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Abstract

We show how the variational characterisation of spherical designs can be used
to take a union of spherical designs to obtain a spherical design of higher order
(degree, precision, exactness) with a small number of points. The examples that
we consider involve taking the orbits of two vectors under the action of a complex
reflection group to obtain a weighted spherical (¢,t)-design. These designs have
a high degree of symmetry (compared to the number of points), and many are
the first known construction of such a design, e.g., a 32 point (9, 9)-design for C2,
a 48 point (4,4)-design for C3, and a 400 point (5, 5)-design for C*. From a real
reflection group, we construct a 360 point (9, 9)-design for R* (spherical half-design
of order 18), i.e., a 720 point spherical 19-design for R*.
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1 Introduction

Let S be the unit sphere in R? or C¢, and ¢ be normalised surface area measure on S. A
weighted spherical design is a finite set (or sequence) of points X in S and weights
w, € R, x € X, for which the integration (cubature) rule

/Sfda => w.f(zx), VfeP (1.1)

zeX

holds for some finite dimensional space of functions P defined on S (usually a unitarily
invariant polynomial space). Such configurations of points are known to exist for every
choice of P (see [BT06], [SZ84]). For certain choices there is great interest in explicit
constructions, especially those with a minimal number of points, e.g., the “tight spherical
designs” of algebraic combinatorics [BB09]. The optimal configurations often have a
high degree of symmetry, and are closely related to optimal spherical packings [MP19],
[JKM19], [Vial7], and points minimising a potential function on the sphere [BGM*19].

If X and Y are weighted spherical designs with weights (w;\) and (w)’), then for
any fixed o € R and f € P, we have

S (ew) f() + (1w f(y) = a / fdo+(1—a) / fdo = / fdo,

zeX yey
so that X UY is a weighted spherical design, with the “affine combination” of the weights
X

wree o JO0 @ m e 12)
(1-aw,, a=yeY.

The weights of a spherical design are usually taken to be positive, and so it would be
natural to take a “convex combination” of the weights, i.e., to choose 0 < o, 1 — a < 1.
We will call (Bx,fy) = (a,1 — «) the weighting of the union X UY. It is usually
assumed the weights add to 1 (this follows if P contains the constants), in which case

Bx = Z wy et By = Z w;{uy,(m—a), Bx + By = 1.

rzeX yey

The purpose of this paper is to try and choose the weighting of a union of spherical
designs to obtain one of higher order, i.e., for which the space P in (1.1) is enlarged. If
one were to try and use (1.1) to do this, then one could increase P by just one dimension,
by solving an appropriate linear equation for a.

When P is a unitarily invariant space of polynomials, (1.1) can be replaced by a
single quadratic equation in the weights (w,).cx with coefficients involving just (the
inner products between) the points X, which comes from a variational characterisation
[Wall9]. By considering this quadratic for the union of designs X and Y, and a unitarily
invariant space @, it follows that:

Lemma 1.1 There is a quadratic equation in o = Bx, which if solvable, gives a weight-
ing for the union of spherical designs X and 'Y for P to be one for a larger space Q).
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This is useful only if one can choose X, Y and @ (large enough to be of interest), so
that the quadratic equation has a real root, preferably with 0 < @ < 1. Remarkably, we
show that this approach actually works quite successfully. We will primarily consider
the class of (complex) spherical (t,t)-designs. The basic properties in the milieu are:

e X and Y are chosen to have a small number of points. In practice, this means
that they are an orbit of a unitary group action, with a large stabiliser.

e X and Y must have the right relationship. Clearly, we cannot take ¥ = X and gain
anything more. One could take Y = UX with U unitary, but this adds additional
parameters to the quadratic (making it more likely to find one which is solvable,
but less tractable). Here we take X and Y to be orbits of the same group action.

e () must be large enough to be of interest, but not so large that the quadratic has
no real roots. In practice, P is polynomials up to some degree, and we take () to
be the same space for polynomials one degree larger.

Our constructions for orbits of finite complex reflection groups are summarised in §5.

2 Spherical (¢,t)-designs and half-designs of order 2t

For t = 1,2, ..., every finite set of vectors X in C¢ satisfies the inequality
2 1
S e za@)(Xl2l*) . alC = (2.3)
rzeX yeX reX ( t )

A set of nonzero vectors giving equality in (2.3) is called a spherical (¢,t)-design. A
spherical (¢,t)-design X is a weighted spherical design for the complex sphere [Wall7],
where x € X corresponds to T := H’;—” € S, and the weights and polynomial space are

[l

2 aex ol

Here Hom(p, ¢) is the space of homogeneous polynomials in the variables z € C? and %
which are of degree p in z and degree ¢ in z. The variational characterisation is

DD wawy (&, §)* = e(CY). (2.5)

zeX yeX

Wy = P = Hom(t,t). (2.4)

From (2.3), it follows that a spherical (¢, t)-design is a projective object, i.e., multiplying
a point x € X by a unit scalar gives another such design, and so x can be identified with
the complex line through z and the origin. When a spherical (¢, t)-design is viewed as a
collection of lines, then the term weighted complex projective t-design is also used [RS07].
Notable examples include tight frames which are the (1,1)-designs [Wall8] (those with
the minimal number being the orthogonal bases), and SICs (sets of d? equiangular lines
in C%) which are (2,2)-designs with the minimal number of vectors [ACFW18].

