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Abstract

Quasi-interpolation is an important tool, used both in theory and in practice, for the approximation
of smooth functions from univariate or multivariate spaces which contain Πm = Πm(Rd ), the d-variate
polynomials of degree≤ m. In particular, the reproduction of Πm leads to an approximation order of m+1.
Prominent examples include Lagrange and Bernstein type approximations by polynomials, the orthogonal
projection onto Πm for some inner product, finite element methods of precision m, and multivariate spline
approximations based on macroelements or the translates of a single spline.

For such a quasi-interpolation operator L which reproduces Πm(Rd ) and any r ≥ 0, we give an explicit
construction of a quasi-interpolant Rr+m

m L = L+A which reproduces Πm+r , together with an integral error
formula which involves only the (m+r+1)th derivative of the function approximated. The operator Rm+r

m L
is defined on functions with r additional orders of smoothness than those on which L is defined. This very
general construction holds in all dimensions d . A number of representative examples are considered.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A quasi-interpolant for a space F of approximating functions is a linear map L onto F which
is bounded (in some relevant norm), local, and reproduces some polynomial space, see, e.g., [8].
When F is a univariate or multivariate space of polynomials or splines, quasi-interpolants provide
useful approximations of smooth functions. These have both practical and theoretical advantages,
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e.g., the reproduction of the space Πm = Πm(Rd) of d-variate polynomials of degree ≤ m
leads to an approximation order of m + 1. Some well known examples include Lagrange and
Bernstein type approximations by polynomials, the orthogonal projection onto Πm for some
inner product, finite element methods of precision m, and multivariate spline approximations
based on macroelements or the translates of a single spline.

The main result of this paper is the following. For any quasi-interpolant L which reproduces
Πm(Rd) and r ≥ 0, we explicitly construct a quasi-interpolant

Rr+m
m L = L + A

which reproduces Πm+r , together with an integral error formula E( f, x), which involves only
the (m + r + 1)th derivative of the function approximated. The quasi-interpolant Rm+r

m L allows
the order of approximation by L to be increased by r , with the trade off being that it is defined on
functions with r additional orders of smoothness than those on which L is defined. The operation
L 7→ Rm+r

m L has many nice properties, including being defined for all dimensions d, being
continuous (in an appropriate sense), and satisfying

Rm+r1+r2
m+r1

Rm+r1
m L = Rm+r1+r2

m L . (1.1)

The error formula for approximation by Rr+m
m can be interpreted as an asymptotic expansion

of the error in approximation by L , i.e.,

f (x)− L f (x) = A f (x)+ E( f, x).

By way of comparison, the Voronovskaya type asymptotic expansion for the Bernstein operator
(see [5, Section 1.6.1], or [6]) involves the derivatives of f at x , and hence the corresponding
function x 7→ A f (x) is not a polynomial, while in our case it is (see [4, Section 3.1]).

The paper is set out as follows. In the remainder of this section, we give precise definitions
and establish notation. Next we give a multivariate divided difference involving two points upon
which our results are based. The following section then uses this to prove the main result, and
gives some representative examples. The final section establishes the remarkable formula (1.1),
which requires some technical calculations.

1.1. Basic definitions and notation

The (directional) derivative of a function f in the direction v ∈ Rd at a point x ∈ Rd is
denoted by

Dv f (x) := lim
t→0

f (x + tv)− f (x)

t
.

We note that v 7→ Dv f (x) is linear. In particular, for the univariate case d = 1 one has

Dk
x−y f = (x − y)k f (k), x, y ∈ R, (1.2)

where f (k) denotes the k-th derivative of a univariate function, and Dk
v := (Dv)

k . Let D j := De j ,
where e j is the j-th standard basis vector in Rd . Then the α-th partial derivative Dα f of a
function f with a k-th derivative is

Dα f := Dα1
1 Dα2

2 · · · D
αn
n f, |α| := α1 + · · · + αn = k.

We call Dk f := (Dα f )|α|=k the k-th derivative of f .
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In this paper, a quasi-interpolant is defined to be a linear map L of the form

L f (x) =
n∑

i=1

λi ( f )φi (x), λi ( f ) :=
∫

qi (x, Dki f (x)) dµi (x), (1.3)

where qi is some continuous function of x and Dki f (x), and µi is some finite Borel measure on
Rd with compact support, which reproduces Πm(Rd), i.e., L f = f , ∀ f ∈ Πm . In practice, the
linear functionals f 7→ λi ( f ) can usually be taken to be a weighted integral over some simplex
(which includes point evaluation) of a partial derivative Dα f .

