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Abstract

For over a decade, there has been intensive work on the numerical and analytic
construction of SICs (d2 equiangular lines in C

d) as an orbit of the Heisenberg
group. The Clifford group, which consists of the unitary matrices which normalise
the Heisenberg group, plays a key role in these constructions. All of the known
fiducial (generating) vectors for such SICs are eigenvectors of symplectic operations
in the Clifford group with canonical order 3. Here we describe the Clifford group
and the subgroup of symplectic operations in terms of a natural set of generators.
From this, we classify all its elements of canonical order three. In particular, we
show (contrary to prior claims) that there are symplectic operations of canonical
order 3 for d ≡ 6 mod 9. It is as yet unknown whether these give rise to SICs.

Key Words: finite tight frames, SIC (symmetric informationally complete positive
operator valued measure), ghost SIC, Heisenberg group, Clifford group, symplectic op-
eration, complex equiangular lines, quadratic Gauss sum,

AMS (MOS) Subject Classifications: primary 05B30, 94A12, 81P15, 81R05; sec-
ondary 42C15, 51F25, 65D30.
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1 Introduction

A set of d2 unit vectors in C
d (or the lines they determine) is said to be equiangular if

|〈vj, vk〉|2 =
1

d+ 1
, j 6= k.

In the quantum information theory community, the corresponding rank one orthogonal
projections Pj = vjv

∗
j are said to be a symmetric informationally complete positive

operator valued measure (SIC or SIC-POVM for short). The existence of a SIC
for every dimension d is known as Zauner’s conjecture or the SIC problem [FHS17].

Since Zauner’s thesis in 1999 (see [Zau10]), there has been constant progress on the
SIC problem. With one exception (the Hoggar lines in C

8), all the known SICs appear
as the orbit of a single (fiducial) vector/projection under the action of the Heisenberg
group (this is sometimes referred to as a strong form of Zauner’s conjecture). The
search for such a fiducial vector dramatically reduces the number of unknown variables
from the order of d3 to d, and has led to high accuracy numerical SICs [RBKSC04],
[SG10], [Sco17], which in turn has led to analytic SICs [ACFW18] i.e., a proof Zauner’s
conjecture for various dimensions d.

A key feature of these SIC fiducials is that they are mapped to each other by elements
of the Clifford group, i.e., the normaliser of the Heisenberg group in the unitary matrices
(see especially Appleby [App05]), and there is a fiducial (on a given Clifford group orbit)
which is an eigenvector of a “symplectic” operation in the Clifford group with canonical
order 3. This further reduces the number of unknowns in a SIC fiducial to the order of
d
3
. Here, we consider the structure of the Clifford group, and in particular, its elements

of order 3. The main points are:

• We determine the diagonal elements of the Clifford group, and thereby show that
it is generated by the Fourier matrix F and a diagonal matrix R (together with
generators of the Heisenberg group).

• The generator R above can be replaced by the Zauner matrix Z (of order 3).

• We show that the subgroup of symplectic operations is generated by F and R.

• We give an alternative to the Appleby indexing of the elements of the Clifford
group, which is 1–1, in all cases.

• We use our indexing to determine the Clifford operations of order 3, and in par-
ticular, those with Clifford trace −1 (canonical order 3). This includes a family
for d ≡ 6 mod 9, which was previously overlooked.

• We show that for d even there are nontrivial symplectic operations which are not
displacement free, i.e., belong to the Heisenberg group.

• We show explicitly how to write the permutation matrices as words in F and R.

The techniques involved include the calculation of certain quadratic Gauss sums, and the
analysis of certain binary quadratic forms over Zd. Along the way we prove Conjecture
4 of [Fla06].
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2 The Heisenberg group and Weyl–Heisenberg SICs

Throughout, let ω and µ be the primitive d–th and 2d–th roots of unity

ω := e
2πi
d , µ := e

2πi
2d ,

and take the indices for elements of C
d and C

d×d from Zd = {0, 1, . . . , d − 1}. Let
S ∈ C

d×d be the cyclic shift matrix, and Ω ∈ C
d×d be the modulation matrix given

by
(S)jk := δj,k+1, (Ω)jk := ωjδj,k. (2.1)

These have order d, and satisfy the commutativity relation

ΩkSj = ωjkSjΩk. (2.2)

Thus the group generated by the unitary matrices S and Ω is

H := 〈S,Ω〉 = {ωrSjΩk : r, j, k ∈ Zd}. (2.3)

This is called the Heisenberg group1 (for Zd), as is the group

Ĥ := {ch : c ∈ T, h ∈ H} ⊂ U(Cd), T := {c ∈ C : |c| = 1}. (2.4)

The map (j, k) 7→ SjΩk is a faithful irreducible projective representation of Zd × Zd. In
particular, the unitary action of H on C

d is irreducible, and so (hv)h∈H and (SjΩkv)j,k∈Zd

are tight frames for Cd for any v 6= 0 (see [VW05]), i.e.,

f =
1

d

∑

(j,k)∈Z2
d

〈f, SjΩkv〉SjΩkv, ∀f ∈ C
d.

Every SIC is a tight frame. A SIC (equiangular tight frame of d2 vectors for Cd) is said
to be a Weyl-Heisenberg SIC for Cd if (up to projective unitary equivalence) it has
the form

Φv := (SjΩkv)j,k∈Zd
,

where the unit vector v ∈ C
d (or the projection Π = vv∗) is called a fiducial.

A Weyl-Heisenberg SIC for Cd is generated from a single fiducial vector v by applying
S (translation) and Ω (frequency shift). Thus, it is a discrete analogue of a Gabor
system (Weyl–Heisenberg frame) with good time–frequency localisation. In this analogy
the fiducial vector v corresponds to the mother wavelet. From now on, we consider only
Weyl-Heisenberg SICs (which we refer to as SICs).

3 The Clifford group

Let [U ] := {cU : c ∈ T} = {eitU : t ∈ R}, so that [I] is the unitary scalar matrices.
The normaliser of the Heisenberg group Ĥ in the group of unitary matrices is called

1It is also known as the generalised Pauli or Weyl–Heisenberg group.
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the Clifford group, and it is denoted by C(d). The projective Clifford group is
PC(d) := C(d)/[I] (its elements are called Clifford operations).

There is a natural action of C(d) on the SIC fiducial vectors v, and of PC(d) on SIC
fiducial projectors Π = vv∗ given by

a · v := av, [a] · Π := (av)(av)∗ = aΠa−1.

This maps SICs to SICs, since if [a] ∈ PC(d) and v is a SIC fiducial vector, then

|〈Sj1Ωk1av, Sj2Ωk2av〉|2 = |〈a−1Sj1−j2Ωk1−k2av, v〉|2 = 1

d+ 1
, (j1, k1) 6= (j2, k2),

because a−1SjΩka, (j, k) 6= (0, 0), is a nonscalar element of Ĥ.
Since H ⊂ C(d), the action of C(d) on C

d is irreducible, and its centre is [I]. Since

S∗ = ST = S−1, Ω∗ = Ω−1, ΩT = Ω, (3.5)

the Heisenberg group and the Clifford group are closed under taking the transpose
and Hermitian transpose, and hence also entrywise conjugation A = (A∗)T . Therefore
entrywise conjugation maps a given Heisenberg SIC fiducial to another. The group
generated by entrywise conjugation and C(d) is the extended Clifford group EC(d),
and the extended projective Clifford group is PEC(d) := EC(d)/[I]. These map
SICs to SICs. The counting of (Weyl-Heisenberg) SICs is usually done up to projective
unitary equivalence and the extended Clifford orbit it lies on (see [Wal18]). In addition
to (entrywise) complex conjugation, certain Galois automorphisms of the SIC field (the
field generated by µ and entries of a fiducial projector Π) have been shown to map SICs
to SICs. Counting SICs up to the orbit under the extension of the Clifford group by
these (pointwise) automorphisms gives a so called multiplet (union of extended Clifford
orbits) [ACFW18].

Elements of the Clifford group include the Fourier matrix F , the diagonal matrix
R, and the permutation matrices Pσ, σ ∈ Z

∗
d (the units modulo d), which are given by

(F )jk :=
1√
d
ωjk, (3.6)

(R)jk := µj(j+d)δjk, (3.7)

(Pσ)jk := δj,σk, σ ∈ Z
∗
d. (3.8)

We observe that R is well defined, i.e., the value of j(j + d) depends only on the integer
j mod d. The entry µj(j+d) has many alternative descriptions, e.g.,

µj(j+d) = µj
2

(−1)j = µj
2

(−1)j
2

= (−µ)j2 = µ(d+1)j2 .

Indeed, elementary computations (see [Wal18]) give:

Lemma 3.1 The unitary matrices F,R, Pa belong to the Clifford group. Indeed

F (SjΩk)F−1 = ω−jkS−kΩj, (3.9)

R(SjΩk)R−1 = µj(j+d)SjΩj+k, (3.10)

Pσ(S
jΩk)P−1

σ = SσjΩσ−1k, (3.11)

where σ−1 is the multiplicative inverse of σ ∈ Z
∗
d.
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The appearance of R can be explained (it was first observed by [BW07] for d odd).
It appears in a direct search for diagonal matrices in the normaliser of Ĥ.

Proposition 3.1 The group of diagonal unitary matrices in C(d) is generated by the
unitary scalar matrices, Ω, and the matrix R.

Proof: Suppose that Λ = diag(λj) normalises Ĥ, and λd := λ0. Then

ΛSΛ−1 =











0 0 · · · λd
λd−1

λ1
λ0

0 · · · 0

0 λ2
λ1

· · · 0
...

...











