ ∈ IRV , with κ ≥ −1, and define d−κe ∈ ZZV
+ by

d−κe(v) :=
{

1, κv = −1;
0, κv > −1.

Then, for f ∈ C(T ) and α ∈ ZZV
+, |α| = n ≥ 1, we have

lim
µ→κ

µ>−1

〈f, ξα〉µ
〈1, ξα〉µ = cκ

α(f) :=
1

Cα,κ

∫
[ v0, . . . , v0︸ ︷︷ ︸

α(v0)+1−d−κe(v0)

, ... , vs, . . . , vs︸ ︷︷ ︸
α(vs)+1−d−κe(vs)

]

f ξκ+d−κe, (3.3)

where

Cα,κ :=
∫

[ v0, . . . , v0︸ ︷︷ ︸
α(v0)+1−d−κe(v0)

, ... , vs, . . . , vs︸ ︷︷ ︸
α(vs)+1−d−κe(vs)

]

ξκ+d−κe =
Γ(α + κ + 1)

Γ(|α|+ |κ|+ s + 1)Γ(α + 1− d−κe) .

In particular,

lim
µ→−1+

〈f, ξα〉µ
〈1, ξα〉µ = (n− 1)!

∫
[v0, . . . , v0︸ ︷︷ ︸

α(v0)

,...,vs, . . . , vs︸ ︷︷ ︸
α(vs)

]

f. (3.4)
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Proof: The integrals defining cκ
α(f) in (3.3) are finite since κ + d−κe > −1. It

suffices to prove (3.3) for the polynomials f = ξβ, β ∈ ZZV
+, since their span is dense in

C(T ) and ∣∣∣∣ 〈f, ξα〉µ
〈1, ξα〉µ

∣∣∣∣ ≤ ‖f‖∞,T , |cκ
α(f)| ≤ ‖f‖∞,T .

For the left hand side, use the beta integral (2.1) and (3.1), to obtain

lim
µ→κ

µ>−1

〈ξβ, ξα〉µ
〈1, ξα〉µ = lim

µ→κ
µ>−1

(α + µ + 1)β

(|α|+ |µ|+ s + 1)|β|
=

(α + κ + 1)β

(|α|+ |κ|+ s + 1)|β|
. (3.5)

Note, for each v ∈ V , we have

(α + 1− d−κe)v = 0 ⇐⇒ αv = 0, κv = −1 ⇐⇒ (α + κ + 1)v = 0, (3.6)

giving
W := supp(α + 1− d−κe) = supp(α + κ + 1), (3.7)

and
(κ + d−κe)|V \W = 0, (3.8)

(α + κ + 1)|V \W = 0. (3.9)

Case 1: W = V . Then (3.7) implies

α + 1− d−κe ≥ 1, α + κ + 1 > 0

and so the generalised beta integral (2.4) gives∫
[ v0, . . . , v0︸ ︷︷ ︸

α(v0)+1−d−κe(v0)

, ... , vs, . . . , vs︸ ︷︷ ︸
α(vs)+1−d−κe(vs)

]

ξβξκ+d−κe =
Γ(α + 1− d−κe+ β + κ + d−κe)

Γ(|α|+ |β|+ |κ|+ s + 1)Γ(α + 1− d−κe) .

From this we calculate

cκ
α(f) =

Γ(α + β + κ + 1)
Γ(α + κ + 1)

Γ(|α|+ |κ|+ s + 1)
Γ(|α|+ |β|+ |κ|+ s + 1)

=
(α + κ + 1)β

(|α|+ |κ|+ s + 1)|β|
.

Case 2: W 6= V . Let ξα
U := (ξu)α|U

u∈U =
∏

u∈U ξαu
u for U ⊂ V . By (2.2) and (3.8), we have∫

[ v0, . . . , v0︸ ︷︷ ︸
α(v0)+1−d−κe(v0)

, ... , vs, . . . , vs︸ ︷︷ ︸
α(vs)+1−d−κe(vs)

]

ξβξκ+d−κe =
1

Γ((α+1−d−κe)|W )

∫
W

ξβ+κ+d−κeξα−d−κe
W

=
1

Γ((α+1−d−κe)|W )

∫
W

ξβ
V \W ξα+β+κ

W .
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Suppose βv > 0 for some v ∈ V \W . Then ξβ
V \W has ξv as a factor, and hence is zero

over the region of integration (the convex hull of W ), giving

cκ
α(f) = 0 =

(α + κ + 1)β

(|α|+ |κ|+ s + 1)|β|
,

with the last equality following since (α + κ + 1)v = 0 by (3.9).
Suppose βv = 0 for all v ∈ V \W , i.e., supp(β) ⊂ W and |β|W | = |β|. Then ξβ

V \W = 1,
and we use the beta integral (2.1) to calculate

cκ
α(f) =

∫
W

ξα+β+κ∫
W

ξα+κ
=

Γ((α + β + κ + 1)|W )
Γ((α + κ + 1)|W )

Γ(|(α + κ + 1)|W |)
Γ(|(α + β + κ + 1)|W |) .

