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Abstract

Given scattered data in IRs, interpolation from a dilated box spline space SM (2k·)

is always possible for a fine enough scaling. For example, for the Lagrange function of a

point θ one could take any shifted dilate M(2k · −j) which is nonzero at θ and zero at

the other interpolation points. However, the resulting interpolant, though smooth (and

local), will consist of a set of “bumps”, and so by any reasonable measure provides a

poor representation of the shape of the underlying function. On the other hand, it is

possible to choose a space of interpolants which contains some M(2k · −j) of arbitrarily

large support. But the resulting methods are increasingly less local, and in general still

require some splines with a much higher level of dilation. Here we provide a multilevel

method which constructs a space of interpolants by taking as many splines as possible

from a given dilation level, then as many from the next (higher) dilation level, and so

forth. The choice at each level is made using the suggestion of [W99], which is based on

the Riesz representation theorem. This requires an inner product on the ground space SM ,

and the higher levels SM (2k·) ⊖ SM (2k−1·), k = 1, 2, . . .. The inner products used here

involve the box spline coefficients, and prewavelet coefficients of [RS92], respectively, and

are norm equivalent to ‖ · ‖L2(IRs). These lead to a scheme which is easily implemented,

and numerically stable. Previously, box spline interpolants have been considered only for

data on a regular grid.
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1. Introduction

This paper deals with the interpolation of scattered data using box splines. Previously,

only cardinal box spline interpolation (data on a regular grid) has been considered (see

[BHR93] and [RS95] for fundamental solutions which are of exponential decay and compact

support, respectively). The multilevel scheme proposed here is based on a generalisation

of the least solution of the polynomial interpolation problem of de Boor and Ron [BR92]

to an arbitrary inner product space of interpolants by Waldron [W99], and uses the box

spline wavelet decomposition of Riemenschneider and Shen [RS92].

Given linear functionals λ1, . . . , λn on some space X, in our case function evaluation

at scattered data points, we say interpolation from a subspace V is correct (aka unisolvent,

poised, well posed, etc) if for each f ∈ X, there is a unique g ∈ V with

λi(g) = λi(f), 1 ≤ i ≤ n,

and we denote by L : X → V the interpolation operator f 7→ g.

Suppose that V is a correct space contained in P a space of possible interpolants, in

our case
⋃

k≥0 SM (2k·), which is graded, i.e.,

Pk := H0 ⊕H1 ⊕ · · · ⊕Hk ⊂ P, P =
⋃

k≥0

Pk,

where functions in Hk are thought of as being simpler (lower degree), or more appropri-

ate for the interpolation, than those from Hk+1. In practice Hk will be a space of low

computational complexity for small k. Following the example where Pk is the space of

polynomials of degree ≤ k, we say that L is degree reducing if

L(Pk) ⊂ Pk, k = 0, 1, . . . ,

or, equivalently, the correct space V is of minimal degree, i.e.,

dim(V ∩ Pk) = dim(span{λi|Pk
}), k = 0, 1, . . . .

If interpolation from P is possible, then minimal degree interpolation spaces V (those as

simple as possible) always exist (see [W99]).

It is instructive to think of a minimal degree V as being built up by taking as many

(linearly independent) functions from H0 as possible, then as many from H1 as possible,

and so forth. Unless all the Hk are one dimensional, there are many ways to do this. If

each Hk has an inner product structure, then [W99] suggests taking from Hk the subspace

RPk
(span{λ1, . . . , λn}) ∩Hk, k = 0, 1, . . . ,
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where RH(Λ) denotes the Riesz representation of the linear functionals Λ defined on some

Hilbert space H. This paper investigates the choice of Pk as the dilated box spline space

Pk := Sk
M := SM (2k·) := {f(2k·) : f ∈ SM},

and Hk a suitably chosen complement of Pk−1 in Pk, i.e.,

H0 := SM , Hk := Sk
M ⊖ S

k−1
M , k = 1, 2, . . . . (1.1)

Here SM is the closed shift invariant subspace of L2(IR
s) generated by a box spline M .