For a given linear map L of the form (1.3), we will refer to the (largest) natural domain on
which it is well defined as a space of sufficiently smooth functions. This common convention
simplifies the presentation, and should cause no confusion. For example, if the linear functionals
f 7→ λi ( f )were function evaluation at the points x1, . . . , xn , then a sufficiently smooth function
would need to be defined at least at these points, and one could conveniently take the space of
continuous functions.

2. A multivariate divided difference involving two points

For x, y ∈ Rd define∫
[x,...,x︸︷︷︸

m+1

,y,...,y︸︷︷︸
r+1

]

f :=
1

r !m!

∫ 1

0
f (t x + (1− t)y) tm(1− t)r dt. (2.1)

This is motivated (see [7,1]) by the following instance of the Hermite–Genocchi formula for the
divided difference of a univariate function f

[x, . . . , x︸ ︷︷ ︸
m+1

, y, . . . , y︸ ︷︷ ︸
r+1

] f =
∫
[x,...,x︸︷︷︸

m+1

,y,...,y︸︷︷︸
r+1

]

f (m+r+1). (2.2)

In the univariate case, (2.1) can be written∫
[x,...,x︸︷︷︸

m+1

,y,,...,y︸ ︷︷ ︸
r+1

]

f =
1

r !m!

1

(x − y)m+r+1

∫ x

y
(t − y)m(x − t)r f (t) dt. (2.3)

The following can be viewed as a “lifted” version (cf [9]) of the expansion of the divided
difference in (2.2) in terms of f (x), f ′(x), . . . , f (m)(x) and f (y), f ′(y), . . . , f (r)(y).

Lemma 2.4. If the restriction of f to the line segment between the points x and y in Rd is
Cm+r+1, then

r∑
j=0

(
r
j

)
(

m+r
j

) D j
x−y f (y)

j !
−

m∑
k=0

(m
k

)(m+r
k

) Dk
y−x f (x)

k!

=
r !m!

(m + r)!
(−1)m+1

∫
[x,...,x︸︷︷︸

m+1

,y,...,y︸︷︷︸
r+1

]

Dm+r+1
x−y f.
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Proof. The divided difference of a univariate function g at the points 0 repeated r + 1 times and
1 repeated m + 1 times can be expressed as

(−1)m+1
[0, . . . , 0︸ ︷︷ ︸

r+1

, 1, . . . , 1︸ ︷︷ ︸
m+1

]g =
r∑

j=0

(
m + r − j

r − j

)
g( j)(0)

j !

−

m∑
k=0

(
m + r − k

m − k

)
(−1)k

g(k)(1)
k!

=
(−1)m+1

m!r !

∫ 1

0
g(m+r+1)(t) tm(1− t)r dt.

The first expression follows from the divided difference identities, and the second is the well
known Peano kernel representation in terms of a B-spline with knots 0, . . . , 0, 1 . . . , 1 (which is
a Bernstein basis polynomial).

Suppose without loss of generality that x 6= y, and let g : [0, 1] → R be defined by

g(t) := f (t x + (1− t)y).

If the univariate function obtained by restricting f to the line segment from x to y is C j , then we
can differentiate g to obtain

g( j)(t) = D j
x−y f (t x + (1− t)y). (2.5)

Substituting (2.5) into the formulas for the divided difference gives

r∑
j=0

(
m + r − j

r − j

)
D j

x−y f (y)

j !
−

m∑
k=0

(
m + r − k

m − k

)
(−1)k

Dk
x−y f (x)

k!

=
(−1)m+1

r !m!

