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ABSTRACT

The space Pn of bivariate generalised Hermite polynomials of degree n is invariant
under rotations. We exploit this symmetry to construct an orthonormal basis for Pn which
consists of the rotations of a single polynomial through the angles `π

n+1 , ` = 0, . . . n. Thus
we obtain an orthogonal expansion which retains as much of the symmetry of Pn as is
possible. Indeed we show that a continuous version of this orthogonal expansion exists.
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1. Introduction

Here we consider the space Pn of generalised Hermite polynomials in the plane IR2.
This n + 1 dimensional space consists of all bivariate polynomials of degree n which are
orthogonal to all polynomials of degree < n with respect to the inner product

〈f, g〉 :=

∫

IR2

f(x)g(x) ‖x‖2βe−‖x‖2

dx

=

∫ 2π

0

∫ ∞

0

(fg)(r cos θ, r sin θ) r2βe−r
2

rdr dθ, β ≥ 0.

(1.1)

Our calculations can be extended to any radially symmetric weight.
Let Rθ : IR2 → IR2 denote rotation through the angle θ, i.e.,

Rθ(x, y) :=

(

cos θ − sin θ
sin θ cos θ

)(

x

y

)

=

(

x cos θ − y sin θ
x sin θ + y cos θ

)

.

The group of rotations of the plane (which are symmetries of the weight)

SO(2) = {Rθ : 0 ≤ θ < 2π}

acts naturally on functions IR2 → IR or IR2 → C via

Rθf := f ◦Rθ.

The space Pn is invariant under SO(2), i.e.,

Rθf ∈ Pn, ∀f ∈ Pn, (1.2)

and satisfies the condition
Rπf = (−1)nf, f ∈ Pn. (1.3)

We will construct an orthonormal basis for Pn which consists of the rotations of a single
polynomial through the angles `π

n+1 , ` = 0, . . . , n. In view of (1.2) and (1.3), this basis
retains as much of the symmetry of Pn as is possible, and so one might argue has the
simplest possible form.

There are two known orthonormal bases for multiple Hermite polynomials. One is
obtained by factorising the weight, and the other by taking spherical harmonic factors of
the orthogonal polynomials.

Factorisation of the weight

If β = 0, then (and only then) the Hermite weight function factors

e−(x2+y2) = e−x
2

e−y
2

,
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so that an orthogonal basis for Pn is given by the polynomials

(x, y) 7→ Hj(x)Hn−j(y), 0 ≤ j ≤ n, (1.4)

where Hn denotes the univariate Hermite polynomials, which are given by

Hn(x) := (−1)nex
2 dn

dxn
e−x

2

,

∫

IR

(Hn(x))
2 e−x

2

dx =
√
π2nn!.

In [W01] the polynomials (1.4) are generalised to a biorthogonal system depending on a
matrix parameter U (which reduces to the orthogonal system when U is the identity).

Spherical harmonics

It is convenient to allow the orthogonal polynomials in Pn to have complex coefficients,
and at times replace the cartesian coordinates x and y by z and z, where z := x+ iy. We
also allow the formula for a polynomial (in either system) to appear in place of the function
in the inner product and the integral defining it, e.g., by integrating the polar form, we
have

〈zjzk, 1〉 =

∫

IR2

zjzk |z|2βe−|z|2 =

{

0, j 6= k;
mj , j = k

(1.5)

where

mj : =

∫

IR2

|z|2j |z|2βe−|z|2 = 2π

∫ ∞

0

r2β+2j+1e−r
2

dr

= π

∫ ∞

0

tβ+je−t dt = πΓ(β + j + 1) > 0, j = 0, 1, . . . .

Thus the orthogonal projection of polynomials

z 7→ zjzn−j , 0 ≤ j ≤ n

onto Pn forms an orthogonal basis for Pn. We will refer to these and related polynomials
as (generalised) Zernike polynomials, after the analoguous orthogonal polynomials on the
disc, see, e.g., [DX01] for references. These factor

zn−2jPj(|z|2), j ≥ n− j, zn−2jPj(|z|2), n− j ≥ j, (1.6)

where Pj is the (monic) polynomial of degree j satisfying

〈zn−2jPj(|z|2), zn−2jzszs〉 = 0, 0 ≤ s < j. (1.7)

By making the change of variables x = r2, the condition (1.7) can be written

〈zn−2jPj(|z|2), zn−2jzszs〉 =

∫

IR2

Pj(|z|2)|z|2s|z|2n−4j |z|2βe−|z|2

= 2π

∫ ∞

0

Pj(r
2)r2sr2n−4jr2βe−r

2

dr

= 2π

∫ ∞

0

Pj(x)x
sxn−2jxβe−x

dx

2
= 0,
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so that Pj is (up to normalisation) the Laguerre polynomial Pj = L
n−2j+β
j , where Lαn is

given by

Lαn(x) :=
1

n!
x−αex

dn

dxn
(xn+αe−x),

∫ ∞

0

(Lαn(x))2 xαe−x dx =
Γ(α+ n+ 1)

n!
.