To obtain an implementable interpolation method it remains only to endow each Hk

with an inner product which is norm equivalent to ‖ · ‖L2(IRs), and for which the Riesz

representations of the interpolation conditions {λi} are easily computed. Our choice is

detailed in the next section. Briefly, it involves choosing a finite number of functions

which generate the shift invariant spaces Hk (M for H0, and wavelets for k > 0), and

taking the inner product in which the shifts of these are orthogonal.

Throughout the paper, we illustrate our construction with the representative univari-

ate and bivariate examples of a cubic B-spline M and the box spline M222, respectively.

2. Box spline and prewavelet inner product spaces

The development of box splines outlined below closely follows the monograph [BHR93],

which can be consulted for more detail.

2.1. Box splines defined

Given an s × n matrix Ξ of rank s with integer entries, the box spline MΞ on IRs is

defined via its Fourier transform as

M̂Ξ(ω) :=
∏

ξ∈Ξ

1− exp(−iξω)

iξω
,

where ξ ∈ Ξ denotes the n columns ξ ∈ ZZs of Ξ, and ξω is the dot product of ξ and ω. The

box spline MΞ is made up of polynomial pieces of degree n−s, and belongs to Cr(Ξ)−1(IRs),

where r(Ξ)+1 is the minimum number of columns that can be discarded from Ξ to obtain

a matrix of rank less than s. It is compactly supported on the polyhedron

Ξ( ) = {
∑

ξ∈Ξ

tξξ : 0 ≤ tξ ≤ 1}, := [0, 1]n,
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and is symmetric about the point

cΞ :=
∑

ξ∈Ξ

ξ/2.

The box spline MΞ satisfies the refinement equation

MΞ = 2s
∑

j∈ZZs

mΞ(j)MΞ(2 · −j), (2.1)

where its refinement mask mΞ : ZZs → IR is given in terms of the Fourier series

m̂Ξ(ω) :=
∑

j∈ZZs

mΞ(j) exp(−ijω) :=
∏

ξ∈Ξ

1 + exp(−iωξ)

2
.

The dependence on Ξ will not be indicated when it is clear from the context. The univariate

box splines with Ξ = [1, 1, . . . , 1] are the familiar B–splines.

2.2. Shift invariant spaces S(φ1, . . . , φr)

Let S(φ1, . . . , φr) be the closed shift invariant subspace of L2(IR
s) generated by a set

of compactly supported functions φ1, . . . , φr ∈ L2(IR
s), and denote by SM := S(M) the

space generated by a single box spline M = MΞ. The φi are said to be stable if their shifts

form a Riesz basis for S(φ1, . . . , φr), i.e., there exists C1, C2 > 0 with

C1

r∑

i=1

‖ai‖ℓ2(ZZs) ≤ ‖
r∑

i=1

∑

j∈ZZs

φi(· − j)ai(j)‖L2(IRs) ≤ C2

r∑

i=1

‖ai‖ℓ2(ZZs), ∀ai ∈ ℓ2(ZZ
s).

When φ1, . . . , φr are stable, the only case we will consider,

S(φ1, . . . , φr) =
{ r∑

i=1

∑

j∈ZZs

φi(· − j)ai(j) : ai(j) ∈ IR,
∑

i,j |ai(j)|
2 <∞

}
⊂ L2(IR

s). (2.2)

Sums such as those in (2.2), can be written as the convolution of a function with a sequence

φ ∗ a :=
∑

j∈ZZs

φ(· − j)a(j), φ : IRs → IR (compactly supported), a : ZZs → IR,

which has Fourier transform

φ̂ ∗ a = φ̂ â, â(ω) :=
∑

j∈ZZs

a(j) exp(−ijω).
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We also use the semidiscrete convolution of a compactly supported φ with any f : IRs → IR

φ ∗′ f := φ ∗′ (f |ZZs) =
∑

j∈ZZs

φ(· − j)f(j),

which has Fourier transform

φ̂ ∗′ f = φ̂ f̃ , f̃(ω) :=
∑

j∈ZZs

f(j) exp(−ijω).