∫ 1

0
D(m+r+1)

x−y f (t x + (1− t)y) tm(1− t)r dt. (2.6)

Multiplying (2.6) by r !m!
(m+r)! , and using (−1)k Dk

x−y f = Dk
y−x f and (2.1) gives the desired

formula. �

For r = 0 the formula of Lemma 2.4 reduces to the integral form of the error at y in Taylor
interpolation of degree m to f at the point x , i.e.,

f (y)− Tm,x f (y) = Rm,x f (y),

where

Tm,x f (y) :=
m∑

k=0

Dk
y−x f (x)

k!
, Rm,x f (y) :=

∫
[x,...,x︸︷︷︸

m+1

,y]
Dm+1

y−x f. (2.7)

3. The main result

We now give the main result. The truncated power function (·)k+ is defined by

(x)k+ :=

{
xk, x ≥ 0;
0, x < 0.
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Theorem 3.1. Fix r ≥ 0. Let L be a quasi-interpolant which reproduces Πm(Rd). Then for all
sufficiently smooth functions f , we have

f (x)− L f (x)− A f (x) = E( f, x), (3.2)

where A f is the function in span{Πr ran(L)} given by

A f (x) :=
r∑

j=1

(
r
j

)
(

m+r
j

) 1
j !

(
L(D j

x−· f )
)
(x), (3.3)

and the error E( f, x) can be expressed as the following integral of Dm+r+1 f

E( f, x) :=
r !m!

(m + r)!
(−1)m L

∫
[x,...,x︸︷︷︸

m+1

, ·,...,·︸︷︷︸
r+1

]

Dm+r+1
x−· f

 (x)
=

1
(m + r)!

(−1)m
∫ 1

0
L
(

Dm+r+1
x−· f (t x + (1− t)·)

)
(x) tm(1− t)r dt. (3.4)

In the univariate case E( f, x) has the Peano kernel representation

E( f, x) =
∫ b

a
f (m+r+1)(t)K (t) dt, K (t) :=

(x − t)r

(m + r)!

(
(1− L)(· − t)m+

)
(x). (3.5)

Proof. By Lemma 2.4, for x fixed, and f sufficiently smooth, we may write

f + B f − P f = R f, (3.6)

where

B f :=
r∑

j=1

(
r
j

)
(

m+r
j

) D j
x−· f

j !
, P f :=

m∑
k=0

(m
k

)(m+r
k

) Dk
·−x f (x)

k!
,

and

R f :=
r !m!

(m + r)!
(−1)m+1

∫
[x,...,x︸︷︷︸

m+1

, ·,...,·︸︷︷︸
r+1

]

Dm+r+1
x−· f.

The key features of the decomposition (3.6) are:

(i) P maps into Πm .
(ii) (P f )(x) = f (x).

(iii) R f is an integral of the (m + r + 1)th derivative of f .

Apply −L to (3.6), and use (i), to get

−L f − L B f + P f = −L R f,

then evaluate at x , using (ii), to obtain

−L f (x)− L B f (x)+ f (x) = −L R f (x).
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This gives (3.2), where A f (x) := L B f (x) and E( f, x) := −L R f (x). The second formula for
E( f, x) given in (3.4) follows from the interchange of the integral given by (2.1) and the linear
functional λ : f 7→ (L f )(x) which is justified as per [10].

Using the multinomial and binomial expansions, the function D j
x−· f can be expanded in terms

of the partial derivatives Dα f , |α| = j , α ∈ Zd
+ as follows

D j
x−t f (t) =

∑
|α|= j

(
j

α

)
Dα f (t)(x − t)α =

∑
|α|= j

(
j

α

)
Dα f (t)

∑
β≤α

(
α

β

)
xβ(−t)α−β ,

where the above uses standard multi-index notation. Therefore(
L(D j

x−· f )
)
(x) =

∑
|α|= j

(
j

α

)∑
β≤α

(
α

β

)
xβ
(
L((−·)α−βDα f )

)
(x), (3.7)

and so A f ∈ span{Πr ran(L)}.
Finally, for the univariate case (d = 1) we compute the Peano kernel representation of E( f, x)

from (3.4). From (2.2), (2.3) and∫ x

y
g(t) dt =

∫ b

a

(
(x − t)0+ − (y − t)0+

)
g(t) dt, a ≤ x, y ≤ b (3.8)

we obtain∫
[x,...,x︸︷︷︸

m+1

,y,,...,y︸ ︷︷ ︸
r+1

]

Dm+r+1
x−y f =

(−1)m

r !m!

∫ b

a

×

(
(x − t)0+ − (y − t)0+

)
(y − t)m(x − t)r f (m+r+1)(t) dt.

Since (y − t)0+(y − t)m = (y − t)m+, substituting the above into (3.4) gives

E( f, x) =
1

(m + r)!
L

(∫ b

a

(
(x − t)0+(· − t)m − (· − t)m+

)
(x − t)r f (m+r+1)(t) dt

)
(x)

=
1

(m + r)!