= cSΩk, i.e.,
λj+1

λj
= c ωjk, ∀j,

where c ∈ C, k ∈ Z. Solving this recurrence gives

λj = λ0c
jω

1

2
j(j−1)k = λ0c

jµj(j−1)k = λ0µ
j(j+d)k(cµ−k(d+1))j.

Since λd = λ0, this gives

(cµ−k(d+1))d = (cµ−k(d+1))0 = 1 =⇒ cµ−k(d+1) = ωm,

and so Λ = λ0R
kΩm.

We will see (Theorem 4.1) that R along with F and H generate the Clifford group.
To this end, we now consider the structure of C(d), by using a variation of the arguments
of [App05]. Let

U(j,k) := SjΩk, (j, k) ∈ Z
2
d. (3.12)

If a ∈ C(d), then
aUλa

−1 = za(λ)Uψa(λ), ∀λ ∈ Z
2
d, (3.13)

which defines functions ψa : Z
2
d → Z

2
d and za : Z

2
d → T, since no Uλ is a scalar multiple

of another. For example, (3.9) and (3.10) give

ψF

(

j
k

)

=

(

−k
j

)

, zF

(

j
k

)

= ω−jk, ψR

(

j
k

)

=

(

j
j + k

)

, zR

(

j
k

)

= µj(j+d).

We now show the elements of the Clifford group factored by Ĥ can be indexed by the
elements of SL2(Zd) For a 2× 2 matrix A, we define a symmetric matrix σA by

σA :=

(

αγ βγ
βγ βδ

)

, A =

(

α β
γ δ

)

. (3.14)

The map A 7→ σA is not 1–1, e.g., σA = 0 for all diagonal matrices.

Lemma 3.2 Let ψa and za be given by (3.13). Then the map

ψ : C(d) → SL2(Zd) : a 7→ ψa (3.15)

is a group homomorphism with kernel Ĥ, and za satisfies

za(p+ q) = ωp
T σAqza(p)za(q), p, q ∈ Z

2
d (3.16)

where A = ψa and σA is given by (3.14).
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Proof: By (2.2), we have UpUq = ωp2q1Up+q. and so

ωp2q1(aUp+qa
−1) = aUpUqa

−1 = (aUpa
−1)(aUqa

−1),

which gives

ωp2q1za(p+ q)Uψa(p+q) = za(p)Uψa(p)za(q)Uψa(q)

= za(p)za(q)ω
ψa(p)2ψa(q)1Uψa(p)+ψa(q).

and hence
ψa(p+ q) = ψa(p) + ψa(q), (3.17)

ωp2q1za(p+ q) = za(p)za(q)ω
ψa(p)2ψa(q)1 . (3.18)

For p = p1e1 + p2e2 ∈ Z
2
d, from (3.17) we obtain

ψa(p) = p1ψa(e1) + p2ψa(e2) = [ψa(e1), ψa(e2)]p,

i.e., ψa can be represented by the 2× 2 matrix [ψa(e1), ψa(e2)].
Let [p′, q′] = [ψa(p), ψa(q)] = ψ[p, q], so that det([p′, q′]) = det(ψa) det([p, q]). Since

the quotient za(p)za(q)/za(p+ q) is symmetric in p and q, (3.18) gives

ωp2q1−p
′

2
q′
1 = ωq2p1−q

′

2
p′
1 =⇒ p′1q

′
2 − q′1p

′
2 = p1q2 − q1p2

=⇒ det([p′, q′]) = det([p, q]),

=⇒ det(ψa) = 1, (3.19)

i.e., ψa ∈ SL2(Zd). Using this, (3.18) can be written as (3.16).
Since (ab)Uλ(ab)

−1 = a(bUλb
−1)a−1, we have

zab(λ)Uψab(λ) = a(zb(λ)Uψb(λ))a
−1 = zb(λ)za(ψb(λ))Uψa(ψb(λ)), (3.20)

so that ψab(λ) = ψa(ψb(λ)), i.e., a 7→ ψa is a homomorphism.
We now determine the kernel of ψ. By (2.2), Ĥ ⊂ kerψ. Suppose ψa = I, so that

aSa−1 = za(1, 0)S and aΩa−1 = za(0, 1)Ω. Since S
d = Ωd = I, this implies that za(1, 0)

and za(0, 1) are d–th roots of unity, say

aSa−1 = ωαS, aΩa−1 = ωβΩ. (3.21)

If a ∈ Ĥ, then (3.21) implies that a is a scalar multiple of S−βΩα. Hence, we consider
the unitary matrix b = (S−βΩα)−1a. By (3.21) and repeated application of (2.2), we
have that

b(SjΩk)b−1 = Ω−αSβ(aSa−1)j(aΩa−1)kS−βΩα

= Ω−αSβ(ωαS)j(ωβΩ)kS−βΩα = SjΩk.

Since b commutes with the basis (SjΩk)j,k∈Zd
for C

d×d, Schur’s Lemma implies that b

must be a (unit) scalar matrix cI, and hence a = cS−βΩα ∈ Ĥ.
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The order of SL2(Zd) is known to be (see [Gun62] Theorem 3, Chapter I)

| SL2(Zd)| = d3
∏

p|d

(

1− 1

p2

)

, (p the prime factors of d).

Hence, by Lemma 3.2, the number of Clifford operations is

|PC(d)| =
∣

∣

∣

C(d)

[I]

∣

∣

∣ =
∣

∣

∣

Ĥ

[I]

∣

∣

∣

∣

∣

∣

C(d)

Ĥ

∣

∣

∣ = d2| SL2(Zd)| = d5
∏

p|d

(

1− 1

p2

)

.

Example 3.1 From Lemma 3.1, we have the following ψa ∈ SL2(Zd),

ψF =

(

0 −1
1 0

)

, ψR =

(

1 0
1 1

)

, ψPσ
=

(

σ−1 0
0 σ

)

. (3.22)

Example 3.2 If h = cSaΩb ∈ Ĥ, then ψh = I and zh(j, k) = ωbj−ak (a character),
since (2.2) gives

hU(j,k)h
−1 = SaΩbSjΩkΩ−bS−a = Sa(ωbjSjΩb)Ωk−bS−a = ωbj−akSjΩk = ωjb−akU(j,k).

A function za satisfying (3.16) is called a second degree character of Z2
n associated

to the bicharacter
B : Z2

n × Z
2
n → T, B(p, q) := ωp

T σAq,

given by σA (see [Rei89]). A continuous map B : G × G → T is a bicharacter of a
locally compact abelian group G if for any fixed choice of one argument the resulting
function G → T is a character. All the second degree characters associated to a given
bicharacter can be obtained from one by multiplying it by the characters.

Using a variation of the above argument, in [FHK+08] it is shown that if

Ĥ → Ĥ : cUλ 7→ cz(λ)UAλ, c ∈ T, z : Zd → T, A ∈ GL2(Zd), (3.23)

is an automorphism of Ĥ, then A ∈ SL2(Zd) and z is a second degree character (given by
σA). For a ∈ C(d), the map cUλ 7→ a(cUλ)a

−1 = cza(λ)UAλ, A = ψa, is an automorphism
of Ĥ. The elements of C(d) are termed metaplectic operations, and they are said to
“intertwine the automorphisms of Ĥ”.

4 Generators for the Clifford group

It turns out that the matrices ψF and ψR of (3.22) generate SL2(Zd), and hence we
obtain the following generators for the Clifford group.

Theorem 4.1 (Clifford group generators) The homomorphism

ψ : C(d) → SL2(Zd) : a 7→ ψa

maps F and R to generators for SL2(Zd), and hence is onto. Therefore C(d) is generated
by the unitary scalar matrices, and S, Ω, F , R.
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Proof: By Lemma 3.2, the kernel of a 7→ ψa is Ĥ. Since Ĥ is generated by the
unitary scalar matrices and S,Ω, it suffices to show that SL2(Zd) is generated by

ψF =

(

0 −1
1 0

)

, ψR =

(

1 0
1 1

)

. (4.24)

It is well known that these matrices generate SL2(Z). Since the map of taking the entries
of A ∈ SL2(Z) modulo d is a homomorphism onto SL2(Zd), they generate SL2(Zd).

We call the subgroup of the Clifford group C(d) generated by F,R (and the scalars)
the symplectic unitaries

CSp(d) := 〈F,R, [I]〉,
and the elements of CSp(d)/[I] the symplectic operations. We will show that this
is equivalent to the definition of [AYAZ13] that an element of the Clifford group is
a symplectic unitary if it has an Appleby index of the form [A, 0]. Elements of the
Heisenberg group Ĥ (or Ĥ/[I]) are referred to as Heisenberg operations, (Weyl)
displacements or time–frequency shifts. It follows from Theorem 4.1, that

Every Clifford operation is the product of a symplectic operation and a displacement.

For d even, an elementary calculation gives

Ω
d
2 = Rd, S

d
2 = F−1Ω

d
2F = F−1RdF, S

d
2Ω

d
2 = F−1RdFRd. (4.25)

Thus there are nontrivial symplectic operations which are also displacements.2 It turns
out that (4.25) are the only cases (see Corollary 7.1). This makes the description of the
Clifford group more technical for d even (here R has order 2d).

5 Indexing the Clifford operations

We now show each Clifford operation is uniquely determined by the pair (ψa, za). Define
the semidirect product SL2(Zd)⋉ T

Z2
d via the multiplication

(A, zA)(B, zB) := (AB, (zA ◦B)zB), (5.26)

where functions Z2
d → T are multiplied pointwise.