The first factor in the above product is (α + κ + 1)β since supp(β) ⊂ W . From (3.9) it
follows that |(α + κ + 1)|V \W

| = 0, and so, since |β|W | = |β|, the second factor becomes

Γ(|(α + κ + 1)|W |+ |(α + κ + 1)|V \W
|)

Γ(|(α + κ + 1)|W |+ |β|W |+ |(α + κ + 1)|V \W
|) =

Γ(|α|+ |κ|+ s + 1)
Γ(|α|+ |β|+ |κ|+ s + 1)

=
1

(|α|+ |κ|+ s + 1)|β|
,

as required.
Finally, the particular case (3.4) is obtained by taking κ = −1 in (3.3).

By (2.2), we have

cκ
α(f) =

〈f, ξα〉κ
〈1, ξα〉κ , κ > −1, (3.10)

so that {κ ∈ IRV : κ ≥ −1} → IR : κ 7→ cκ
α(f) is continuous, and we have the following

extension of Mµ
n to ‘singular weights’ ξκ, κ ≥ −1.

Theorem 3.11 (Limit operator). For f ∈ C(T ) and κ ≥ −1, we have

lim
µ→κ

µ>−1

Mµ
n f = M̂κ

nf :=
∑
|α|=n

(
n

α

)
ξαcκ

α(f), (3.12)

where cκ
α(f) is given by (3.3), and

M̂κ
n = Mκ

n |C(T ), κ > −1. (3.13)

In particular,

lim
µ→−1+

Mµ
n f = Unf := (n− 1)!

∑
|α|=n

(
n

α

)
ξα

∫
[v0, . . . , v0︸ ︷︷ ︸

α(v0)

,...,vs, . . . , vs︸ ︷︷ ︸
α(vs)

]

f. (3.14)

Proof: For µ > −1, Lemma 3.2 gives

‖Mµ
n f − M̂κ

nf‖∞,T ≤
∑
|α|=n

(
n

α

)
‖ξα‖∞,T

∣∣∣ 〈f, ξα〉µ
〈1, ξα〉µ − cκ

α(f)
∣∣∣ → 0, µ → κ,

and (3.10) gives (3.13). Take κ = −1 in (3.12) to get (3.14).
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The operator Un : C(T ) → Πn defined by (3.14) is due to Goodman and Sharma
[GS91] (for the univariate case see [GS87]). It was also considered by Sauer [S94] who
remarks the univariate version was known to W. Z. Chen in 1987. Since Un is the limit
of Durrmeyer operators Mµ

n , µ > −1, many properties of the Durrmeyer operators are
inherited, and these can be proved (simply) by taking the limit as µ → −1+, e.g.,

(i) The Mµ
n are positive linear operators on C(T ) with ‖Mµ

nf‖∞,T ≤ ‖f‖∞,T .
(ii) They are degree reducing, i.e., Mµ

n (Πk) ⊂ Πk, ∀n, k.
(iii) They commute, i.e., Mµ

n Mµ
k = Mµ

k Mµ
n , ∀n, k.

hold with Un (or M̂κ
n , κ ≥ −1) replacing Mµ

n . We illustrate this method in the next two
sections by determining the eigenstructure of Un and a differentiation formula for it.

Recently, Theorem 3.11 was obtained independently in the univariate case s = 1
(µ = (a, a) → −1+) by Păltănea [P01], where the limit operator Un was attributed to
yet another: Gavrea [G96]. There it was shown that Mµ

n does not converge to M̂κ
n in the

operator norm. The example used can be modified to show that the multivariate Mµ
n does

not converge to M̂κ
n in the operator norm as soon as some κv = −1.

4. The eigenstructure of Un

We now describe the eigenvalues and eigenspaces of Un by taking the limit of those
for Mµ

n . The eigenvalues of Mµ
n , µ > −1 are

λk(Mµ
n ) :=

n!
(n− k)!

Γ(n + |µ|+ s + 1)
Γ(n + k + |µ|+ s + 1)

, k = 0, 1, . . . , n,

and the corresponding eigenfunctions are the Jacobi polynomials of degree k for ξµ, i.e.,

Pµ
k := {f ∈ Πk : 〈f, p〉µ = 0, ∀p ∈ Πk−1}.

As expected, the eigenvalues of Un are

λk(Un) :=
n!

(n− k)!
(n− 1)!

(n + k − 1)!
= lim

µ→−1+
λk(Mµ

n ), k = 0, 1, . . . , n.