∫ b

a
L
(
(x − t)0+(· − t)m − (· − t)m+

)
(x)(x − t)r f (m+r+1)(t) dt,

where the interchange of the integral and the linear functional λ : f 7→ (L f )(x) is justified as
per [10]. Hence the Peano kernel is given by

K (t) :=
(x − t)r

(m + r)!
L
(
(x − t)0+(· − t)m − (· − t)m+

)
(x).

This can be written in the form (3.5), by using the fact L reproduces (· − t)m , to calculate

L
(
(x − t)0+(· − t)m − (· − t)m+

)
(x) = (x − t)0+(x − t)m − L

(
(· − t)m+

)
(x)

= (x − t)m+ − L
(
(· − t)m+

)
(x)

= (1− L)
(
(· − t)m+

)
(x). �

Since the formula (3.4) for f − (L f + A f ) involves only Dm+r+1 f , it follows that

Rm+r
m L := L + A
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is a quasi-interpolant which reproduces Πm+r . With eα : x 7→ xα , (3.7) can be expanded

Rm+r
m L f =

r∑
j=0

(
r
j

)
(

m+r
j

) 1
j !

∑
|α|= j

(
j

α

)∑
β≤α

(
α

β

)
eβ(−1)α−βL(eα−βDα f )

=

∑
|α|≤r

(
r
|α|

)
(

m+r
|α|

) ∑
β≤α

(−1)α−β

β!(α − β)!
eβL(eα−βDα f ). (3.9)

Thus Rm+r
m L is defined on functions with r additional orders of smoothness than required for L ,

and the operation L 7→ Rm+r
m L is continuous (for an appropriate norm).

As in [4], the formula (3.2) can be interpreted as an asymptotic expansion of the error in
approximation by L , i.e.,

f (x)− L f (x) = A f (x)+ E( f, x).

Example 1. Han [4] considers linear operators on C[a, b] of the form

L f (x) :=
n∑

i=0

f (xi )φi (x), a = x0 < x1 < · · · < xn = b, φi ∈ C[a, b], (3.10)

which reproduce Πm . For this choice, (3.3) becomes

A f (x) =
r∑

j=1

(
r
j

)
(

m+r
j

) 1
j !

n∑
i=0

D j
x−xi

f (xi )φi (x)

=

n∑
i=0

φi (x)
r∑

j=1

(
r
j

)
(

m+r
j

) 1
j !
(x − xi )

j f ( j)(xi ).

Han denotes the operator L + A by Hnr . The error formula for Hnr given by (3.4) is

E( f, x) =
r !m!

(m + r)!
(−1)m

n∑
i=0

φi (x)
∫
[x,...,x︸︷︷︸

m+1

,xi ,...,xi︸ ︷︷ ︸
r+1

]

Dm+r+1
x−xi

f.

Using (1.2), (2.2) and (2.3), this can be written

E( f, x) =
1

(m + r)!

n∑
i=0

φi (x)
∫ x

xi

(xi − t)m(x − t)r f (m+r+1)(t) dt,

which is Theorem 1 of [4].

Example 2. Han’s results were extended from L of the form (3.10) to an arbitrary bounded linear
map on C[a, b] by [2]. The expansion for A is that of (3.3), i.e.,

A f (x) =
r∑

j=1

(
r
j

)
(

m+r
j

) (L

(
(x − ·) j

j !
f ( j)

))
(x). (3.11)
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By Theorem 3.1, this further extends to any linear map defined a space of sufficiently smooth
functions, e.g., on Ck

[a, b].
The Peano kernel representation (3.5) extends the corresponding results of [4, Theorem 2]

and [2]. It is interesting to observe that the Peano kernel of the error (3.4) given by the general
theory (cf [10]) has the form

K (t) =

(
(1− L − A)

(· − t)m+r
+

(m + r)!

)
(x).

The simplified form of K (t) given by (3.5) is convenient for determining the sign of the Peano
kernel from the error in approximation by L + A from that for L (cf [4, Theorem 3]).

Example 3. For r = 0, and d arbitrary, (3.4) gives the error formula of [11, Theorem 3.15], i.e.,

f (x)− L f (x) = −(LRm,x f )(x),

where Rm,x f is given by (2.7). This work also explores (for r = 0) other error formulas that can
be obtained by taking other maps P in the proof of Theorem 3.1 which satisfy (i), (ii), (iii), and
formulas for the derivatives of the error which can be applied to E( f, x).