Corollary 5.1 With the multiplication (5.26), the map

C(d) → SL2(Zd)⋉ T
Z2
d : a 7→ (ψa, za) (5.27)

is a homomorphism with kernel [I]. Thus every Clifford operation [a] ∈ C(d)/[I] has a
unique index (ψa, za), and these satisfy

ψab = ψaψb, zab = (za ◦ ψb)zb, (5.28)

ψa∗ = ψa−1 = ψ−1
a , za∗ = za−1 = za ◦ ψa∗ , (5.29)

ψa = JψaJ, za = za ◦ J, J :=

(

1 0
0 −1

)

. (5.30)

Further, if ψa = ψb, then za/zb is a character.

2Subgroups of the symplectic unitaries are sometimes said to be displacement free.
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Proof: It is easy to check SL2(Zd) ⋉ T
Z2
d is a group with the multiplication (5.26),

identity (I, 1), and inverse (A, zA)
−1 = (A−1, z−1

A ◦ A−1). By (3.20), we have

ψab = ψaψb, zab = (za ◦ ψb)zb,

i.e., the map a 7→ (ψa, za) is a homomorphism. Thus (5.28) holds, as does (5.29) by the
calculation (ψa−1 , za−1) = (ψa, za)

−1 = (ψ−1
a , z−1

a ◦ψ−1
a ). and (5.30), since Uλ = UJλ gives

aUλa
−1 = aUJλa−1 = za(λ)UAJλ = za(λ)UJAJλ.

Now suppose that a is in the kernel, i.e., ψa = I, za = 1. By Lemma 3.2, we have
a = cSjΩk ∈ Ĥ. Using (2.2), we therefore obtain (see Example 3.2)

aSp1Ωp2a−1 = SjΩkSp1Ωp2Ω−kS−j = ωkp1−jp2Sp1Ωp2 ,

so that za(p) = ωkp1−jp2 = 1, ∀p ∈ Z
2
d. Thus j = k = 0 and a = cI ∈ [I], as supposed.

For ψa = ψb = A, it follows from (3.16) or (3.18) that za/zb is a character.

Example 5.1 For a = RF , from (3.22) and Lemma 3.1, we calculate

ψRF = ψRψF =

(

1 0
1 1

)(

0 −1
1 0

)

=

(

0 −1
1 −1

)

,

zRF = (zR ◦ ψF )zF =⇒ zRF (j, k) = µ(−k)(−k+d)ω−jk = µk(k+d)+2jk.

We call the subgroup of SL2(Zd)⋉ T
Z2
d given by

Ind(d) := {(ψa, za) : a ∈ C(d)}

the index group of the Clifford operations, and the index map is the isomorphism

C(d)/[I] → Ind(d) : [a] 7→ (ψa, za). (5.31)

In view of the multiplication

zah = (za ◦ ψh)zh = zazh, h ∈ Ĥ,

Example 3.2 (that all characters of Z2
d have the form zh, h ∈ Ĥ), and the fact that

a 7→ ψa is onto SL2(Zd) (Theorem 4.1), the elements of Ind(d) consist of all pairs (A, z),
where A ∈ SL2(Zd) and z is a second degree character given by σA. In other words:

Corollary 5.2 The automorphisms of the Heisenberg group of the form (3.23) are given
by conjugation by Clifford operations.

Proof: All the possible automorphisms of this type have z a second degree character
given by σA, where A ∈ SL2(Zd), i.e., (A, z) ∈ Ind(d). If a is a Clifford operation with
this index, then conjugation by a gives such an automorphism of Ĥ.
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6 Appleby indexing

If d is odd, then −µ = ω
d+1

2 , and it follows from (3.16) that

za(p) = (−µ)pT σAp ẑa(p), ∀p ∈ Z
2
d, (6.32)

where A = ψa, and ẑa is a character. If d is even, then the factor (−µ)pT σAp above
is not well defined. To obtain an analogue of (6.32), it is necessary to “lift” A to a
B ∈ SL2(Z

2
2d). This “doubling” works, but the corresponding (Appleby) index [B,χ]

is not unique. We now give the details as described by [App05], using Corollary 5.1 to
streamline the proof.

Define displacement operators by

D̂p := (−µ)p1p2Sp1Ωp2 , p ∈ Z
2. (6.33)

These satisfy det(D̂p) = 1,

D̂−1
p = D̂−p, D̂pD̂q = (−µ)〈〈p,q〉〉D̂p+q = ω〈〈p,q〉〉D̂qD̂p, (6.34)

and

D̂p+dq =

{

D̂p, d odd;

(−1)〈〈p,q〉〉D̂p, d even,
(6.35)

where 〈〈·, ·〉〉 is the symplectic form

〈〈p, q〉〉 := p2q1 − p1q2 = pT
(

0 −1
1 0

)

q,

which has the property

〈〈Ap,Aq〉〉 = det(A)〈〈p, q〉〉, ∀p, q. (6.36)

It follows from (6.35) that D̂p depends only on p mod d′, where

d′ :=

{

d, d odd;

2d, d even.

The appearance of d′ in the description of C(d) is due to the fact that R has order d′.
The overlaps χΠ

p := trace(ΠD̂p), p ∈ Z
2
d′ , for a SIC fiducial Π = vv∗ play a crucial role

in describing the Galois symmetries of a SIC.
We now generalise (6.32), to show that for each [a] ∈ C(d)/[I] there exists a B ∈

SL2(Zd′) and χ ∈ Z
2
d, such that

aD̂pa
−1 = ω〈〈χ,Bp〉〉D̂Bp, ∀p ∈ Z

2
d′ .

Here 〈〈χ,Bp〉〉 is interpreted as 〈〈χ,Ap〉〉, A := B mod d, when d is even. We will write
the pair (B,χ) as [B,χ], and call it an Appleby index.
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Theorem 6.1 Define the semidirect product SL2(Zd′)⋉ Z
2
d via the multiplication

[B1, χ1][B2, χ2] := [B1B2, χ1 + A1χ2], A1 := B1 mod d. (6.37)

Then there is a unique surjective homomorphism onto the Clifford operations

f : SL2(Zd′)⋉ Z
2
d → C(d)/[I], (6.38)

with the property that for [a] = f([B,χ])

aD̂pa
−1 = ω〈〈χ,Bp〉〉D̂Bp, ∀p ∈ Z

2
d′ , (6.39)

i.e.,
A := ψa = B mod d, za(p) = ω〈〈χ,Ap〉〉(−µ)pT σBp, ∀p ∈ Z

2
d. (6.40)

This f is an isomorphism for d odd (i.e., d′ = d), and for d even it has kernel

ker f =
{[

(

1 + rd sd
td 1 + rd

)

,

(

sd
2

td
2

)

]

: r, s, t ∈ {0, 1}
}

. (6.41)

Proof: If a ∈ C(d) satisfies (6.39), then (6.40) follows. Here pTσBp is calculated
modulo 2d, and its value only depends on p mod d. In view of the isomorphism (5.31),
f is uniquely defined, and it suffices to show that

θ : SL2(Zd′)⋉ Z
2
d → Ind(d) : [B,χ] 7→ (A, za),

given by (6.40) is a surjective homomorphism.
We first show it is a homomorphism (as a map to SL2(Zd)⋉ T

Z2
d). Now

θ
(

[B1, χ1][B2, χ2]
)

= θ
(

[B1B2, χ1 + A1χ2]
)

= (A1A2, za1a2),

Aj := Bj mod d, za1a2(p) := ω〈〈χ1+A1χ2,A1A2p〉〉(−µ)pT σB1B2
p,

and
θ
(

[B1, χ1]
)

θ
(

[B2, χ2]
)

= (A1, za1)(A2, za2) = (A1A2, (za1 ◦ A2)za2),
(

(za1 ◦ A2)za2
)

(p) = ω〈〈χ1,A1A2p〉〉(−µ)(B2p)T σB1
B2pω〈〈χ2,A2p〉〉(−µ)pT σB2

p,

so that θ is a homomorphism provided that

〈〈χ1 + A1χ2, A1A2p〉〉 = 〈〈χ1, A1A2p〉〉+ 〈〈χ2, A2p〉〉,

pTσB1B2
p = (B2p)

TσB1
B2p+ pTσB2

p.

The first follows since (6.36) gives

〈〈χ2, A2p〉〉 = 〈〈A1χ2, A1A2p〉〉,

and the second follows by the identity

σB1B2
= BT

2 σB1
B2 + det(B1)σB2

.
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We calculate (as in Examples 3.1 and 3.2)

θ
(

[

(

0 −1
1 0

)

, 0]
)

= (ψF , zF ), θ
(

[

(

1 0
1 1

)

, 0]
)

= (ψR, zR), (6.42)

and

θ
(

[I,

(

α
β

)

]
)

= (zSαΩβ , ψSαΩβ), (6.43)

so that θ maps generators for SL2(Zd′) ⋉ Z
2
d to generators for Ind(d), and hence is a

surjective homomorphism.
Finally, we determine ker f = ker θ. By (6.40), we have [B,χ] ∈ ker f if

A := ψa = B mod d = I, za(p) = ω〈〈χ,Ap〉〉(−µ)pT σBp = 1, ∀p.
For d odd, d′ = d, and so B = I and za(p) = ωχ2p1−χ1p2 = 1, ∀p. Thus [B,χ] = [I, 0],
and f is an isomorphism. For d even, B mod d = I gives

B =

(

1 + rd sd
td 1 + ud

)

, r, s, t, u ∈ {0, 1},

and the condition det(B) = 1 gives

det(B) = (1 + rd)(1 + ud)− std2 ≡ 1 + (r + u)d mod d′ =⇒ r = u,

so that

B =

(

1 + rd sd
td 1 + rd

)

, σB =

(

td(1 + rd) tdsd
sdtd sd(1 + rd)

)

≡
(

td 0
0 sd

)

mod d′.