When φ1, . . . , φr are stable, we endow S := S(φ1, . . . , φr) with the inner product

〈f, g〉 = 〈
∑

i φi ∗ ai,
∑

j φj ∗ bj〉 :=
∑

i〈ai, bi〉, (2.3)

in which the shifts of φ1, . . . , φr are orthogonal. This is norm equivalent to ‖ · ‖L2(IRs).

2.3. The representation of linear functionals on S(φ1, . . . , φr)

Our scheme is based on the Riesz representations of (compactly supported) linear

functionals on S := S(φ1, . . . , φr), such as point evaluations, with respect to the inner

product (2.3), for which the shifts of φ1, . . . , φr are orthogonal.

We say that a linear functional λ : S 7→ IR is compactly supported if each of the

sequences

ai : ZZs → IR : j 7→ λ(φi(· − j)), 1 ≤ i ≤ r (2.4)

has compact support. Clearly every compactly supported distribution has this property

when restricted to S. Each compactly supported linear functional λ : S 7→ IR has a unique

Riesz representation

λ(f) = 〈f, g〉, ∀f ∈ S,

where 〈·, ·〉 is the inner product (2.3), and g ∈ S is the compactly supported function

defined by

g = RS(λ) :=
∑

i φi ∗ ai, ai(j) := λ(φi(· − j)). (2.5)

Example 1. For continuous φi, point evaluation at any θ ∈ IRs, i.e., λ = δθ : f 7→ f(θ),

is a compactly supported linear functional on S = S(φ1, . . . , φr), and so has a (compactly

supported) representer RS(δθ) ∈ S given by (2.5). For example, when S = SM , we compute

gθ := RS(δθ) := M ∗′ M(θ − ·) =
∑

j∈ZZs

M(θ−j)6=0

M(· − j)M(θ − j). (2.6)

Notice that the spline gθ, a convex combination of shifts ofM , is nonnegative, with compact

support (which is easily calculated), satisfies gθ+j = gθ(· − j), j ∈ ZZs, and integrates to 1.
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Moreover, gθ is centred around θ, and the map θ 7→ gθ is continuous. For example, let Mj

be the cubic B-spline centred at j, then for 0 ≤ θ ≤ 1 we compute

gθ = 1
6 (1− θ)3M−1 +

(
2
3 −

1
2θ

2(2− θ)
)
M0 +

(
2
3 −

1
2 (1− θ)2(θ + 1)

)
M1 + 1

6θ
3M2.

−4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 2.1. The first figure shows the cubic B–spline M with support [0, 4], together

with the corresponding Riesz representer g0 of point evaluation at the origin, which has

support [−3, 3]. The second illustrates the continuity of the map g 7→ gθ by giving the

Riesz representers g0, g0.25, g0.5, g1.
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Fig. 2.2. The centered box spline M c
222, and the corresponding Riesz representer of

point evaluation at the origin.

Example 2. The value of the derivative at θ ∈ IR, i.e., λ = δθ(D) : f 7→ f ′(θ) is a

compactly supported linear functional on any B–spline space of degree ≥ 2, in which case

from (2.5) and (2.6) we have

RS(δθ(D)) =
d

dθ
gθ. (2.7).
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In particular, for our cubic spline example

RS(δθ(D)) = − 1
2 (1− θ)2M−1 −

1
2θ(4− 3θ)M0 + 1

2 (1− θ)(3θ + 1)M1 + 1
2θ

2M2.

Similarly, for the second derivative

RS(δθ(D
2)) = (1− θ)M−1 + (3θ − 2)M0 + (1− 3θ)M1 + θM2,

and for the third derivative, which is not defined at 0 and 1, we have

RS(δθ(D
3)) = −M−1 + 3M0 − 3M1 +M2, 0 < θ < 1.

The property (2.7) extends, in the obvious fashion, to λ any derivative that is defined on

the given box spline space SM .
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2M1 RS(δ0(D
2)) = M−1 − 2M0 +M1

Fig. 2.3. The cubic B–spline representers of the first and second derivatives at 0.

2.4. Box spline prewavelets and semiwavelets

The refinability of (2.1) implies Sk
M ⊂ Sk+1

M , and so the grading (1.1) is well defined.