Example 4. Let L be Lagrange interpolation at the points 0, 1 ∈ R, i.e.,

L f (x) = f (0)(1− x)+ f (1)x .

Since R1+r
1 L ⊂ Π1+r , it follows from (3.4) that R1+r

1 L is a linear projector onto Π1+r . The first
couple of quasi-interpolants with raised polynomial reproduction are given by

R2
1 L f (x) = L f (x)+

1
2
{ f ′(0)x(1− x)+ f ′(1)(x − 1)x},

R3
1 L f (x) = L f (x)+

2
3

x(x − 1){ f ′(1)− f ′(0)} +
1
6
{ f ′′(0)x2(1− x)+ f ′′(1)(x − 1)2x}.

The interpolation conditions for these are

R1
1 L : f (0), f (1)

R2
1 L : f (0), f (1), f ′(1)− f ′(0)

R3
1 L : f (0), f (1), 4 f ′(1)− 4 f ′(0)− f ′′(1), f ′′(1)− f ′′(0).

We observe there is no interpolation condition for R3
1 L which involves only f ′(0) and f ′(1).

Example 5. As Example 4 indicates, the operator Rm+r
m L may not preserve interpolation

conditions of L . However, if L interpolates at a point θ ∈ Rd , then so does Rm+r
m L , since

(Rm+r
m L f )(θ) =

r∑
j=0

(
r
j

)
(

m+r
j

) 1
j !

(
L(D j

θ−· f )
)
(θ) =

r∑
j=0

(
r
j

)
(

m+r
j

) 1
j !

D j
θ−θ f (θ) = f (θ).

Thus if L is Lagrange interpolation at set of points Θ ⊂ Rd , then Rm+r
m L interpolates at Θ

and matches various derivatives of up to order r at the points Θ , and so can be thought of as a
(multivariate) Hermite interpolation operator.
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Example 6. Let L be bilinear interpolation at the vertices of the square, i.e.,

L f (x, y) := f (0, 0)(1− x)(1− y)+ f (1, 0)x(1− y)+ f (0, 1)(1− x)y + f (1, 1)xy.

The quasi-interpolant R2
1 L is given by

R2
1 L f (x, y) = L f (x, y)+ (x D1 f (0, 0)+ y D2 f (0, 0)) (1− x)(1− y)

+ ((x − 1)D1 f (1, 0)+ y D2 f (1, 0)) x(1− y)

+ (x D1 f (0, 1)+ (y − 1)D2 f (0, 1)) (1− x)y

+ ((x − 1)D1 f (1, 1)+ (y − 1)D2 f (1, 1)) xy.

This is in fact a projector onto Π2 ⊕ span{x2 y, y2x}, with interpolation conditions f (0, 0),
f (1, 0), f (0, 1), f (1, 1), together with

D1 f (1, 0)− D1 f (0, 0), D1 f (1, 1)− D1 f (0, 1),

D2 f (0, 1)− D2 f (0, 0), D2 f (1, 1)− D2 f (1, 0).

Further examples of multivariate Bernstein and Lagrange operators (including sharp error
estimates) are explored in [3].

4. Successive increases of the polynomial reproduction

If the polynomial reproduction of a quasi-interpolant L is raised in successive stages, then it
is natural to ask whether the resulting quasi-interpolant is the same as that obtained by doing it
all together, i.e., whether or not

Rm+r1+r2
m+r1

Rm+r1
m L = Rm+r1+r2

m L . (4.1)

Let Q j be defined by Q j f (x) :=
(

L(D j
x−· f )

)
(x), then

Q j Qk f 6= Q j+k f,

in general, e.g., for L f (x) := f (0), take f (x) = x , for which Q1 Q1 f = f 6= 0 = Q2 f .
It is therefore somewhat remarkable, and consequently nontrivial to prove, that (4.1) holds.

To show this we need the following multivariate forms of the Chu–Vandermonde convolution.