Hence za(p) = ω〈〈χ,p〉〉(−µ)pT σBp = ωχ2p1−χ1p2(−µ)tdp21+sdp22 = 1, which gives

ωχ1p2−χ2p1 = (−1)tp
2
1
+sp2

2 = (−1)tp1+sp2ω
d
2
(tp1+sp2), ∀p.

Thus, χ1 =
d
2
s, χ2 = −d

2
t = d

2
t, and we obtain (6.41).

Each Clifford operation has an Appleby index [B,χ] ∈ SL2(Zd′)× Z
2
d.

• This is unique for d odd.

• There are eight choices (each differing by an element of ker f) for d even.

• Appleby indices for F , R, SαΩβ are given by (6.42) and (6.43).

Example 6.1 By (3.11), the index for the permutation matrix Pσ, σ ∈ Z
∗
d, is

(ψPσ
, zPσ

) = (Pσ, 1),

and it has an Appleby index [Pσ, 0], where σ ∈ Zd′, i.e., σ
−1 is calculated modulo 2d when

d is even (see Proposition 8.1). For example, when d = 8 (d′ = 16), the permutation

matrix P3 =

(

3 0
0 3

)

has eight Appleby indices [B,χ]

[

(

1 + 8r 8s
8t 1 + 8r

)

,

(

4s
4t

)

][

(

3 0
0 11

)

, 0
]

=
[

(

3 + 8r 8s
8t 11 + 8r

)

,

(

4s
4t

)

]

, r, s, t ∈ {0, 1}.

Two of these have χ = 0 (and B diagonal).
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a ψa za(j, k) [B,χ]

SαΩβ I ωβj−αk [I,

(

α
β

)

]

F

(

0 −1
1 0

)

ω−jk [

(

0 −1
1 0

)

, 0]

R

(

1 0
1 1

)

µj(j+d) [

(

1 0
1 1

)

, 0]

Pσ

(

σ 0
0 σ−1

)

1 [

(

σ 0
0 σ−1

)

, 0]

Table 1: The index (ψa, za) and an Appleby index [B,χ] for various Clifford operations.

7 Symplectic unitaries

By (4.25), for d even, there are nontrivial symplectic unitaries (those generated by F , R
and the scalars) which are in the Heisenberg group. We now characterise these.

Let md be the surjective homomorphism

md : SL2(Zd′) → SL2(Zd) : B 7→ A := B (mod d),

which is the identity for d odd, and for d even has kernel (see Theorem 6.1)

K :=
{

(

1 + rd sd
td 1 + rd

)

: r, s, t ∈ {0, 1}
}

, |K| = 8. (7.44)

Corollary 7.1 A matrix a ∈ C(d) is a symplectic unitary if and only if it has an Appleby
index of the form [B, 0]. Indeed, the map

α : SL2(Zd′) → CSp(d)/[I] : B 7→ f([B, 0]) (7.45)

is a surjective homomorphism, which is an isomorphism for d odd. When d is even,
kerα = {I, (d + 1)I}, and hence the only nontrivial Heisenberg operations which are
symplectic are given by

S
d
2 , Ω

d
2 , S

d
2Ω

d
2 (d even).

Proof: By (6.37), we have

[B1B2, 0] = [B1, 0][B2, 0],

and so α is a homomorphism. It is onto, since by (6.42), its image contains

α
(

(

0 −1
1 0

)

)

= [F ], α
(

(

1 0
1 1

)

)

= [R], (7.46)

which are generators for CSp(d)/[I]. Since ψ has kernel Ĥ (Lemma 3.2), it induces a

well defined homomorphism ψ̂ : CSp(d)/[I] → SL2(Zd), with

ψ̂([F ]) = ψ(F ) =

(

0 −1
1 0

)

, ψ̂([R]) = ψ(R) =

(

1 0
1 1

)

. (7.47)
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By (7.46) and (7.47), we conclude that

md = ψ̂ ◦ α,
since it holds for the generators (4.24) of SL2(Zd′). The kernel of ψ̂ consists of the
symplectic operations which are also Heisenberg operations, i.e.,

ker ψ̂ = CSp(d)/[I] ∩ Ĥ/[I].
For d odd, md is an isomorphism, so that ker ψ̂ = {[I]}. For d even,

md = ψ̂ ◦ α =⇒ | ker ψ̂| | kerα| = | kermd| = |K| = 8,

and (6.35) gives

D̂(d+1)Ip = (−1)〈〈p,p〉〉D̂p = D̂Ip =⇒ (d+ 1)I ∈ kerα =⇒ | kerα| ≥ 2.

In view of (4.25), we must have

kerα = {I, (d+ 1)I}, ker ψ̂ = {[I], [S d
2 ], [Ω

d
2 ], [S

d
2Ω

d
2 ]},

as claimed.

Thus, each symplectic operation [a] has an Appleby index of the form [B, 0], and

• This is unique for d odd.

• There are two choices ([B, 0] and [(d+ 1)B, 0]) for d even.

We call B ∈ SL2(Zd′) a symplectic index for [a] ∈ CSp(d)/[I].
The following commutative diagram summarises Corollary 7.1.

SL2(Zd′)
α

✲✲ CSp(d)/[I]

SL2(Zd)

ψ̂

❄
❄

m
d

✲✲

(7.48)

In particular, we have the following 1–1 indexing of the symplectic operations

CSp(d)

[I]
∼=

{

SL2(Zd), d odd;
SL2(Z2d)
〈(d+1)I〉

, d even.

The matrices in SL2(Zd′) are said to be symplectic. If a is a symplectic unitary, with
symplectic index B, then (6.39) gives

aD̂pa
−1 = D̂Bp, ∀p(∈ Zd′),

i.e., the conjugation action of a on the displacement D̂p is given by multiplication of p
by the symplectic matrix B. This is the origin of the term symplectic unitary.

The group CSp(d) of symplectic unitaries is not irreducible for d > 2, since its centre
contains the nondiagonal matrix

P−1 = F 2.

Calculations in CSp(d)/[I] can be done in the finite group generated by F and R.
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8 Permutation matrices

Here we show that the permutation matrices are a subgroup of the symplectic unitaries
(as we define them), i.e., each permutation matrix is word in F , R and the scalar
matrices.

Proposition 8.1 The permutation matrices Pb, b ∈ Z
∗
d, are symplectic. Indeed, with

1 ≤ b < d, we have
Pb = (cb,d)

−1Rb−1

FRbFRb−1

F, (8.49)

where b−1 is the inverse of b in Z
∗
d′, and cb,d = cb−1,d is the Gauss sum

cb,d :=
1√
d

∑

j∈Zd

µbj(j+d) =
1

2
√
d
G
(

b(d+ 1), 2d
)

.

Proof: Let B =

(

b 0
0 b−1

)

∈ SL2(Zd′). Then σB = 0, and so (3.11) gives

A := ψPb
= B mod d, zPb

(p) = 1 = ω〈〈0,Ap〉〉(−µ)pT σBp, ∀p ∈ Z
2
d.

By Theorem 6.1, this implies that [B, 0] is an Appleby index for Pb , which is therefore
a symplectic unitary, with symplectic index B. Now B can be factored

B =

(

b
b−1

)

=

(

0 −1
1 −b−1

)(

0 −1
1 −b

)(

0 −1
1 −b−1

)

. (8.50)

In view of (6.42), a symplectic index for RbF is given by
(

0 −1
1 −b

)

=

(

1 0
1 1

)b(

0 −1
1 0

)

,

and so applying the homomorphism α of Corollary 7.1 to (8.50) gives (8.49), for some
scalar cb,d, to be determined. From (3.6) and (3.7), we have

(RbF )jk =
1√
d
µbj(j+d)+2jk. (8.51)

Hence, equating the (0, 0)–entries of cb,dPb(R
b−1

F )−1 = RbFRb−1

F , gives

1√
d
cb,d =

∑

j∈Zd

(RbF )0j(R
b−1

F )j0 =
1

d

∑

j∈Zd

µb
−1j(j+d).

We recall that µj(j+d) depends only on j modulo d, and µjd = µdj
2

, so that

cb,d =
1

2

1√
d

2d−1
∑

j=0

µb
−1j(j+d) =

1

2
√
d

2d−1
∑

j=0

µb
−1(d+1)j2 =

1

2
√
d
G
(

b−1(d+ 1), 2d
)

.

Evaluating the (0, 0)–entries of (8.49), using (8.51), gives

cb,d =
1

d
√
d

∑

j∈Zd

∑

k∈Zd

µbj(j+d)+2jk+b−1k(k+d) = cb−1,d.
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If the b−1 is computed as the inverse in Z
∗
d for d even, then the formula (8.49)

only gives Pb up to multiplication by the symplectic Heisenberg operations (4.25). The
permutation matrices {Pσ}σ∈Z∗

d
are a subgroup of the symplectic unitaries, since the

map Z
∗
d → CSp(d) : σ → Pσ is a group homomorphism, by the calculation

(Pσ1σ2)jk =
∑

r

(Pσ1)jr(Pσ2)rk = δj,σ1rδr,σ2k = σj,σ1σ2k = (Pσ1σ2)jk.

The formulas for evaluating Gauss sums imply that cb,d is an 8–th root of unity, e.g.,
if b has odd order, then cb,d = (

√
i)1−d.

Example 8.1 When b = 1, (8.49) gives

(RF )3 = c1,dP1 = e−
2πi
8

(d−1)I.

Thus [RF ] is a symplectic operation of order three.