Each Hk := Sk
M ⊖ S

k−1
M is a dilate of the finitely generated shift invariant space H1(·/2).

We endow H0 = S(M) with the inner product (2.3), and restrict ourselves to the

case when this is norm equivalent to ‖ · ‖L2(IRs), i.e., M is stable. This occurs when Ξ

is a unimodular matrix, i.e., all bases of columns from Ξ have determinant ±1, which is

equivalent to there being no ω ∈ IRs at which M̂(ω + 2πj) = 0, ∀j ∈ ZZs. Thus, the shifts

of the box spline MΞ form a Riesz basis if and only if the autocorrelation function

P (ω) = PΞ(ω) :=
∑

j∈ZZs

MΞ∪−Ξ(j) exp(−ijω) =
∑

j∈ZZs

|M̂Ξ(ω + j)|2

is positive for all ω ∈ IRs.
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For Hk+1 = H1(2
k·), we also take the inner product (2.3), via

H1 = S(ψ1, . . . , ψ2s−1),

where the prewavelets ψ1, . . . , ψ2s−1 (whose shifts form a Riesz basis) are now described.

Here we follow the development of [RS92]. Let ZZs
2 be the quotient group ZZs/2ZZs.

Given a refinement mask m = mΞ, for each µ ∈ ZZs
2\{0}, define

b̂µ(ω) := exp(iη(µ)ω)

{
P (ω + πµ)m̂(ω + πµ), 2cΞµ is odd;
P (ω + πµ)m̂(ω + πµ), 2cΞµ is even,

(2.8)

where the map η : ZZs
2 → ZZs

2 is defined by η(0) = 0 and η(1) = 1 when s = 1, and for

s = 2 as follows

η : (0, 0) 7→ (0, 0), (0, 1) 7→ (0, 1), (1, 0) 7→ (1, 1), (1, 1) 7→ (1, 0).

In [RS92] it was shown that the 2s − 1 prewavelets ψµ, µ ∈ ZZs
2\{0}, defined by

ψ̂µ(2ω) := b̂µ(ω)M̂(ω) ⇐⇒ ψµ = M ∗ bµ,

and their shifts form a Riesz basis for H1. Furthermore, the system

{2j/2ψµ(2j · −α) : j ∈ ZZ, µ ∈ ZZs
2\{0}, α ∈ ZZs}

is a Riesz basis of L2(IR
s).

Also available are the semiwavelets Ψµ, µ ∈ ZZs
2\{0}, defined by

Ψ̂µ(2ω) := m̂µ(ω)M̂(ω) ⇐⇒ Ψµ = M ∗mµ,

where

m̂µ(ω) := exp(iη(µ)ω)

{
m̂(ω + πµ), 2cΞµ is odd;
m̂(ω + πµ), 2cΞµ is even.

(2.9)

These semiwavelets have smaller support than the prewavelets. The space S({Ψµ}) is an

algebraic (but not orthogonal) complement of SM in SM (2·), and the functions

{2j/2Ψµ(2j · −α) : 0 ≤ j ≤ k, µ ∈ ZZs
2\{0}, α ∈ ZZs}

form a Riesz system. It is as yet unknown whether with j unrestricted they provide a

Riesz basis for L2(IR
s). Hence, the semiwavelet system might yield a less stable algorithm

when a large number of levels have to be used to obtain the interpolant.
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2.5. Examples

We will represent finitely supported maps ZZ→ IR, ZZ2 → IR as vectors and matrices

of their nonzero values, with the value at 0 in bold and the usual indexing.

−5 0 5 10

−0.1

−0.05

0

0.05

0.1

0.15

1
2ψ(·/2) = M ∗ b1

Fig. 2.4. The cubic prewavelet ψ(·/2). This has support [−4, 10], and is symmetric about 3.

Example (Cubic spline wavelets). The choice Ξ = [1, 1, 1, 1] gives the cubic B–spline

M̂(ω) =

(
1− e−iω

ω

)4

, supp(M) = Ξ( ) = [0, 4], cΞ =
1

2
(1 + 1 + 1 + 1) = 2,

m̂(ω) =

(
1 + e−iω

2

)4

=
1

16
e−4iω +

1

4
e−3iω +

3

8
e−2iω +

1

4
e−iω +

1

16
,

which gives the refinement mask

m =
1

16
[1, 4, 6, 4, 1].