It is not obvious from the definition that unions of spherical (¢,¢)-designs are again
spherical (¢,t)-designs. This follows from the spherical design property (1.1).
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Theorem 2.1 If X and Y are are spherical (t,t)-designs, then so is any conver union
of them, such as X UY , and in particular

Sy = alc?) (anu”) (Znyuﬂ) (2.6)

Proof: The union X UY, with weights given by (2.4), is given by the weighting

2aex llal* 2 vey IOl
2wex 121 + 2 eyl 2 wex 1217 + 22 ey [yl
Eliminating terms for equality in (2.3) for X, Y and X UY gives (2.6). O

Let X and Y be finite subsets of S and (w} ) and (w}’) be corresponding weights. By
the variational characterisation (2.5), their union X U Y with the weighting (6x, fy) =
(v, 1 — @) is a spherical (¢,t)-design if and only if « satisfies

DD Wiy g B = e (),

aceXUY be XUY

Bx =

By =

which, by (1.2), expands to the following quadratic equation in «

0® Y > wiwl e, )P (1= ) > > w) wy [(a, b)[*

acX beX a€Y beyY
+2a(1—a) Y > wiwy) [, b)[* = ¢, (CY). (2.7)
acX beY

This is an instance of Lemma 1.1. Here (and in general) the coefficients of the quadratic
depend only on the weights and the inner products between the elements of X UY.
We find in convenient to use the normalised weights

- |X|w§7

so that the normalised weights for X add to | X|, and they equal 1 when they are all the
same. We now suppose the weights for X and Y are both constant (as will be the case
for an orbit under a unitary action), so that the normalised weights for X UY have the
form

wy, a€ X;

(X[ + Y g 1) = {
Wy , acy.

Since | X|wx + |Y|wy = | X|+[|Y], for wx,wy # 0, it follows from (1.2) that X UY with
the weighting given by z = wy is a spherical (¢,?)-design if and only if it

ZQZZ|<CL,b>’2t+(|X|+|Y| |X|Z> ZZ’ab’%

acX beX acY beY

T2 ('X‘”Y‘ ’X'Z)ZD BIZ = (1X] + [V]Pa(C). (28

aeX bey

Once a suitable wyx has been found, the other parameters can then be calculated from

XY = [ Xy | Xy ~ |Y]wy

- ) 6X - ) BY — .
Y] | X[+ Y] | X[+ Y]

~

(2.9)




For vectors X in RY, the following sharpening of (2.3) is possible (see [Wall7])

ot o) 2 1352t —1)
;gux,yn zcxm(gnxn ), a®Y= sy

(2.10)
The corresponding spherical designs are called spherical half-designs [KP11]. They
integrate P = Hom(2t), the space of homogeneous polynomials of degree 2t on R?, and
are characterised by

DO wawy| (@, 9) 1 = ci(RY). (2.11)
zeX yeX
Our previous discussion on spherical (¢,%)-designs extends to spherical half-designs in
the obvious way, i.e., replace ¢;(C?) by ¢;(RY). We will not labour the point, with a
spherical (t,t)-design for R? understood to be a spherical half-design of order 2t.

3 Highly symmetric tight frames and reflection groups
Since || - ||* = (-, -) is constant on the sphere, the space P = Hom(¢, ) in (1.1) integrated
by a spherical (t,t)-design satisfies

Hom(p — 1,q — 1)|s € Hom(p, ¢)ls.

Hence a spherical (¢, t)-design is a spherical (r,7)-design for r = 0,1, ..., t. In particular,

its weights add to 1 (r = 0) and it is a tight frame (r = 1) for ¢ > 1. The analogous result

for spherical half-designs of order 2t follows from the fact Hom(2(t — 1))|s C Hom(2¢)|s.
The following notion of a “highly symmetric” tight frame was given in [BW13].

A finite frame of distinct vectors is highly symmetric if the action of its symmetry
group is irreducible, transitive, and the stabiliser of any one vector (and hence all)
is a nontrivial subgroup which fixes a space of dimension exactly one.