The symplectic unitary of order three (as a matrix), given by

Z := ζd−1RF, ζ := e
2πi
24 , ψZ =

(

0 −1
1 −1

)

,

is called the Zauner matrix. This matrix plays a central role in the construction of
SICs, since the majority of the known SICs are can be obtained as eigenvectors of Z.
The Zauner matrix satisfies

R−1ZR = Z
2
, R−1Z2R = Z, (8.52)

Z(SjΩk)Z−1 = µk(k−2j+d)S−kΩj−k, (8.53)

and by (5.28), (5.30)

ψZ =

(

0 −1
1 −1

)

, ψZ2 =

(

−1 1
−1 0

)

, ψZ =

(

0 1
−1 −1

)

, ψ
Z

2 =

(

−1 −1
1 0

)

.

In view of its definition, Z can substitute for either F or R as the generators for
the Clifford group given by Theorem 4.1. Since the antilinear map of entrywise complex
conjugation

C : Cd → C
d : z 7→ z

maps SIC fiducials to SIC fiducials (as does the Clifford group), it is natural to consider
the extended Clifford group EC(d), which is generated by C and the Clifford group.
Thus we have the following cute corollary of Theorem 4.1.

Corollary 8.1 The extended Clifford group is generated by Ĥ, and

C (order 2), Z (order 3), F (order 4).

In addition to being symplectic and of order three, Z has Clifford trace

trace(ψZ) = −1 ∈ Zd.

We now give a complete characterisation of all such symplectic unitaries.
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9 The symplectic unitaries of order 3

The Clifford trace is the map

trC : C(d) → Zd : a 7→ trace(ψa).

Since a 7→ ψa is a homomorphism with kernel Ĥ (Lemma 3.2), this satisfies

trC(ab) = trC(ba), ∀a, b ∈ C(d), (9.54)

trC(ah) = trC(a), ∀a ∈ C(d), ∀h ∈ Ĥ. (9.55)

In particular, the Clifford trace of any conjugate of Z or Z−1 = Z2 is −1, e.g.,

trC(gZg
−1) = trC(Zg

−1g) = trC(Z) = trace(ψZ) = −1,

and the Clifford trace is well defined on the Clifford operations, i.e.,

trC([a]) := trC(a), ∀[a] ∈ PC(d).

The order of a Clifford operation is related to its Clifford trace, since

A2 = trace(A)A− I, ∀A ∈ SL2(Zd). (9.56)

Lemma 9.1 A nonidentity extended Clifford operation [a] ∈ EC(d)/[I] with index (A, za)
and Clifford trace t = trace(A) has order 3 if and only if

(t2 − 1)A = (t+ 1)I, za((t+ 1)Ap) = ω(t+1)pTMAp, ∀p ∈ Z
2
d, (9.57)

whereMA =

(

γ(α3 + 2α2δ + αδ2 − 2α− δ) βγ(α + δ − 1)(α + δ + 1)
βγ(α + δ − 1)(α + δ + 1) β(δ3 + 2αδ2 + α2δ − 2δ − α)

)

, A =

(

α β
γ δ

)

.

Proof: Since a product of three antiunitaries is a unitary matrix, we have a ∈ C(d).
In view of the isomorphism (5.31), [a] has order 3 if and only if

(A, za)
3 = (A3, (za ◦ A2)(za ◦ A)za) = (I, 1).

From (9.56), we obtain

A3 = A(tA− I) = t(tA− I)− A = (t2 − 1)A− tI,

so that the condition A3 = I can be written as the first condition of (9.57).
We now consider the condition (za ◦ A2)(za ◦ A)za = 1. By (3.16), we calculate

za(p)za(Ap)za(A
2p) = ω−pT σA(Ap)za(p+ Ap)za(A

2p)

= ω−pT σA(Ap)ω−(p+Ap)T σA(A2p)za(p+ Ap+ A2p)

= ω−pT (σAA+σAA
2+AT σAA

2)pza(p+ Ap+ A2p).

By (9.56), we have

I + A+ A2 = I + A+ tA− I = (1 + t)A.

Using det(A) = αδ − βγ = 1, a calculation gives

σAA+ σAA
2 + ATσAA

2

= (α + δ + 1)

(

γ(α3 + 2α2δ + αδ2 − 2α− δ) βγ(α + δ − 1)(α + δ + 1)
βγ(α + δ − 1)(α + δ + 1) β(δ3 + 2αδ2 + α2δ − 2δ − α)

)

.

Thus we may rewrite the condition (za ◦ A2)(za ◦ A)za = 1, to obtain the result.
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Example 9.1 Since za(0) = 1, ∀a ∈ EC(d), and trC(I) = 2 = −1 if and only if d = 3,
we have that if a ∈ C(d) has Clifford trace −1 and d 6= 3, then [a] has order 3.

By taking the trace of the condition (t2 − 1)A = (t+ 1)I, we have that the Clifford
trace t of a Clifford operation of order 3 satisfies

(t− 2)(t+ 1)2 = 0. (9.58)

For d a prime, the Clifford operators of order 3 must have Clifford trace −1.

Proposition 9.1 Suppose that d 6= 3 and a ∈ C(d). Then

1. If a has Clifford trace −1, then [a] has order 3.

2. If d is prime, then [a] has order 3 if and only if a has Clifford trace −1.

Proof: Since we have already proved 1, it suffices to prove for d 6= 3 prime and [a]
of order 3 that the Clifford trace t = trC(a) is −1. We recall that t is a root of (9.58).

If t 6= −1, then t+ 1 is a unit (all nonzero elements of Zd are units for d prime), so
that t = 2. But, if t = 2, then (9.57) gives 3A = 3I, and hence A = I (3 ∈ Z

∗
d for d 6= 3

prime), so that a ∈ Ĥ (by Lemma 3.2). Since (SjΩk)3 = ω3S3jΩ3k and S, Ω have order
d, the order of [a] cannot be 3 (since 3 does not divide d). Thus t = trC(a) − 1 (when
[a] has order 3 and d 6= 3 is prime).

A Clifford operation of order 3 is said to be canonical order 3 if it has Clifford
trace −1 (see [App05]), e.g., the Zauner matrix Z and M1 are canonical order 3.

Example 9.2 It follows from (9.54) and (9.55) that left or right multiplication of a
canonical order 3 Clifford operation by a displacement operation gives another canonical
order 3 operation, e.g., [h1Zh2] is canonical order 3 for any h1, h2 ∈ Ĥ.

There are Clifford operations of order 3 with Clifford trace 2.

Example 9.3 If 3 divides d, then the symplectic unitary R
d′

3 (and its inverse) has order
3 and Clifford trace

trC(R
d′

3 ) = trace
(

(

1 0
d′

3
1

)

)

= 2,

as do the Weyl displacement operators S
d
3 ,Ω

d
3 , S

d
3Ω

d
3 .

There are Clifford operations of order 3 with Clifford trace t 6= −1, 2, i.e., for which
(9.58) holds with t− 2 and t+ 1 not units in Zd.

Example 9.4 For d = 10, SL2(Z10) has a single conjugacy class of elements of order 3
and trace 4 and 7. These have representatives

A =

(

3 2
6 1

)

(trace 4), B =

(

6 5
5 1

)

(trace 7).

These can be lifted to symplectic indices which give symplectic unitaries of order 3 and
Clifford trace 4 and 7, e.g., a = R10FR8F−1R6, b = R10FR5F−1R15.
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The main technical result of the paper is the following lemma. This is essentially a
proof the Conjecture 4 of [Fla06] on the number of conjugacy classes (d is replaced by
2d for d even), which was proved for d prime.

Lemma 9.2 Suppose that d ≥ 2, and let

z := ψZ =

(

0 −1
1 −1

)

, z2 =

(

−1 1
−1 0

)

, (9.59)

m1 :=

(

1 3
d−3
3

−2

)

, d ≡ 3 mod 9, (9.60)

m2 :=

(

1 3
2d−3
3

−2

)

, d ≡ 6 mod 9. (9.61)

Then the conjugacy classes of elements of order 3 and trace −1 in SL2(Zd) have repre-
sentatives

{z}, d 6≡ 0 mod 3, (9.62)

{z, z2}, d ≡ 0 mod 9 or d = 3, (9.63)

{z, z2,m1}, d ≡ 3 mod 9, d 6= 3, (9.64)

{z, z2,m2}, d ≡ 6 mod 9. (9.65)

By the Chinese remainder theorem, it is sufficient to prove this for d a prime power.
The proof is given in the appendix. It is elementary, but long, since each case involves
the solution of a binary quadratic equation.

We also need the following technical lemmas.

Lemma 9.3 Let ϕ : G → H be a homomorphism of G onto H, with | kerϕ| = 2k. If
h ∈ H has order 3, then there is an element g ∈ G of order 3 with ϕ(g) = h.

Proof: By the first isomorphism theorem for groups, we may assume that H = G/K,
where K = kerϕ. Suppose that h = aK ∈ G/K has order 3, i.e., a3 = x ∈ K,
where a 6∈ K. By Bézout’s identity (the Euclidean algorithm) choose integers α, β with
1 = −3α + 2kβ. Let g = axα ∈ 〈a〉. Then ϕ(g) = axαK = aK, and

g3 = (axα)3 = a3x3α = x3α+1 = x2
kβ = 1.

Lemma 9.4 For d even, SL2(Z2d) has no elements of of order 3 and trace d− 1.

Proof: If A ∈ SL2(Z2d) has order 3, and t = trace(A), then, by (9.56), we have

A3 = A(tA− I) = t(tA− I)− A = (t2 − 1)A− tI = I =⇒ (t2 − 1)A = (t+ 1)I.