A spherical harmonic of degree n − 2j can be written in the form z 7→ Re(ξzn−2j),
ξ ∈ C. For this harmonic polynomial (1.6) gives

Re(ξzn−2j)Pj(|z|2)) =
1

2
ξzn−2jPj(|z|2)) +

1

2
ξzn−2jPj(|z|2)), (1.8)

so that z 7→ Re(ξzn−2j)Pj(|z|2) belongs to Pn (cf [DX01:§2.3.4]).
We now construct our orthonormal basis in terms of these functions.

2. The orthonormal basis

First we give the normalisation and symmetry properties of the polynomials of the
type (1.8).

Lemma 2.1. For 0 ≤ j ≤ n
2 define polynomials pj : IR2 → IR by

pj(x, y) :=
1√
2π

1
√

1 + δj,n
2

√
j!

√

Γ(β + n− j + 1)
(zn−2j+zn−2j)Ln−2j+β

j (|z|2), z := x+iy.

(2.2)
Then pj ∈ Pn, and for θ, ψ ∈ [0, 2π] and 0 ≤ j, k ≤ n

2 , we have

〈Rθpj , Rψpk〉 =

{

0, j 6= k;

cos
(

(n− 2j)(θ − ψ)
)

, j = k.
(2.3)

Proof: The polynomials Rθpj are linear combinations of the Zernike polynomials
of (1.6), and so belong to Pn and are orthogonal to each other for different values of j. In
view of the rotational invariance of the inner product, it therefore suffices to show that

〈pj , Rθpj〉 = cos((n− 2j)θ).

Using the change of variables x = r2, we compute the norms of the Zernike polynomials

hj := ‖|z|2n−jLn−2j+β
j (|z|2)‖2 = ‖z2n−jL

n−2j+β
j (|z|2)‖2 = ‖z2n−jL

n−2j+β
j (|z|2)‖2

= 2π

∫ ∞

0

(Ln−2j+β
j (r2))2r4n−2jr2βe−r

2

r dr = 2π

∫ ∞

0

(Ln−2j+β
j (x))2x2n−j+βe−x

dx

2

= π
Γ(n− 2j + β + j + 1)

j!
= π

Γ(β + n− j + 1)

j!
.

(2.4)
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For j 6= n
2 , there are two Zernike polynomials which are orthogonal to each other, giving

‖(zn−2j+zn−2j)Ln−2j+β
j (|z|2)‖2 = ‖zn−2jL

n−2j+β
j (|z|2)‖2+‖zn−2jL

n−2j+β
j (|z|2)‖2 = 2hj ,

and for j = n
2 (when n even) there is just one Zernike polynomial, so that

‖(zn−2j + zn−2j)Ln−2j+β
j (|z|2)‖ = 2‖Ln−2j+β

n
2

(|z|2)‖ = 2
√

hn
2
.

These together with (2.4) show that the pj have unit norm.
Let ξ := eiθ, then up to a constant scalar, which is independent of θ, the inner product

〈pj , Rθpj〉 is given by

〈(zn−2j+zn−2j)Ln−2j+β
j (|z|2), ((ξz)n−2j + (ξz)n−2j)Ln−2j+β

j (|ξz|2)〉

= 〈(zn−2j + zn−2j)Ln−2j+β
j (|z|2), (ξn−2jzn−2j + ξ

n−2j
zn−2j)Ln−2j+β

j (|z|2)〉

= ξn−2j‖zn−2jL
n−2j+β
j (|z|2)‖2 + ξ

n−2j‖zn−2jL
n−2j+β
j (|z|2)‖2

= 2Re(ξn−2jhj) = 2hj cos
(

(n− 2j)θ
)

.

Since 〈pj , R0pj〉 = ‖pj‖2 = 1, this completes the result.

The above result gives an orthogonal decomposition of Pn

Pn =
⊕

0≤j≤n
2

Vj , Vj := span{Rθpj : 0 ≤ θ ≤ 2π},

into SO(2)–invariant subspaces Vj , which have dimensions

dim(Vj) =

{

2, j 6= n
2 ;

1, j = n
2 .

We can now give our orthonormal basis.

Theorem 2.5 (Orthonormal basis). Let θj ∈ [0, 2π], 0 ≤ j ≤ n
2 , and define p : IR2 → IR

by

p :=
∑

0≤j≤n
2

√

2 − δj,n
2

n+ 1
Rθj

pj , θj ∈ [0, 2π]. (2.6)

Then {R `π
n+1

p}n`=0 is an orthonormal basis for Pn. In particular, for θj = 0, we have

p(x, y) =
1√
π

1√
n+ 1

∑

0≤j≤n
2

1

1 + δj,n
2

√
j!