The upshot of this definition, is that for every unitary irreducible representation of a
finite group on R? or C¢, there is a finite (possibly empty) set of highly symmetric
tight frames (up to unitary equivalence) given as a group orbit, which has a nontrivial
stabiliser (the number of vectors is less than the order of the group). In theory, these
highly symmetric tight frames can be calculated for a given group (or representation),
and this was done primarily in the case of finite complex reflection groups in [BW13].
A finite group of linear transformations on R? or C? is a complex reflection group
if it is generated by complex reflections, i.e., transformations which fix a hyperplane (and
have finite order). The finite irreducible complex reflection groups were classified by
Shephard and Todd (see [ST54], [LT09]). There are three infinite families of imprimitive
reflection groups of the type G(m,p,n), p|m, and 31 primitive complex reflection groups
Gy, . ..,G34 in dimensions 2, 3, ..., 8, which are referred to as the Shephard-Todd groups
with numbers 4, 5, ...,34. The complex reflection groups are a generalisation of the real
reflection groups (classified by Coxeter). The Shephard-Todd classification contains the
real reflection groups (numbers 23, 28, 30, 35, 36 and 37). In many presentations, the
generators of the real reflection groups are given as matrices over a cyclotomic field.
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The highly symmetric tight frames for the Shephard-Todd groups were calculated in
[BW13]. Their strength as (¢, t)-designs (the largest ¢ can be) was calculated in [HW18b]
by utilising magma software of Don Taylor to calculate the mazimal parabolic subgroups
(which stablise the vectors of a highly symmetric tight frame). Later, it was shown that
in most, but not all cases, the strength of such a design was shared by all orbits (where
the action is unitary), and that it could be calculated from a complex harmonic Molien-
Poincaré series [RS14], [MW19]. The corresponding results for orthogonal actions on
real spaces were considered earlier by [Ban79], [dIHP04]. In both the real and complex
cases, we will call this the generic strength of an orbit.

Example 3.1 If the unitary action of a finite group on F? = R4 C? is irreducible, i.e.,
every orbit of every nonzero vector spans F%, then every orbit of a nonzero vector is a
tight frame, i.e., a (1,1)-design (this is equivalent to the action being irreducible). Hence
the generic strength of an orbit of an irreducible complex reflection group is at leastt = 1.

Our main result is the proof of concept:
The quadratic (2.8) can be solved to find a union of spherical designs with higher order.

A summary of our calculations for the highly symmetric spherical (¢,t)-designs for the
complex reflection groups is given in Section 5. Combining these gives the following:

Theorem 3.1 Let G be a primitive irreducible complex reflection group (these have
Shephard-Todd numbers 4-34). If X and Y are different highly symmetric tight frames
for G, then there is unique rational weighting for which X UY is a spherical (t,t)-design,
where t s strictly larger than that of a generic orbit. Moreover, for every case where
there are two or more highly symmetric tight frames, a pair can be chosen for which the
weighting is convex, i.e., has positive entries.

In Section 4, we give evidence to suggest that such a result also holds for any pair
of orbits, i.e., the fact that the orbit is highly symmetric is important only in that its
size is small.

We finish this section with some technical comments about our calculations.

e Our calculations were done in magma, using the software Complements.m of Don
Taylor to calculate the maximal parabolic subgroups. Magma writes vectors as
rows, and the action of a matrix group, e.g., in Eigenspace, is by right multipli-
cation, and so our code must be read with this in mind.

e For an orbit of a unit vector to lie on the sphere, the group action must be unitary.
The presentations of the complex reflection groups (or more generally irreducible
representations) provided in magma are not all unitary. One way around this, is
to consider the canonical Gramian (which can be calculated from the Gramian) of
the orbit of the nonunitary representation [Wall8]. This can be done, but becomes
unfeasible eventually. Another way, is to find a Hermitian matrix which gives the
quadratic form under which the action is unitary (as was done in [BW13]). This
works better for large examples, as the inner products in sums such as (2.8) can
be created and added to the sum one by one. Thus for orbits of large size there is
no need to create the Gramian.



4 The structure of the quadratic

For weighted sets X and Y of points on the sphere, let
Moy = > D wawy|(a, ),
a€X beyY
If X and Y are spherical (¢,t)-designs for F¢, then by Theorem 2.1, we have

bg?Y =G (]Fd) )

so that
by — (O )7 # 0, b + b5 — 2%y #0,
when X and Y are not both spherical (,t)-designs.

It seems that in the many cases considered so far, when there is a root of (2.7) for a
union of lower order designs, then the root is a double root, i.e., the discriminant is zero

DO = (007 = el @) (0 + 03 — 2b§§y) (4.12)
and we have the simple formula

¢ ¢ ) Y= @ t 0 -
e+ 0y 20, e+ 020,
This seems to hold for any pair of orbits, i.e., it has nothing to do with it being a highly
symmetric tight frame Suppose that there is a unitary action of G on F?, and let

pY |Z| Lgy)|* = PZZW hy)* = b8 . (4.13)

geG geG heG

where Gx := (gx)geg. Then the condition for there to be a unique weighting for which
the union of the orbits of z and y is a spherical (t,t)-design is that

pg) (z, :i")pg) (9,9) — (pG (z, y)) £ 0, (the orbits are not both (¢, t)-designs)
where 2 := and

ﬁ,
pd (&, 2)p2 (9,9) — (02 (#,9))” = a(®) (02 (&, 2) + p2 (5, 9) — 208 (2,9)).

This condition can be written in terms of polynomials:

Theorem 4.1 (Two orbits) Let G be a finite group with a unitary action on F? = RY, C.