Evaluating the centred B–spline of order 8 at the integers gives

MΞ∪−Ξ|ZZ =
1

5040
[1, 120, 1191,2416, 1191, 120, 1],
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and so the autocorrelation function is

P (ω) =
1

5040
(e−3iω + 120e−2iω + 1191e−iω + 2416 + 1191eiω + 120e2iω + e3iω).

Since ZZ2\{0} has one element µ = 1, and 2cΞµ = 4 is even, we have

b̂1(ω) = eiωP (ω + π)m̂(ω + π),

which gives

b1 =
1

80640
[−1, 124,−1677, 7904,−18482, 24264,−18482, 7904,−1677, 124,−1].

Hence the prewavelet is
1

2
ψ(·/2) =

1
ψ1(·/2) = M ∗′ b1.

As predicted by [RS92], this function is symmetric about

cµ := cΞ(1 + (−1)2cΞµ)− η(µ) = 2(1 + (−1)4)− 1 = 3.

−2 0 2 4 6 8
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1
2Ψ1(·/2) = M ∗m1

Fig. 2.5. The cubic semiwavelet Ψ1(·/2) (with smaller support than the prewavelet).
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The corresponding semiwavelet Ψ1 of (2.9) is given by the mask

m1 =
1

5040
[−1, 120,−1191, 2416,−1191, 120,−1].

Example (M222 box spline). Let M222 be the box spline corresponding to the matrix

Ξ :=

(
1 1 0 0 1 1
0 0 1 1 1 1

)
.

This function is C2, stable, and has centre (2, 2). Let φ := M222(· − (2, 2)), which has the

refinement mask

m :=
1

64




0 0 1 2 1
0 2 6 6 2
1 6 10 6 1
2 6 6 2 0
1 2 1 0 0


 . (2.10)

The sequence a := (φ ∗ φ(−·))|ZZs
2

is

a =
1

362880




0 0 0 2 34 34 2
0 0 34 1736 5100 1736 34
0 34 5100 37742 37742 5100 34
2 1736 37742 94992 37742 1736 2
34 5100 37742 37742 5100 34 0
34 1736 5100 1736 34 0 0
2 34 34 2 0 0 0



.

Hence the prewavelet masks are

bµ(α) := (−1)α·µ+1b(α+ η(µ)), µ ∈ ZZ2
2,

where b = a ∗m is the convolution b(i) :=
∑

j a(i− j)m(j).

The corresponding semiwavelets are given by

Ψµ = 2s
∑

α∈ZZs

mµ(α)M222(2 · −α), µ ∈ ZZ2
2\{0},

where

mµ(α) := (−1)α·µ+1m(α+ η(µ)).
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2.6. Evaluation of box splines and wavelets

To implement of our method we require the values of box splines and their corre-

sponding prewavelets and semiwavelets, which can be computed as follows.

Let m be the refinement mask of the box spline M , i.e.,

M =
∑

α∈ZZ

m(α)M(2 · −α), (2.11)

and mµ be the mask of the prewavelet (or semiwavelet) ψµ, µ ∈ ZZs
2\{0}, i.e.,

ψµ =
∑

α∈ZZ

mµ(α)M(2 · −α). (2.12)

Using (2.11) and (2.12) the values of M and ψµ at dyadic points ∪j≥02
−jZZs can be

calculated from the value of M at the integers ZZs. This can be done as follows.

Suppose the support of M is contained in [0, N ]s, and define the matrix

IM := [2sm(2j − k)]j∈I, k∈I , I := [0, N ]s ∩ ZZs.

For the M considered here, the matrix IM has a unique dominant eigenvalue of 1, which

is simple, and the corresponding eigenvector is M |I×I (see e.g., [LLS97]). The entries of

M |I×I sum to one. Once the values of M are known at the integers, the values of M and

ψµ at dyadic points can be calculated exactly using (2.11) and (2.12), and hence as closely

as desired at any point. For the M222 box spline its values at the integers are given by

M222(j) =





1/2, j = (2, 2);
1/12, j ∈ {(1, 1), (2, 1), (1, 2), (2, 3), (3, 2), (3, 3)};
0, otherwise.