For t = d− 1, this gives (d2 − 2d)A = 0 = dI (mod 2d), which not possible.
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We now characterise all symplectic unitaries of canonical order 3.

Theorem 9.1 (Characterisation) The symplectic operations of canonical order 3 are
conjugate in CSp(d)/[I] to [a], where a ∈ CSp(d) is one of the following

{Z}, d 6≡ 0 mod 3,

{Z,Z2}, d ≡ 0 mod 9 or d = 3,

{Z,Z2,W1}, d ≡ 3 mod 9, d 6= 3,

{Z,Z2,W2}, d ≡ 6 mod 9,

where

Z := e
2πi
24

(d−1)RF−1,

Wa := (−1)d−1R
2d
3
aF−1R3FR, (9.66)

have order 3 in CSp(d).

Proof: The key idea is to apply the fact that group homomorphisms map conjugacy
classes to conjugacy classes to the commutative diagram (7.48) of §7, i.e.,

SL2(Zd′)
α

✲✲ CSp(d)/[I]

SL2(Zd)

ψ̂

❄
❄

m
d

✲✲

We observe that

• Since the kernel of Ψ̂ has order 1 or 4 (d odd or even), the conjugacy classes of
elements of order 3 and Clifford trace −1 in CSp(d)/[I] map onto the conjugacy
classes of elements of order 3 and trace −1 in SL2(Zd) (by Lemma 9.3).

• Since the kernel of α has 1 or 2 (d odd or even), each conjugacy class of an element
of order 3 and Clifford trace −1 in CSp(d)/[I] is the image under α of the conjugacy
class of an element of order 3 in SL2(Zd′) (by Lemma 9.3) and of trace −1 (by
Lemma 9.4).

Thus the conjugacy classes of elements of order 3 and trace −1 in SL2(Zd′) map onto
the conjugacy classes of elements of canonical order 3 in CSp(d)/[I], which in turn map
onto the conjugacy classes of elements of order 3 and trace −1 in SL2(Zd). A count of
the conjugacy classes in SL2(Zd′) and SL2(Zd) (for d even) shows that these maps are
1–1, i.e., representatives of the conjugacy classes of elements of order 3 and trace −1
in SL2(Zd′) give symplectic indices for representatives of the conjugacy classes of the
symplectic operations of canonical order 3.

We now use Lemma 9.2 to calculate these symplectic indices (and show the injectivity
asserted above) for the various cases.
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For d 6≡ 0 (mod 3), we have 2d 6≡ 0 (mod 3), and so there is a single conjugacy class
with symplectic index z.

For d ≡ 0 (mod 9), d 6= 3, we have 2d ≡ 0 (mod 9), and so there is are two conjugacy
classes given by the symplectic indices z, z2. For d = 3, we have d′ = d, and there are
two conjugacy classes given by the symplectic indices z, z2.

For d ≡ 3 (mod 9), d 6= 3, we have 2d ≡ 6 (mod 9), so that there are three conjugacy
classes given by the symplectic indices z, z2, and

(

1 3
d−3
3

−2

)

∈ SL2(Zd) (d odd),

(

1 3
2(2d)−3

3
−2

)

∈ SL2(Z2d) (d even).

The second formula gives the first for d odd, and so works in both cases.
For d ≡ 6 (mod 9), we have 2d ≡ 3 (mod 9), so that there are three conjugacy

classes given by the symplectic indices z, z2, and

(

1 3
2d−3
3

−2

)

∈ SL2(Zd) (d odd),

(

1 3
2d−3
3

−2

)

∈ SL2(Z2d) (d even).

In the last two cases, the third conjugacy class is given by the symplectic indices m1

and m2 (respectively), where

mj :=

(

1 3
4dj−3

3
−2

)

∈ SL2(Zd′).

and m2
j is conjugate to mj (since otherwise there would be four conjugacy classes). For

convenience of presentation, we take the representative with symplectic index

wj := m2
j =

(

−2 −3
1 + 2d

3
j 1

)

=

(

1 0
1 1

)
2d
3
j (

0 −1
1 0

)−1 (
1 0
1 1

)3 (
0 −1
1 0

)(

1 0
1 1

)

.

By taking the symplectic operations corresponding to the representatives z, z2, w1, w2

in the above conjugacy classes, i.e., Z,Z2,W1,W2, we obtain representatives for the
conjugacy classes of canonical order 3 symplectic operations. The normalisation of Wa

in its definition (9.66) ensures that it has order 3.

From the above proof, we have:

The conjugacy classes of order 3 and trace −1 elements in SL(Zd′) are in 1–1 cor-
respondence with the conjugacy classes of canonical order 3 symplectic operations.

The the canonical order 3 symplectic operations Z (the Zauner matrix) and M1

appear as symmetries of the Scott–Grassl SICs [SG10], where they are denoted by the
symplectic indices Fz and Fa, i.e.,

Bz =

(

0 −1
1 −1

)

= (d+ 1)Fz, Bm1
=

(

d+ 1 3
d−3
3

d− 2

)

= (d+ 1)Fa.

As yet, no numerical SIC fiducials have been found that are eigenvectors of M2. We
propose the name a ghost SIC for such SIC.
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10 Conjugates of the canonical order 3 symplectic

unitaries

We now use Theorem 9.1 to determine when the conjugate of Z or M1 (or M2 for that
matter) by a symplectic operation is a monomial matrix of the form RαPσ.

Since the permutation matrices in C(d) are symplectic (see §8), there exists a per-
mutation matrix Pσ ∈ C(d), σ ∈ Z

∗
d of canonical order 3 if and only if

P 3
σ = Pσ3 = I, trC(Pσ) = σ + σ−1 = −1,

i.e., the existence of an integer σ (for d 6= 3) with

σ3 ≡ 1 mod d, σ2 + σ + 1 ≡ 0 mod d. (10.67)

For such a σ, we have

(

σ 0
α σ−1

)3

=

(

σ3 0
α(1 + σ + σ2) σ−3

)

=

(

1 0
0 1

)

, so that:

If σ satisfies (10.67), then [RαPσ] is a canonical order 3 symplectic operation.

By the Chinese remainder theorem, it follows (see [App05]) that the condition (10.67)
is equivalent to d satisfying:

(i) d has at least one prime divisor ≡ 1 mod 3.

(ii) d has no prime divisors ≡ 2 mod 3 (so that d is odd).

(iii) d is not divisible by 9.

The first few such d are

d = 7, 13, 19, 21, 31, 37, 39, 43, 49, 57, 61, 67, 73, 79, 91, 93, 97, . . .

By Theorem 9.1, the monomial operation [RαPσ] is conjugate (via a symplectic opera-
tion) to one of [Z], [Z]2, [M1] = [W1], [W2].

• For d not a multiple of 3 (d 6≡ 0 mod 3), i.e.,

d = 7, 13, 19, 31, 37, 43, 49, 61, 67, 73, 79, 91, 97, . . .

there is single conjugacy class, and so all [RαPσ] are conjugate to [Z].

• For d a multiple of 3, i.e.,

d = 21, 39, 57, 93, 111, 129, 147, 183, 201, 219, 237, . . .

we have d
3
≡ 1 mod 3, i.e., d ≡ 3 mod 9, and so the conjugacy classes are given by

[Z], [Z]2, [M1].

For a σ satisfying σ3 = 1, 1 + σ + σ2, the symplectic index calculations

gzg−1 =

(

σ 0
1 σ2

)

, gz2g−1 =

(

σ2 0
−1 σ

)

, g :=

(

1 σ
0 1

)

, z =

(

0 −1
1 −1

)

,

give the following:
For any d, if σ satisfies (10.67), then

22



1. The monomial operation [RPσ] is a symplectic conjugate of [Z].

2. The monomial operation [R−1Pσ] is a symplectic conjugate of [Z2].

Whenever d is a multiple of 3, i.e., d ≡ 3 mod 9, it appears (for the d listed above)
that [Pσ] is always a symplectic conjugate of [M1].

Example 10.1 For d = 21, no symplectic conjugate of Z is a permutation matrix, but
many conjugates are monomial, e.g., the symplectic index calculation

(

1 4
0 1

)(

0 −1
1 −1

)(

1 4
0 1

)−1

=

(

4 0
1 16

)

,

together with Table 1, gives

gZg−1 = ω7R16P4, g := F−1R−4F.

11 Appendix

Proof: (of Lemma 9.2) We first show that it suffices to consider the case of d a prime
power. Let d =

∏m

j=1 p
rj
j be a product of powers of distinct primes. If a, b ∈ SL2(Zd) are

conjugate: a = gbg−1, g ∈ SL2(Zd), then they are conjugate in SL2(Zprjj
), i.e.,

agj ≡ gjb mod p
rj
j , 1 ≤ j ≤ m, (11.68)

where gj ≡ g mod p
rj
j and gj ∈ SL2(Zprjj

). Conversely, suppose that a and b are conjugate

in SL2(Zprjj
) via gj ∈ SL2(Zprjj

), 1 ≤ j ≤ m. Then by the Chinese remainder theorem,

there is a g ∈ Z
2×2 with g ≡ gj mod p

rj
j , so that (11.68) gives

ag ≡ gb mod d =
m
∏

j=1

p
rj
j .

Similarly, det(g) ≡ det(gj) ≡ 1 mod p
rj
j , gives det(g) ≡ 1 mod d. Thus a and b are

conjugate in SL2(Zd).
Hence we assume now that d = pr, p a prime and begin with the easiest case:

Case 1. p 6= 3, i.e., d is not divisible by 3.