Then every generic pair of orbits has a unique weighting which is a spherical (t,t)-design

if and only if the polynomial f(t) (t?F :F? x Fé — F given by

16 @, y) = e (2. 2)pE (v, y) = (0 (2, 9))” (4.14)
15 not identically zero, and

19 (@, y) = e (Il 98 (@, 2) + 1211"pE (. w) = 2Nl Ny )5l (2 )) . (4.15)

where pg) is given by (4.13).

Proof: Use pg) (z,9) = p(Gt) (x,y) to rewrite the previous conditions, and

)2 Iyl
then multiply by |\JEH4tHy”4t- -



Here the condition that the orbits (¢9z),ec and (gy)g4eq be generic is fg)(x,y) # 0.

Clearly, fg) (x,y) = 0 if the orbits are equal or if both are spherical (t,t)-designs. By
way of comparison, the condition that every single orbit is a spherical (,t)-design is
that

PG (@, x) = e (F) 2| *.
We will say that “pairs of orbits give (¢, t)-designs”, or similar, if (4.15) holds nontrivially.
Theorem 4.1 provides a computational way to verify when a generic pair of orbits

has a unique weighting giving a spherical (t,t)-design. We were able to make this
computation in magma for various groups GG. Our preliminary results suggest:

Pairs of orbits give spherical (t,t)-designs with t higher than the generic strength,
for all complex reflection groups except the Cozeter group Dy = G(2,2,4). This
also holds for many, but not all, irreducible representations.

The exact nature of these results is not yet clear, though it is related to the irreducible
unitarily invariant subspaces H(p, ¢) of the polynomials on C? 2 R?? (see [Rud80]) that
are integrated by the cubature rule for a generic orbit.

Since the sum in (4.13) is over all elements of the group G, and cannot be simplified,
e.g., by taking a transversal giving an orbit of small size (as for highly symmetric tight
frames) our calculations do not extend to all the groups considered in Section 5.

We now give some selected examples.

Example 4.1 Let G be the dihedral group of order 6 (a reflection group) generated by
_1 V3 1 0
a=| 2 2 (rotation by %), b= (0 _1> (reflection in the z-axis).
2 T2

This is the first (faithful) irreducible group action in more than one dimension.
If G acts on R?, then every orbit is a (2,2)-design, so that

1 2
fox = 16x =0,

and pairs of orbits give (t,t)-designs for R* for t = 3,4,5. Here

Sex,y) =10 [ (, Uy))?,

veu

where U is the set of unitary matrices

0 1 0 1 V31 V3 o1 V31 V3o 1

U= 2 2 2 2 2 2 2 2
' -1 0)’\1 0o/)°\ L _vw3]>\_L ¥3)°\ 1L 3] |_1 _V3 ’

2 2 2 2 2 2 2 2

and

w

4 3 5 3
(@ y) = Izl Myl fEn ), [k () = Ll g2 fER (e, v).



It is not obvious from the definition (4.14) that these polynomials should be squares (or
have common factors), or how the matrices in U relate the elements of G. If G acts
on C?, then every orbit is a (1,1)-design, and pairs of orbits give (2,2)-designs for C2,
where
feele.y) = §(lelPaly) + lyIP8)" (lel*aly) + lyl*5@)",
with
a(y) == Y12 — Vv, B(x) = 1173 — T1xs.

The lines in a spherical (¢,t)-design for C¢ which is an orbit depend only the the
matrices in the action group of the representation up to unit scalar multiples. Hence
for the purpose of calculation, it suffices to take a representative set of such matrices.
A convenient way to do this, is to take the associated group obtained by normalising
the matrices to have determinant 1 (and taking all d such choices). This subgroup of
SU(C?) (as an abstract group) was called a canonical abstract error group in [CW17].

The finite subgroups of SU(C?) are given by the ADE classification: the binary
tetrahedral, octahedral and icosahedral groups, together with the binary dihedral groups
Ds,,, of order 4m, which are generated by the matrices

a_wO w'—e? b—O_1
- \0 w)’ R W A O B A

Except for Dy = Zy X Zsg, these are all irreducible (see Theorem 5.14 of [LT09] for
details). A summary of our calculations for these groups is given in Table 1.

Table 1: The unions of pairs of orbits for the irreducible subgroups of SU(C?) (these
correspond to all irreducible representations). Here tgeneric is the strength of a generic
orbit, and #,.is is the range of ¢ for which pairs of orbits give spherical (¢, t)-designs.

Subgroup of SU(C?) order #lines || tgeneric | tpairs | cCOmMments

Binary tetrahedral group 7 |24 12 -2 |3 ST 4-7 (type T)
Binary octahedral group O |48 24 1-3 |45 |ST 8-15 (type O)
Binary icosahedral group Z |120 60 1-5 6-9 ST 16-22 (type )
Binary dihedral group Dy |8 4 1 {} associated real group
Binary dihedral group Dg |12 6 1 2 associated real group
Binary dihedral group Dy, |4m > 16 |2m 1 2-3 associated real group

The binary dihedral groups come from real representations, and the corresponding
pairs of real orbits (see Table 2) give real spherical (¢,¢)-designs. Let D, = G(m,m,2)
be the dihedral group of order 2m generated by

2T s 21
cos <L —gsin<L 1 0
a= m m rotation by 2& = reflection in the z-axis
(sm% cos 22 ) o Y ) <0 _1) ( ),
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and R,, = (a) be the rotation subgroup. Since b is a reflection, it does not have
determinant 1. Multiplying it by the scalar i gives a matrix in SU(C?). The subgroup
(a,ib) of SU(C?) is conjugate to Dsy,, for m odd, and is conjugate to D,, for m even.