√

Γ(β + n− j + 1)
(zn−2j + zn−2j)Ln−2j+β

j (|z|2).
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Proof: Let µ := e
iπ

n+1 be a primitive 2(n + 1)–th root of unity, and ω := µ2 a
primitive (n+ 1)–th root. For ` and m integers, the orthogonality property (2.3), gives

〈R `π
n+1

p,R mπ
n+1

p〉 = 〈
∑

0≤j≤n
2

√

2 − δj,n
2

n+ 1
Rθj+

`π
n+1

pj ,
∑

0≤k≤n
2

√

2 − δk,n
2

n+ 1
Rθk+ mπ

n+1
pk〉

=
∑

0≤j≤n
2

2 − δj,n
2

n+ 1
〈Rθj+

`π
n+1

pj , Rθj+
mπ
n+1

pk〉

=
∑

0≤j≤n
2

2 − δj,n
2

n+ 1
cos
(

(n− 2j)(`−m)
2π

2(n+ 1)

)

=
1

n+ 1

∑

0≤j≤n
2

2 − δj,n
2

2
(µ(n−2j)(`−m) + µ(n−2j)(`−m))

=
1

n+ 1

∑

0≤j≤n
2

2 − δj,n
2

2
(−1)`−m(ω−(`−m)j + ω(`−m)j)

=
(−1)`−m

n+ 1

n
∑

j=0

(ω`−m)j .

Since ω`−m is an (n + 1)–th root of unity, the last sum above is zero, except for the case
` ≡ m (mod n+ 1), when it is 1 for m = `.

As the proof indicates, in (2.2) one could also allow Rθj
pj to be multiplied by ±1

(or unit modulus complex scalars), and using (2.3) one could determine how many of
these polynomials are different. It follows from [VW05:Th.6.18] that these are all such
polynomials.

This expansion is of a similar type to that of Logan and Schepp [LS75]. They showed
that the Legendre polynomials (constant weight) on the disc

ID := {(x, y) ∈ IR2 : x2 + y2 ≤ 1}

have an orthonormal basis given by the n+ 1 polynomials

p`(x, y) :=
1√
π
Un
(

x cos
`π

n+ 1
+ y sin

jπ

n+ 1

)

, ` = 0, . . . , n, (2.7)

where Un is the n–th Chebyshev polynomial of the second kind, i.e., {R `π
n+1

p0}n`=0 is an

orthonormal basis.
The polynomial p0 above is a function of x only, and so is a ridge function. A simple

calculation shows that the generalised Hermite polynomials P4 contain ridge functions if
and only if

4m2
1m3 − 3m1m

2
2 −m0m2m3 = 0 ⇐⇒ β = 0.

For Hermite polynomials, (1.4) gives a ridge function hn in Pn, namely

hn(x, y) := Hn(x).
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However, the rotates of this function do not give an orthonormal basis, since

〈hn, R `π
n+1

hn〉
〈hn, hn〉

=
(

cos
`π

n+ 1

)n
, 0 ≤ ` ≤ n.

It is therefore not possible to choose the polynomial p of (2.6) to be a ridge function.
From (1.3), it follows that

(−1)nR `π
n+1

p = R `π
n+1

Rπp = R `π
n+1+

π(n+1)
n+1

p = R`+n+1
2π

2(n+1)

p,

so that Theorem 2.5 gives

f =
n
∑

`=0

〈f,R `π
n+1

p〉R `π
n+1

p

=
1

2

n
∑

`=0

〈f,R` 2π
2(n+1)

p〉R` 2π
2(n+1)

p+
1

2

n
∑

`=0

〈f,R`+n+1
2π

2(n+1)

p〉R`+n+1
2π

2(n+1)

p

=
1

2

2n+1
∑

`=0

〈f,R` 2π
2(n+1)

p〉R` 2π
2(n+1)

p, ∀f ∈ Pn,

(2.8)

i.e., f ∈ Pn can be written as a sum of its projections onto the rotates {R 2π`
2(n+1)

p}2n+1
`=0 .

We now show that a continuous version of this also holds.

Corollary 2.9 (Integral expansion). Let p ∈ Pn be given by (2.6). Then

f =
n+ 1

2π

∫ 2π

0

〈f,Rθp〉Rθp dθ, ∀f ∈ Pn. (2.10)

Proof: For any f ∈ Pn and (x, y) ∈ IR2, the function T : θ 7→ 〈f,Rθp〉Rθp(x, y)
is a trigonometric polynomial of degree 2n. Hence we can find its integral by using the
quadrature formula involving 2(n+ 1) (> 2n) equally spaced nodes

1

2π

∫ 2π

0

〈f,Rθp〉Rθp(x, y) dθ =
1

2π

∫ 2π

0

T (θ) dθ =
1

2(n+ 1)

2n+1
∑

`=0

T
( 2π`

2(n+ 1)
)

=
1

2(n+ 1)

2n+1
∑

`=0

〈f,R 2π`
2(n+1)

p〉R 2π`
2(n+1)

p(x, y)

=
1

n+ 1
f(x, y),

with the last equality following from (2.8). This gives (2.10).
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