Here we claim that there is one single conjugacy class, i.e., if a, b ∈ SL2(Zd) with
tr(a) ≡ tr(b) ≡ −1 mod d, then a is conjugate to b. Since

z =

(

0 −1
1 −1

)

∈ SL2(Zd)

with tr(z) ≡ −1 mod d, alternatively we may express this by saying that if a ∈ SL2(Zd)
with tr(a) ≡ −1 mod d, then a is conjugate to z, i.e., ∃g ∈ SL2(Zd) such that

a ≡ gzg−1 ⇐⇒ ag ≡ gz mod d.

It turns out that the existence of such a g reduces to the existence of a solution of an
associated Binary Quadratic Equation.
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Lemma 11.1 Suppose that d ∈ Z≥2 (including the divisible by 3 case) and that a =
(

α β
γ δ

)

∈ SL2(Zd) with tr(a) ≡ −1 mod d. Then there exists g ∈ SL2(Zd) such that

a ≡ gzg−1 mod d

iff
g = [x; ax], x ∈ Z

2
d

such that
Qa(x1, x2) := γx21 + (δ − α)x1x2 − βx22 ≡ +1 mod d. (11.69)

Proof: (of Lemma) Writing g = [x; y] with columns x, y ∈ Z
2
d,

gz ≡ ag ⇐⇒ [x; y]

(

0 −1
1 −1

)

≡ a[x; y]

⇐⇒ [y;−x− y] ≡ [ax; ay]

⇐⇒ y ≡ ax and ay ≡ −x− y.

But y ≡ ax implies that

ay ≡ a2x ≡ −(a+ I2)x ≡ −ax− x ≡ −y − x.

Hence gz ≡ ag ⇐⇒ g ≡ [x;Ax] for an x ∈ Z
2
d. Here we have used the fact that, by

the modular form of the Cayley-Hamilton Theorem,

a2 − tr(a)a+ det(a)I2 ≡ 0 mod d

so that, by our assumptions on a,

a2 ≡ tr(a)a− det(a)I2 ≡ −a− I2.

Now, for g to be in SL2(Zd) we require that det(g) ≡ +1 mod d. But for g = [x; ax],

det(g) = det

(

x1 αx1 + βx2
x2 γx1 + δx2

)

= γx21 + (δ − α)x1x2 − βx22 =: Qa(x1, x2).

We therefore proceed to analyze the solutions of the Binary Quadratic Equation (11.69).
We begin with an important subcase.

Lemma 11.2 Suppose that p > 2 is a prime and that a, b, c ∈ Z are units modulo p
(i.e. not multiples of p). Then

ax2 + by2 ≡ c

has a solution modulo pr for all r ≥ 1.
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Proof: (of lemma) We use induction on r. The r = 1 case is actually a “well-known”
consequence of the Chevalley-Warning Theorem (cf. [IR90]); we give the details for the
sake of completeness.

Homogenize the equation to

ax2 + by2 − cz2 ≡ 0

giving a homogeneous quadratic equation in three variables. The Chevalley-Warning
Theorem then implies that there is a non-trivial integer solution (x0, y0, z0) such that

ax20 + by20 − cz20 ≡ 0 mod p.

If z0 6≡ 0 mod p it is a unit and we get

a(x0z
−1
0 )2 + b(y0z

−1
0 )2 ≡ c mod p,

i.e., x = x0z
−1
0 , y = y0z

−1
0 is a sought for solution. Otherwise, if z0 ≡ 0 mod p then we

must have x0 6≡ 0 and y0 6≡ 0 and

ax20 + by20 ≡ 0 mod p

=⇒ x20 + (ba−1)y20 ≡ 0

=⇒ ba−1 ≡ −(x0y
−1
0 )2,

i.e., −ba−1 = t2, t = x0y
−1
0 . Thus our original equation ax2 + by2 ≡ c reduces to

x2 − t2y2 ≡ ca−1

⇐⇒ (x− ty)(x+ ty) ≡ ca−1

which is solved, for example, by any solution of the linear system

x+ ty ≡ ca−1

x− ty ≡ 1,

and in particular by x = 2−1(ca−1 + 1), y = 2−1t−1(ca−1 − 1).
Continuing by induction, suppose that we have a solution (x0, y0) modulo pr. We

will show that then we also have one modulo pr+1. To see this, note first that

x0 + αpr, y0 + βpr, α, β ∈ Z

are also solutions modulo pr. We claim that one of these is also a solution modulo pr+1.
Substituting into our equation, we have (using the fact that p2r ≡ 0 mod pr+1)

a(x0 + αpr))2 + b(y0 + βpr)2 ≡ c mod pr+1

⇐⇒ a(x20 + 2x0αp
r + α2p2r) + b(y20 + 2y0βp

r + β2p2r) ≡ c mod pr+1

⇐⇒ ax20 + by20 + pr(2ax0α + 2by0β) + 0 ≡ c mod pr+1

⇐⇒ (ax20 + by2o − c) + pr((2ax0α + 2by0β) + 0 ≡ c mod pr+1.
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But, by assumption, (x0, y0) is a solution modulo pr and so

ax20 + by20 − c = kpr

for some k ∈ Z.
Consequently, we see that (x0 + αpr, y0 + βpr) is a solution modulo pr+1 iff

pr(k + (2ax0)α + (2by0)β) ≡ 0 mod pr+1

⇐⇒ k + (2ax0)α + (2by0)β) ≡ 0 mod p.

But, as c is not a multiple of p by assumption, at least one of x0, y0 is also not a
multiple of p and as p > 2, 2 is a unit, it follows that the linear Diophantine equation
k + (2ax0)α + (2by0)β) ≡ 0 mod p for (α, β) has at least one coefficient a unit modulo
pr+1 and therefore has a solution.

Lemma 11.3 Suppose that p > 2 is a prime and that for a, b, c ∈ Z,

Q(x, y) := ax2 + bxy + cy2

is a Binary Quadratic Form with discriminant

∆ := b2 − 4ac 6≡ 0 mod p.

Let u ∈ Z be a unit modulo p. Then for every r ≥ 1, the equation

Q(x, y) ≡ u mod pr

has a solution.

Proof: (of Lemma) First suppose that one of a, c 6≡ 0 mod p. By symmetry we may
assume that it is a 6≡ 0 mod p. Then modulo pr,

Q(x, y) ≡ u

⇐⇒ 4aQ(x, y) ≡ 4au (as both a and 4 are units)

⇐⇒ 4ax2 + 4abxy + 4acy2 ≡ 4au

⇐⇒ (2ax+ by)2 − {b2 − 4ac}y2 ≡ 4au

⇐⇒ (2ax+ by)2 −∆y2 ≡ 4au.

Setting x′ = 2ax+ by we have

(x′)2 −∆y2 ≡ 4au mod pr

and by Lemma 11.2 there is a solution (x′0, y0) which leads to the solution

x = x0 = 2−1a−1{x′0 − by0}, y = y0

to Q(x, y) ≡ u mod pr.
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If, on the other hand, a ≡ c ≡ 0 mod p then as, by assumption, ∆ 6≡ 0 mod p, we
must have b 6≡ 0 mod p. We need in this case to prove our claim by induction on r.

If r = 1 then our equation reduces to

bxy = u mod p

which has a solution (among others), x = 1, y = ub−1, mod p.
Hence suppose that there is a solution (x0, y0) modulo pr. We must show that then

there is also a solution modulo pr+1. Indeed, just as in the previous Lemma, we search
for such a solution among

x = x0 + αpr, y = y0 + βpr, α, β ∈ Z.

Then modulo pr+1,

Q(x0 + αpr, y0 + βpr) ≡ u

⇐⇒ (ax20 + bx0y0 + cy20 − u) + pr(2ax0α + bx0β + by0α + 2cy0β) ≡ 0

⇐⇒ (ax20 + bx0y0 + cy20 − u) + prb(x0β + y0α) ≡ 0

as apr ≡ cpr ≡ 0 mod pr+1 since, by assumption in this case a and c are multiples of p.
But as (x0, y0) is a solution modulo pr there must exist a k ∈ Z such that

ax20 + bx0y0 + cy20 − u = kpr.

Therefore, cancelling pr from both sides, we arrive at the condition

k + b(x0β + y0α) ≡ 0 mod p.

This linear Diophantine equation has a solution for (α, β) as, in this case, b is a unit and
the fact that u is a unit implies that not both x0 and y0 can be multiples of p.

We will use the above to prove

Lemma 11.4 For a =

(

α β
γ δ

)

∈ SL2(Zd), d = pr, p a prime other than 3, r ≥ 1, with

tr(a) = α+ δ ≡ −1 mod d, there is a solution of the quadratic equation (11.69), i.e., of

Qa(x1, x2) = γx21 + (δ − α)x1x2 − βx22 ≡ +1 mod d.

Consequently a is conjugate to z modulo pr.

Proof: (of lemma) First suppose that p > 3. First note that the discriminant of Qa is

∆ = (δ − α)2 + 4βγ

= (δ + α)2 − 4(αδ − βγ)

= (tr(a))2 − 4det(a)

= (−1)2 − 4× 1

= −3 6≡ 0 mod p.
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Since u = 1 is a unit, we have from Lemma 11.3 that there exists a solution to
Qa(x1, x2) ≡ +1 mod pr.

The case p = 2, d = 2r is somewhat different as then 2 is not a unit and Lemma 11.3
is not applicable. Nevertheless, also in this case Qa(x1, x2) ≡ +1 mod 2r has a solution.

To see this note that the units modulo 2r are precisely the odd integers ≤ d−1. Now,
tr(a) = α+δ ≡ −1 mod 2r implies that α+δ is odd and hence one of α, δ is odd and the
other is even. Consequently the product αδ us even. Further, det(a)αδ−βγ ≡ 1 mod 2r

and so αδ− βγ is odd with αδ even. Hence βγ is odd and indeed both β and γ are odd,
i.e., are units.