Table 2: The unions of pairs of orbits for the irreducible subgroups of O(R?) (these
correspond to all irreducible representions).

Subgroup of O(R?) |order #lines || tgeneric L pairs comments
Dihedral group Dy, [2m (m odd) |2m L.,(m=1)|m,.,2m—1)|m >3
Dihedral group Ds,,, [2m (m even) |m L., (5-1)%,..,(m—1) 'm=>4
Rotation group R,, |m (m odd) |m m—1 {} m >3
Rotation group R,, |m (m even) |% m—1 {} m >4

We now list some additional calculations (Table 3). These include the Heisenberg
group H4 in d dimensions, which is generated by a cyclic shift S and the modulation €2,
where Se; = e;,1, Qe; =wlej, j € Zy.

Table 3: The unions of pairs of orbits for selected groups. Here G = G(m,p,n), p | m
(|G| = m"n!/p), is the infinite family in Shephard-Todd classification, and the groups
By, D4, Hs, Fy in brackets are from the Coxeter classification of real reflection groups.

Group d |order |#lines ||tgeneric |tpairs |COmMments

Gos (ST 23, Hj) 3 (120 60 1-2 3-4  |real group

Goy (ST 24) 3 (336 168 -2 |3 complex group

Gos (ST 25) 3 1648 216 -2 |3 complex group

Gos (ST 26) 3 11296 |216 -2 |3 complex group

Gos (ST 28, Fy) 4 1152 |576 -2 |3 real group
G(2,2,4) (D) 4 192 |96 1 {}  |Example 4.2
G(2,2,d) (Dy) d 2914l 1 |2 |d#4,3<d<T
G(2,1,4) (By) 2 348|192 |1 2.3

G(2,1,d) (By) d |24 |2-ar ||1 2 d#2,2<d<6
Hy = Dy 2 18 4 1 23 |G(2,1,2) = G(4,4,2)
Ha d |d® d? 1 {} d > 3, Example 4.2

Example 4.2 The real reflection group G(2,2,4) was the only complex reflection group
we considered for which pairs of orbits do not give spherical (t,t)-designs. Even in this
case, some pairs of highly symmetric tight frames still give higher order (t,t)-designs
(see Table 9). Also, the Heisenberg groups Hgq, d > 3 (which are not complex reflection
groups) do not have the property that pairs of orbits give spherical (t,t)-designs.
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5 Summary of calculations

In the following tables we summarise our calculations to find a weighting (5, fy) so
that a union of highly symmetric tight frames X and Y for a complex reflection group
G is a spherical (t,t)-design with ¢ larger than the generic strength of an orbit.

Here ST is the Shephard-Todd number of G acting on R% C%, t is the strength of
the union X UY above that of a generic orbit, and n is the number of lines in the union.
We note that there is at least one highly symmetric tight frame for each group. Such
frames are identified by their number of lines, with 45 in Table 4 indicating that either
of the two highly symmetric tight frames of 4 points/lines can be taken.

5.1 Primitive complex reflection groups

Table 4: The unions of pairs of the highly symmetric tight frames for C? given by the
complex reflection groups with Shephard-Todd numbers 4-22 which are (t,t)-designs.
The groups ST = 4,5, 8,12, 16, 20, 22 have only one highly symmetric tight frame.

ST order t n X, Y| |Bx, By Wy, Wy
6 48 3 16 4,6 0, 1 0, 1
7 144 3 |8 4,4 il 1,1
3 16 49, 6 0, 1 0, 1
9 192 4-5 |18 6, 12 14 3 ¢
10 288 4-5 |14 6, 8 2 3 o =
11 576 4-5 |14 6,8 2 3 o,z
4-5 |18 6, 12 i % EN
4-5 |20 8, 12 -3 8 -2 ¢
13 96 4-5 |18 6, 12 i3 5,8
14 144 4-5 |20 8, 12 -3 8 -3 8
15 288 4-5 |14 6, 8 2 3 Bz
4-5 |18 6, 12 i 4 EN
4-5 120 8, 12 -3¢ -3¢
17 1200 6-9 |42 12, 30 51 2
18 1800 6-9 |32 12, 20 502 %%
19 3600 6-9 |32 12, 20 Z = 2,8
6-9 |42 12, 30 21 N
6-9 |50 20, 30 -2 8 -2, 2
21 720 6-9 |50 20, 30 -2 =
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Table 5: The unions of pairs of the highly symmetric tight frames for C? given by the
complex reflection groups with Shephard-Todd numbers in the range 23-37 which are
(t,t)-designs. The groups ST = 23,28, 30, 35, 36, 37 are real reflection groups.