Lemma 4.2. For multi-indices ξ, η, α with ξ − η ≥ 0,∑
β≤α

(
η

β

)(
ξ − η

α − β

)
=

(
ξ

α

)
, (4.3)

and for ξ a multi-index, j, ` ≥ 0 integers,∑
|α|= j

∑
|ε|=`

(
ξ

α

)(α
ε

)
=

(
|ξ |

j

)(
j

`

)
. (4.4)

Proof. By the Chu–Vandermonde convolution∑
β≤α

(
η

β

)(
ξ − η

α − β

)
=

∑
β1≤α1

· · ·

∑
βd≤αd

(
η1

β1

)(
ξ1 − η1

α1 − β1

)
· · ·

(
ηd

βd

)(
ξd − ηd

αd − βd

)
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=

∑
β1≤α1

(
η1

β1

)(
ξ1 − η1

α1 − β1

)
· · ·

∑
βd≤αd

(
ηd

βd

)(
ξd − ηd

αd − βd

)
=

(
ξ1

α1

)
· · ·

(
ξd

αd

)
=

(
ξ

α

)
,

which is (4.3). It follows by induction on d , and the Chu–Vandermonde convolution, that

∑
|α|= j

(
ξ

α

)
=

j∑
αd=0

(
ξd

αd

) ∑
α1+···+αd−1= j−αd

(
ξ1, . . . , ξd−1

α1, . . . , αd−1

)

=

j∑
αd=0

(
ξd

αd

)(
ξ1 + · · · + ξd−1

j − αd

)
=

(
ξ1 + · · · + ξd

j

)
=

(
|ξ |

j

)
.

Applying this twice gives∑
|α|= j

∑
|ε|=`

(
ξ

α

)(α
ε

)
=

∑
|α|= j

(
ξ

α

) ∑
|ε|=`

(α
ε

)
=

∑
|α|= j

(
ξ

α

)(
j

`

)
=

(
|ξ |

j

)(
|α|

j

)
,

and we obtain (4.4). �

Lemma 4.3. Let m, r1, r2 ≥ 0 and 0 ≤ i ≤ r1 + r2, then

∑
k, j,`≥0

j+k−`=i

( r2
k

)(m+r1+r2
k

)
(

r1
j

)
(

m+r1
j

) (−1)`
(

i

j

)(
j

`

)
=

( r1+r2
i

)(m+r1+r2
i

) .
Proof. We calculate

S(m, r1, r2, i) :=
∑

k, j,`≥0
j+k−`=i

( r2
k

)(m+r1+r2
k

)
(

r1
j

)
(

m+r1
j

) (−1)`
(

i

j

)(
j

`

)

=

∑
j≥0

(
r1
j

)
(

m+r1
j

) ( i

j

)∑
`≥0

(− j)`
`!

(
r2

`+i− j

)
(

m+r1+r2
`+i− j

)
=

∑
j≥0

(
r1
j

)
(

m+r1
j

) ( i

j

) (
r2

i− j

)
(

m+r1+r2
i− j

)∑
`≥0

(− j)`
`!

(i − j − r2)`

(i − j − m − r1 − r2)`

=

∑
j≥0

(−r1) j

(−m − r) j

(
i

j

) (
r2

i− j

)
(

m+r1+r2
i− j

) (−m − r1) j

(i − j − m − r1 − r2) j

=

∑
j≥0

(
i

j

) (
r2

i− j

)
(

m+r1+r2
i− j

) (−r1) j

(i − j − m − r1 − r2) j

=

∑
j≥0

(−1) j (−i) j

j !

( r2
i

)
(m + r1 + r2 − i + 1) j(m+r1+r2

i

)
(r2 − i + 1) j

(−r1) j

(i − j − m − r1 − r2) j
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=

( r2
i

)(m+r1+r2
i

) ∑
j

(−i) j (−r1) j

j !(r2 − i + 1) j

=

( r2
i

)(m+r1+r2
i

) (r1 + r2 − i + 1)i
(r2 − i + 1)i

=

( r1+r2
i

)(m+r1+r2
i

) ,
which uses the following identities

(−1)`
(

j

`

)
=
(− j)`
`!

,

(
a

`+ b

)
=

(a

b

)
(−1)`

(b − a)`
(b + 1)`

,∑
`≥0

(− j)`
`!

(a)`
(b)`
=
(b − a) j

(b) j
(Chu–Vandermonde).

Here (x)n := x(x + 1) · · · (x + n − 1) is the Pochhammer symbol. �

Theorem 4.6. The polynomial reproduction raising operator satisfies

Rm+r1+r2
m+r1

Rm+r1
m L = Rm+r1+r2

m L , m, r1, r2 ≥ 0.