We claim that there is a solution of the form Qa(x1, 1) ≡ +1 mod 2r, i.e., with
x2 = 1. In fact, modulo 2r,

Qa(x1, 1) ≡ +1

⇐⇒ γx21 + (δ − α)x1 − β ≡ +1

⇐⇒ x21 + γ−1(δ − α)x1 ≡ γ−1(1 + β).

Note that as one of α, δ is odd and the other even, δ−α is odd and hence a unit. Further
γ is odd and hence so is γ−1. Consequently γ−1(δ − α) is odd. Moreover, β is odd and
so 1 + β and γ−1(1 + β) are both even.

Consider now the univariate polynomial P (x) := x2+ax with a ∈ Z, odd. We claim
that P (x) maps the set of odd integers {x ∈ Zd : x odd} one-to-one and onto the set of
even integers {x ∈ Zd : x even}. Indeed, P (x) = x2 + ax = x(x + a). Hence if x is odd
then x + a is even and P (x) is even. To see that the mapping is one-to-one, suppose
that x, y ∈ Zd are both odd. Then modulo d = 2r,

P (x) ≡ P (y)

⇐⇒ x2 + ax ≡ y2 + ay

⇐⇒ x2 − y2 + a(x− y) ≡ 0

⇐⇒ (x− y)(x+ y + a) ≡ 0.

But x, y both odd and a also odd implies that x+ y+ a is odd and hence a unit modulo
2r. Consequently we may divide by x+ y + a to obtain that P (x) ≡ P (y) iff x− y ≡ 0,
i.e., x ≡ y and we have shown that the mapping is one-to-one.

To see that it is also onto just note that the cardinality of the domain #{x ∈ Zd :
x odd} = d/2 as does the cardinality of the image #{x ∈ Zd : x even} = d/2.

Thus with a = γ−1(δ − α) it follows that there is an x1 ∈ Zd such that P (x1) =
γ−1(1 + β) and we are done.

In summary, we have shown so far that for any d a product of primes other than 3,
i.e., for any d not divisible by 3, every a ∈ SL2(Zd) with tr(a) ≡ −1 mod d, is conjugate

to z =

(

0 −1
1 −1

)

.

We now consider the cases when d is divisible by 3 beginning with
Case 2. d = 3

We claim that there are three conjugacy classes:
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1. Those conjugate to z : Cz :=

{(

0 −1
1 −1

)

,

(

1 0
1 1

)

,

(

1 −1
0 1

)

,

(

−1 −1
1 0

)}

2. Those conjugate to z2 : Cz2 :=

{(

0 1
−1 −1

)

,

(

1 1
0 1

)

,

(

1 0
−1 1

)

,

(

−1 1
−1 0

)}

=

CT
z

3. Those conjugate to I2 : CI := {I2} .

We begin with the lemma for z2 analogous to Lemma 11.1 for z.

Lemma 11.5 Suppose that d ≥ 2 and that a =

(

α β
γ δ

)

∈ SL2(Zd) with tr(a) ≡
−1 mod d. Then there exists a g ∈ SL2(Zd) such that

a = gz2g−1

iff g = [Ay; y] for some y ∈ Z
2
d such that

Qa(y1, y2) = γy21 + (δ − α)y1y2 − βy22 ≡ −1 mod d.

Proof: (of lemma) Writing, as before, g = [x; y] with columns x, y ∈ Z
2
d,

gz2 ≡ ag ⇐⇒ [x; y]

(

−1 1
−1 0

)

≡ a[x; y] = [ax; ay]

⇐⇒ [−x− y; x] ≡ [ax; ay]

⇐⇒ x ≡ ay and − x− y ≡ ax.

But x ≡ ay implies that

ax ≡ a2y

≡ −(a+ I2)y

≡ −ay − y

≡ −x− y.

Hence gz2 ≡ ag iff g = [ay; y] for some y ∈ Z
2
d.

Now, for such g,

det(g) = det

(

αy1 + βy2 y1
γy1 + δy2 y2

)

= βy22 + (α− δ)y1y2 − γy21
= −Qa(y1, y2).

Hence det(g) ≡ +1 mod d iff Qa(y1, y2) ≡ −1 mod d.
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Now if a ≡ I2 then obviously a ∈ CI . We claim that if a 6≡ I2 then there is either a
solution of

Qa(y1, y2) ≡ +1 mod 3

or else of
Qa(y1, y2) ≡ −1 mod 3

but not both. To see this note that if β and γ are both 0 mod 3 then a is diagonal and
it is easily verified that the only diagonal a ∈ SL2(Z3) with tr(a) ≡ −1 is a = I2. Hence
at least one of β, γ are not 0 modulo 3.

Now, if γ ≡ 1, then Qa(y1, y2) ≡ +1 has the solution y1 = 1, y2 = 0. If γ ≡ −1, then
Qa(y1, y2) ≡ −1 has the solution y1 = 1, y2 = 0. Otherwise, if γ ≡ 0 and hence β 6≡ 0,
Qa(0, 1) ≡ −1 if β ≡ +1 while Qa(0, 1) ≡ +1 if β ≡ −1.

We now verify that we can not have solutions to both Qa(y1, y2) ≡ ±1, or in other
words, z and z2 are not conjugate. Indeed, by Lemma 11.1 z2 is conjugate to z iff there
is a solution of

Qz2(x1, x2) ≡ +1 mod 3.

But Qz2(x1, x2) = −x21 + x1x2 − x22 so, modulo 3,

Qz2(x1, x2) ≡ +1

⇐⇒ x21 − x1x2 + x22 ≡ −1

⇐⇒ x21 + 2x1x2 + x22 ≡ −1

⇐⇒ (x1 + x2)
2 ≡ −1.

But −1 is not a perfect square modulo 3 and so this is not possible.
For d = 3 there are only 9 different a ∈ SL2(Z3) with tr)(a) ≡ −1 and hence it is a

trivial matter to list the conjugacy classes.

Case 3. d = 3r, r ≥ 2. We claim that here there are two conjugacy classes:

1. Those conjugate to z : {a ∈ SL2(Zd) : (a mod 3) ∈ Cz}

2. Those conjugate to z2 : {a ∈ SL2(Zd) : (a mod 3) ∈ Cz2}

The class {a ∈ SL2(Zd) : (a mod 3) = I2} is not present. Indeed, if a ≡ I2 mod 3,
then

a =

(

1 + 3x 3y
3z1 + 3w

)

for some x, y, z, w ∈ Z.
Then tr(a) = 2 + 3(x+ w) and

det(a) = (1 + 3x)(1 + 3w)− 9yz = 1 + 3(x+ w) mod 9.

If tr(a) ≡ −1 mod 3r, r ≥ 2, then tr(a) ≡ −1 mod 9 and similarly det(a) ≡ +1 mod 9.
Hence we must have

2 + 3(x+ w) ≡ −1 mod 9

and 1 + 3(x+ w) ≡ +1 mod 9.
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Subtracting the two gives 1 ≡ −2 mod 9 which is clearly not possible.
Supposing therefore that a 6≡ I2 mod 3, it is easy to check by comparing with the

lists of Cz and Cz2 ( mod 3), that one of β, γ 6≡ 0 mod 3. By symmetry we may suppose
that it is γ 6≡ 0.

We claim that there is either a solution of

Qa(x1, x2) ≡ +1 mod 3r

or Qa(x1, x2) ≡ −1 mod 3r

but not both.
The r = 1 case gives a solution (x1, x2) = (1, 0) mod 3 for

Qa(x1, x2) ≡ +1 mod 3 in case γ ≡ +1 mod 3

and
Qa(x1, x2) ≡ −1 mod 3 in case γ ≡ −1 mod 3.

This persists for r ≥ 2, i.e., there is a solution (x1, x2) = (1, 0) mod 3 for

Qa(x1, x2) ≡ +1 mod 3r in case γ ≡ +1 mod 3

and
Qa(x1, x2) ≡ −1 mod 3r in case γ ≡ −1 mod 3.

To see this we proceed by induction on r and assume that we have such a solution
mod 3r; we will show that there is also one mod 3r+1. Indeed,

(x1 + u3r, v3r), u, v ∈ Z

are all solutions mod 3r. Then setting γ := γ mod 3, we have

Qa(x1 + u3r, v3r) ≡ γ mod 3r+1

⇐⇒ γ(x1 + u3r)2 + (δ − α)(x1 + u3r)(v3r)− β(v3r)2 ≡ γ mod 3r+1

⇐⇒ γ(x21 + 2ux13
r) + (δ − α)(x1v3

r) ≡ γ mod 3r+1

⇐⇒ (γx21 − γ) + 3r(2γx1u+ (δ − α)x1v) ≡ 0 mod 3r+1.

But, as (x1, 0) is a solution mod 3r (by assumption),

γx21 − γ = k3r

for some k ∈ Z.
Thus

3r{k + (2γx1)u+ ((δ − α)x1)v} ≡ 0 mod 3r+1

iff
k + (2γx1)u+ ((δ − α)x1)v ≡ 0 mod 3

iff
k + (2γ)u+ ((δ − α))v ≡ 0 mod 3
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as x1 ≡ 1 mod 3. But this has the solution

v = 0,

u = (2γ)−1(−k) mod 3

≡ (−γ)−1 mod 3

≡ γ−1k mod 3

≡ γk mod 3,

i.e., we have the solution
(x1 + (kγ)3r, 0) mod 3r+1.

The conjugacy classes are distinct as conjugacy modulo 3r+1 implies conjugacy modulo
3.
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