ST |d |order t n | X, |Y] Bx, By Wx, Wy
24 |3 [336 3149 21, 28 x 2 % =
25 |3 |648 3|21 9,12 2 3 Bz
26 |3 |1296 3|21 9,12 2 3 ®
3 |45 9, 36 -1, 8 -1, 3
34 |48 12, 36 5, 3 g,
27 |3 |2160 4 |81 36, 45 5 £ 5 %
4 |96 36, 60, 2 8 2, 3
4105 |45, 60, 4, -3 B -z
29 |4 |7680 3 |60 20, 40 12 1,1
3 100 |20, 80, —3 3 -2, 2
3 120 |40, 80, 12 1,1
3 180 |20, 160 -L, B -8 2
3200 |40, 160 =, = 8 2
3 (240 |80, 160 |, -2 2, -z
31 |4 ]46080 4-5 540 |60, 480 5 o 25
4-5 11020 |60, 960 5 o > o3
4-5 1440 480,960 |-, 12 |-, 32
32 |4 [155520 ||4-5 |400 |40, 360 1,8 2, 2
33 |5 |51840 3185 40, 45 8 2 28
3 (256 |40, 216 3, 2 z a0
3 |261 |45, 216 —a7, 2 |—H8 I
3 |580 |40, 540 -2, |- =
3 585 |45, 540 =, 9 =2
3 |756  |216,540 |12, O s
34 |6 [39191040 |4 672 |672,]Y] |1, 0 1,0
419072 9072, [Y| |1, 0 1,0
4-5 3528 |126, 3402 |3, & B 2
4 |5166 |126,5040 |—7%, 2 -4 2
4 (8442|3402, 5040 |5, & 0
4-5 97445 (672, 9072, |—1, ¢ -8 %
4 |18144 9072, 9072 (B, 1—3 |28,2(1-p)
>4 (27342 |126, 27216 |—45, &2 |22 1550
>4 30618 |3402, 27216 | 102, S5 |2, 20
>4 32256 |5040, 27216 | —15, o | —22, 230
>4 45486 | 126, 45360 |—=, 52 |12 3%
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Table 6: The unions of pairs of the highly symmetric tight frames for R? given by
the real reflection groups G with Shephard-Todd numbers 23, 28, 30, 35, 36, 37 which are
spherical (,t)-designs. The Coxeter classification names are included under G.

ST |G d |order t n | X, Y] Bx, By Wx, Wy
23 |Hs |3 |120 34 [16 |6, 10 2 3 %
34 |21 6, 15 5,16 &1
34 |25 |10, 15 —9 1 —i1 o
28 |F, |4 1152 3 |24 [12,12 5 3 1,1
3160, 12,48 -1 -5, 2
3160, 12,48 i 2 5 3
3 |96 48, 48 i1 11
30 |H, |4 |14400 6-9 [360 |60, 300 5 1 =
6-9 1420 |60, 360 3,5 2 =
6-9 660 |60, 600 S, o o,
6-9 |660 300, 360 —81x -5, 2
6-9 900  [300, 600 —2s 2 2
6-9 960|360, 600 195 129 |16 _ 1%
35 |Es |6 |51840 3 63 |27, 36 23 oz
3 (243 |27, 216 2, 5 5
3 252 |36, 216 . —% 15
3 [387 |27, 360 2 8 N
3 (396 |36, 360 —_ -4, 2
3 |576 |216,360 |2, —2 2, —%
36 |E, |7 2903040 ||3 |91 |28, 63 BN S
3 [316 |28, 288 S 8 e, o
3 I351 |63, 288 —16 a9 -2 5
3 406 |28, 378 _n —2n, 5
3 441 |63, 378 38 I 3
3 |666 |288, 378 L7 128 s, a8
3 11036 |28, 1008 Z, & & 48
3 1071 |63, 1008 18 —1n, 2
3 |1206 |288, 1008 |38 2% o, -2z
3 1386 |378,1008 |, I B
3 2044 [28,2016 |2, L 2, s
3 |2079 |63,2016 |45, 2|48 o
3 |2304 [288,2016 |- 2 —53, 2
3 |2304 |378,2016 |1% 6» Sy oo
3 3024|1008, 2016 |—2%, 17 — 3,
3 15068 |28, 5040 4T 192 oL, 2
3 |5103 |63,5040 |1 2 — o
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[ e || R
? 447 44 1327 1760
3 6048 |1008,5040 |- 2 —lo2 " 1cs
3 |7056 |2016, 5040 |42 128 075 _ 596
37 | Es 696729600 4-5 1200 [120, 1080 |1, & 0%
4-5 |3480 |120,3360 |—3%, 2 —20 a6l
4-5 |4440 1080, 3360 |2, 2 1" ui
45 8760 |120,8640 |2, 32 2o 292
4-5 9720 1080, 8640 |—32, 16 SIS
03 |ooago oo |52 |54
45 131320 |1080, 30240 | 1. 0 5% 501
’ 87 8 8’ 224
4-5 |33600 |3360, 30240 |1, & o 2
45 34680 |120, 34560 |22 343 9537 o0121
4-5 |35640 |1080, 34560 |—135, 313 o534 " 1isie
4-5 |37920 |3360, 34560 |21, 343 23463 27007
4-5 | 38880 |8640, 30240 |—i8 8L _2 1
4-5 43200 | 8640, 34560 |32 313 us _ins
s |ratogol o o | T | B
457 | 122040| 1080, 120060 | -2 2 oz s
) ’ 167 16 16 > 1792
4-57 | 1243203360, 120960 | 2L, 20 99 925
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5.2 Imprimitive complex reflection groups