This is easily seen for k ≥ 2 since here Pµ
k converges (in the gap metric) to some P ∗

k (see
Waldron [W01]). Recall the gap between (finite dimensional) subspaces P and Q of C(T )
is given by

gap(P, Q) := max{dist(P ∩B, Q), dist(Q ∩B, P )}, dist(F, G) := sup
f∈F

inf
g∈G

‖f, g‖∞,T ,

where B is the unit ball in C(T ). Thus, for each µ > −1 we can choose a basis {pµ
i } of Pµ

k

with pµ
i → p∗i where {p∗i } is a basis for P ∗

k , and so

Mµ
n pµ

i = λk(Mµ
n ) pµ

i =⇒ Un p∗i = λk(Un) p∗i ,
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which implies P ∗
k is the λk(Un)–eigenspace (a dimension count shows it is all of it). For

k = 0, 1 the limit eigenvalues are 1 (the rest are distinct). Here Pµ
1 does not converge as

µ → −1+, though Pµ
0 does and Pµ

0 + Pµ
1 = Π1, which is easily seen by considering the

functions
ξv − µv + 1

|µ|+ s + 1
∈ P µ

1 , v ∈ V.

However, a simple calculation shows that Π1 are the eigenfunctions of Un for λ = 1, and
so Un is diagonalisable. The fact that linear polynomials are reproduced by Un (as with
Bn), was seen as desirable in [S94].

5. A differentiation formula for Mµ
n and Un

In this final section, we give a formula for the derivative of Mµ
n f and Unf in terms

of some M̂κ
n−1 applied to the derivative of f . Previously, see, e.g., [S94:Lemma 4.4] and

[Di95:Property F], formulae for the derivative of Mµ
n f in terms of some operator applied

to the derivative of f were given, but the operator was not identified.
The derivative of f in the direction y ∈ IRs is given by

Dyf := lim
t→0

f − f(·+ ty)
t

.

Theorem 5.1 (Differentiation formula). For µ ≥ −1 and v, w ∈ V , we have

Dv−w(M̂µ
n f) =

n

n + |µ|+ s + 1
M̂µ+ev+ew

n−1 (Dv−wf), ∀f ∈ C1(T ). (5.2)

In particular,
Dv−w(Unf) = M̂ev+ew−1

n−1 (Dv−wf), ∀f ∈ C1(T ). (5.3)

Proof: In view of Theorem 3.11, it suffices to prove (5.2) for µ > −1. Since

Dv−w(ξα) = αvξ
α−ev − αwξα−ew , (5.4)

we have

Dv−w(Mµ
n f) =

∑
|α|=n

(
n

α

)
{αvξ

α−ev − αwξα−ew}〈f, ξα〉µ
〈1, ξα〉µ

=
∑

|β|=n−1

(
n

β + ev

)
(βv + 1)ξβ 〈f, ξβ+ev〉µ

〈1, ξβ+ev〉µ

−
∑

|β|=n−1

(
n

β + ew

)
(βw + 1)ξβ 〈f, ξβ+ew〉µ

〈1, ξβ+ew〉µ

=
∑

|β|=n−1

(
n− 1

β

) {
n〈f, ξβ+ev〉µ
〈1, ξβ+ev〉µ − n〈f, ξβ+ew〉µ

〈1, ξβ+ew〉µ

}
.
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By the beta integral (2.1),

n

〈1, ξβ+ev〉µ =
n

n + |µ|+ s + 1
βw + µw + 1
〈1, ξβ〉µ+ev+ew

,

and so we obtain

Dv−w(Mµ
n f) =

n

n + |µ|+ s + 1

∑
|β|=n−1

(
n− 1

β

)
c(f, µ, β, v, w)
〈1, ξβ〉µ+ev+ew

,

where

c(f, µ, β, v, w) := 〈f, (βw + µw + 1)ξβ+ev〉µ − 〈f, (βv + µv + 1)ξβ+ew〉µ
=

∫
V

f{(βw + µw + 1)ξβ+µ+ev − (βv + µv + 1)ξβ+µ+ew}.

Using (5.4) and the integration by parts formula, we then have

c(f, µ, β, v, w) =
∫

V

f Dw−v(ξβ+µ+ev+ew )

= −
∫

V

Dw−v(f) ξβ+µ+ev+ew = 〈Dv−wf, ξβ+ev+ew 〉µ,

as required.

In the univariate case s = 1, Dv−w = (v−w)D, with D the univariate derivative, and
µ+ev +ew = µ+1 (in case v 6= w), so the formula for k–th derivatives, k = 1, . . . , n, takes
the simple form

Dk(Unf) = Mk−1
n−k(Dkf), ∀f ∈ Ck(T ).
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