Proof. From (3.9), we obtain

Rm+r1+r2
m+r1

Rm+r1
m L f =

∑
|γ |≤r2

(
r2
|γ |

)
(

m+r1+r2
|γ |

) ∑
δ≤γ

(−1)γ−δ

δ!(δ − γ )!
eδ(R

m+r1
m L)(eγ−δDγ f )

=

∑
|γ |≤r2

(
r2
|γ |

)
(

m+r1+r2
|γ |

)∑
δ≤γ

(−1)γ−δ

δ!(δ − γ )!
eδ
∑
|α|≤r1

(
r1
|α|

)
(

m+r1
|α|

)∑
β≤α

(−1)α−β

β!(α − β)!
eβ

× L(eα−βDα(eγ−δDγ f )).

Using the multivariate Leibniz formula

Dα(eγ−δDγ f ) =
∑
ε≤α

(α
ε

)
(Dα−εDγ f )(Dεeγ−δ)

=

∑
ε≤α

(α
ε

)(γ − δ
ε

)
ε!eγ−δ−εDα−ε+γ f,

and the linearity of L , this gives

Rm+r1+r2
m+r1

Rm+r1
m L f =

∑
|α|≤r1
|γ |≤r2

(
r1
|α|

)
(

m+r1
|α|

)
(

r2
|γ |

)
(

m+r1+r2
|γ |

) ∑
β≤α
δ≤γ

1
β!(α − β)!δ!(γ − δ)!

×

∑
ε≤α

(α
ε

)(γ − δ
ε

)
ε!(−1)ε(β + δ)!(α − ε + γ − δ − β)!

×
(−1)γ−δ+α−β−ε

(β + δ)!(α − ε + γ − δ − β)!
eβ+δL(eα−β+γ−δ−εDα−ε+γ f ).
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Thus

Rm+r1+r2
m+r1

Rm+r1
m L f =

∑
|ξ |≤r1+r2

∑
η≤ξ

c(η, ξ)
1

η!(ξ − η)!
eη(1−)ξ−ηL(eξ−ηDξ f ),

where

C(η, ξ) :=
∑
α,γ,ε

α+γ−ε=ξ

(
r1
|α|

)
(

m+r1
|α|

)
(

r2
|γ |

)
(

m+r1+r2
|γ |

) (α
ε

)
(−1)εε!

×

∑
β≤α
δ≤γ
β+δ=η

(β + δ)!(α − ε + γ − δ − β)!

β!(α − β)!δ!(γ − δ)!

(
γ − δ

ε

)
.

In view of (3.9), it therefore suffices to show that

C(η, ξ) =

(
r1+r2
|ξ |

)
(

m+r1+r2
|ξ |

) .
The terms in C(η, ξ) involving δ and β can be summed by (4.3)∑

β≤α
δ≤γ
β+δ=η

(β + δ)!(α − ε + γ − δ − β)!

β!(α − β)!δ!(γ − δ)!

(
γ − δ

ε

)
=

1
ε!

∑
β≤α
δ≤γ−ε
β+δ=η

(β + δ)!

β!δ!

(α − ε + γ − δ − β)!

(α − β)!(γ − δ − ε)!

=
1
ε!

∑
β≤α

(
η

β

)(
ξ − η

α − β

)
=

1
ε!

(
ξ

α

)
.

Thus, by (4.4) and Lemma 4.3,

C(η, ξ) =
∑
α,γ,ε

α+γ−ε=ξ

(
r1
|α|

)
(

m+r1
|α|

)
(

r2
|γ |

)
(

m+r1+r2
|γ |

) (α
ε

)
(−1)ε

(
ξ

α

)

=

∑
j,k,`≥0

j+k−`=|ξ |

( r2
k

)(m+r1+r2
k

)
(

r1
j

)
(

m+r1
j

) (−1)`
∑
|α|= j

(
ξ

α

) ∑
|ε|=`

(α
ε

)

=

∑
j,k,`≥0

j+k−`=|ξ |

( r2
k

)(m+r1+r2
k

)
(

r1
j

)
(

m+r1
j

) (−1)`
(
|ξ |

j

)(
j

`

)

=

(
r1+r2
|ξ |

)
(

m+r1+r2
|ξ |

) ,
which completes the proof. �
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