Table 7: Selected examples for the Coxeter groups Ay = G(1,1,d+ 1) = Sgyq, d > 2.
These n vector spherical (2,2)-designs give rise to spherical 5-designs with 2n vectors.

ST d__|order 2 X Y[ [Bx, By Wy, Wy
(114) |3 |24 2 |7 3,4 23 g
(1,1,5) |4 |120 2 |15 |5, 10 : 3 6 o
(1,1,6) |5 |720 2 |16 |6, 10 578 |0 s
2 [21 |6, 15 S A
(1L,L7) |6 |5040 2 |28 |7, 21 B -
2 |12 |7,35 g L e
(1,1,8) |7 40320 2 |28 |28 |y] 1,0 1,0
2 |43 8,35 LA I
2 |64 |8, 56 1o 1'%
(1,1,9) |8 [3628%0 |2 |45 |9, 36 Tatm | T4t
2 |03 |9 84 P TRt )
(1,1,10) |9 |3628%00 |2 |55 |10, 45 ;%,4 9% ;1%,63;_;
o [130 [10,120 [& & | e
(1,1,11) |10 [39916800 |2 |66 |11, 55 _25_2,55% 5_5%66(%
2 176 |11,165 |3, 2 |0 s
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Table 8: Selected examples for the Coxeter groups By = G(2,1,d), d > 2, for orbits of
the vectors x = e; +ea+---+ep, 1 <k <d.

ST d |order t n | X, Y| |Bx, By Wy, Wy
(2,12) |2 |8 2-3 |4 2, 2 i1 1,1
(2,1,3) |3 |48 2 |7 3,4 2 3 = 2
2 19 [36 55 58
(2,1,4) |4 |384 2 |12 4, 8 3, 2 1,1
2 |12 12, |Y] 1, 0 1,0
2 (20 4, 16 13 20
(2,1,5) |5 |3840 2 |21 5, 16 25 8 2
2-3 |45 5, 40 18 2,
(2,1,6) |6 |46080 2 |36 6, 30 —1 3 -3 3
2 |38 6, 32 13 B
(2,1,7) |7 |645120 2 |49 7, 42 —14 -1 4
2 |7 7, 64 2 1 2, &=
(2,1,8) |8 [10321920 |2 |64 8, 56 -2 1 -3 3
2 136 |8, 128 14 Z 2
2-3 |184 |56,128 |Z, & TN
2-3 |568 |8, 560 i4u oz
(2,1,9) |9 |185794560 |2 |81 9, 72 -z, 2 -2 3
2 (265 |9, 256 2 2 8 2
(2,1,10) |10 |3715891200 (2 |100 |10, 90 -1, 3 -5, 2
2 490 [10,480 |-, % -2, 3
2 |522 |10,512 |i, 3 &, &
2-3 |7770 |90, 7680 |3, L B 28
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Table 9: Selected examples for the Coxeter groups D, = G(2,2,d), d > 3, for orbits of
the vectors x = e; + ey + -+ -+ e, 1 < k < d. Note that G(2,2,2) is not irreducible, and
G(2,2,3) =2 G(1,1,4).

ST d |order t n | X, Y] Bx, Py Wy, Wy
(2,2,3) 3 |24 2 |7 3,4 2 3 ® 4
2 9 3,6 53 5 3
2 |10 4, 6 -3 8 -3 8
(2,2,4) 4 192 {8 4,4
2 |12 12, Y| 1, 0 1,0
2 (20 4, 16 13 iR
{3 120 4, 16
(2,2,5) 5 1920 2 |21 5,16 2,2 s,
(2,2,6) 6 23040 2 |22 6, 16 53 5 3
(2,2,7) 71322560 2 |49 7, 42 ~-14 -4
2 |71 7, 64 2 1 2 o
2 [140 |140,]Y| |1, 0 1,0
(2,2,8) 8 5160960 2 |64 8, 56 -2 1 -3¢
2 |72 8, 64 14 2, =
2-3 |120 |56, 64 £ 2 1, 1
2-3 |568 |8, 560 iu n i
(2,2,9) 9 192897280 |[2 |81 9, 72 -5 18 -£ B
2 (265 9,256 2 2 3, ==
(2,1,10) |10 |1857945600 (|2 |100 |10, 90 -1, 3 -5, 2
2 (266 |10, 256 15 5908
2 1680 |1680, Y| |1, 0 1,0
2-3 7770 |90, 7680 |2, L B 2B
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5.3 Observations and examples

We first observe that it is possible to have a weighting (S, fy) with a negative value
that gives a union X UY which is a (t,t)-design of higher order. We will refer to a
(t,t)-design with some negative weights as a signed (t,t)-design. Signed (1, 1)-designs
were first studied in [PWO02], where they were called signed tight frames and defined as
systems with

f= ch<f, ¢))b5,  Vf €T

where ¢; € R and ¢; € S. The equivalence of these two notions is easily proved.

In some cases, pairs of orbits can give (¢,t)-designs with strength t,ais > tgeneric + 1.
We illustrate the mechanism for this with an example. Consider the Shephard-Todd
groups numbered 9 to 15. For these, an orbit gives a cubature rule for P = Hom(¢,t),
t =1,2,3,5, as does any union of orbits. Thus a union of orbits is a (4, 4)-design if and
only if it is a (5, 5)-design. There are also examples, such as the Shephard-Todd group
26, where some, but not all, pairs of orbits have strength greater than fgeneric + 1.

In [HW18b] a numerical study was done to find “putatively optimal” (¢,¢)-designs.
We now consider our constructions in relation to the table in [HW18b] (and [Wall§]).

Example 5.1 For C? the putatively optimal (t,t)-designs for t = 3,4,5 come as highly
symmetric tight frames (one orbit). Fort = 8,9 the putatively optimal number of vectors
was estimated to be 37 and 44. Since we have constructed a (9,9)-design of 32 vectors
for C? as a union of orbits of size 12 and 20, these numbers can be improved.

Example 5.2 For C? the putatively optimal (3,3)-design had 22 vectors, and we give
one with 21 vectors. The putatively optimal (4,4)-design had 47 vectors, and we give
one with 48 vectors.

Example 5.3 For C* the putatively optimal (4,4)-design had more than 85 vectors, and
there was no estimate for (5,5)-designs. Here we give a (5,5)-design with 400 vectors.

Example 5.4 For C° the putatively optimal (3,3)-design had more than 100 vectors.
Here we give a (3,3)-design of 85 wvectors for C°. This design was found by [BGM*19]
by optimizing a potential, and then presented explicitly (in terms of root vectors of Gsz).

Example 5.5 For C° the highly symmetric tight frame of 672 vectors for the group Gss
was identified as a (4,4)-design (higher strength than a generic orbit), and a pair of
orbits gives a (5,5)-design of 3528 wvectors.

We now consider examples for real reflection groups. We note that if X is a spherical
(t,t)-design of n vectors for R?, then X U —X (with the same weight on x and —z) is a
spherical (2t + 1)-design of 2n vectors for R? (see [HW18a]).

Example 5.6 For the Shephard-Todd group Gas a union of orbits of size 6 and 10 gives
a spherical (4,4)-design for R® (with normalised weights %, %) For the Shephard-Todd
group G(1,1,6) acting on five dimensional space a union of orbits of size 6 and 10 gives a
spherical (2,2)-design for R® (with normalised weights 22, 3¢). These putatively optimal

217 35
spherical half-designs were given in in [HW18a/.
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Example 5.7 (Tables 6 and 8) A union of pairs of highly symmetric tight frames for
real reflection groups gives (3, 3)-designs of 4 vectors for R?, 16 vectors for R, 24 vectors
for R*, 45 vectors for R5, 63 vectors for R, 91 vectors for R7, and 184 vectors for RS,

Example 5.8 For the Shephard-Todd group Gz a generic orbit is a (5, 5)-design for R*.
A union of highly symmetric tight frames with 60 and 300 vectors gives a (9,9)-design
for R (with normalised weights %, %) By taking these vectors and their negatives
one obtains a 720 vector spherical 19-design for R*. It has been shown [BB09] that
there is a single orbit of Gy = W (H,) which gives a spherical 19-design for R*. The
vectors x giving such orbits are the roots of the harmonic polynomial of degree 12 which

1s invariant under the action of Gsg, and the orbit size is nominally 14400 vectors.

There is ongoing work of [BGM'19] on minimising a p-frame energy on a sphere.
They present various tables of putatively optimal spherical (t,t)-designs that they have
collected from the literature and calculated (see Example 5.4). Many of these a clearly
examples of our general construction (by a comparision of number of vectors and weights).
These include a 24-point (3, 3)-design for R*, a 22-point (2, 2)-design for R®, a 63-point
(3, 3)-design for for RS, a 91-point (3, 3)-design for for R?, and a 21-point (3, 3)-design
for for C3.

5.4 Conclusion

We have demonstrated that it is possible to take a union of two orbits to obtain a
spherical (¢,t)-design of higher strength than that of a generic orbit, i.e., tgeneric, and
some of these designs have a minimal number of vectors. Given that fgeneric < tmax(d)
(for some function t,.y) for every group acting on R, d > 3, it is not possible to find
arbitrary strong (¢,t)-designs as a single orbit (by selecting a sufficiently large group),
and so this technique might be useful for finding designs with strength ¢ > t,,..(d). We
note that t,,., has not yet been determined.
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