Similarly, by taking the derivative of (2.11) and (2.12), it is easily seen that the values

of a derivative of M and ψµ can be reduced to the calculation of the integer values of the

derivative of M . Since

DξMΞ = MΞ\ξ −MΞ\ξ(· − ξ), ξ ∈ Ξ,

where Dξ is the derivative in the direction ξ, the integer values of DξMΞ can be obtained

from those of MΞ\ξ. Since the columns of Ξ contain a basis of IRs, it is possible to compute

derivatives in any direction, and higher order derivatives can also be calculated. Finally,

since all the other basis functions used in the calculation are linear combinations of box

spline and its shifts, their valuse can be computed from those of box splines.
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3. The least level method

We now give details of the implementation of our “least level method” for interpola-

tion.

3.1. Overview

Our objective is to interpolate function values (and possibly derivatives) at scattered

points Θ ⊂ IRs using splines from an appropriately chosen subspace of SM (2k·). This can

always be done in a naive way by choosing a large k, then taking as the interpolant to f

g :=
∑

θ∈Θ

f(θ)

M(2kθ − jθ)
M(2k · −jθ),

where the shifts jθ ∈ ZZs are such that M(2k · −jθ) is zero at all points of Θ except θ.

For large k the resulting interpolants though smooth (and local) consist of “bumps” near

each of the interpolation points, and so provide a poor representation of the underlying

function. On the other hand, it is possible to choose a space of interpolants which contains

some M(2k · −j) of arbitrarily large support, but such interpolants are increasingly less

local, and still require some splines with a much higher level of dilation.

The least level method balances these factors by taking as many functions as possible

from a low dilation level, then the remainder from increasingly higher levels. The starting

level must be chosen in an appropriate way. The philosophy behind such a choice is the

following. If a space of interpolants can be taken from just the starting level, then this level

is highly dilated and the interpolants will be too localised (the situation of “bumps”), and

one should start with a less dilated space. If functions with a much higher level of dilation

than those in the starting level are required, then the starting level is not sufficiently

dilated. In practice, we will start with a dilation level which would be appropriate for

cardinal interpolation if the points were regularly spaced, and most of the interpolating

space will come from this level. There will be a small contribution from higher levels which

can be thought of as a correction which takes account of the scattering.

The nature of the data also influences the quality of the approximation, as illustrated

in Section 4. For rapidly varying data a starting level with a higher dilation gives a better

fit, while for smoother data a less dilated starting level gives better results.

A recent paper of Johnson [J99] considers the same problem of selecting a good inter-

polant to scattered data from a suitably dilated space S(φ), with φ a compactly supported

function satisfying the Strang–Fix conditions. He shows that interpolants which ‘nearly

minimise’ a cost functional provide good approximation. This cost functional becomes

large as a function is dilated, and so this selection method is similar in spirit to our own,

where most of the interpolant is taken from a low dilation level.
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3.2. Construction of the multilevel spline space

To simplify the exposition we suppose the starting level is H0 = SM , and that the

points are chosen from some region Ω ⊂ IRs. Changing the starting level is equivalent to

scaling Ω, which we will assume has already been done appropriately.

The inner product on H0 is such that {M(· − j) : j ∈ ZZs} is an orthonormal basis,

and this choice is a Riesz basis for L2(IR
s). The higher levels Hi = Si

M ⊖S
i−1
M , i = 1, 2, . . .,

are dilates of S(ψµ : µ ∈ ZZs
2\{0}), namely

Hi =
{ ∑

µ∈ZZs
2\{0}

∑

j∈ZZs

ψµ(2i · −j)aµ(j) :
∑

µ,j |aµ(j)|2 <∞
}
,

where {ψµ} are either the prewavelets or semiwavelets of Section 2. An orthonormal basis

of this space is given by {2is/2ψµ(2i · −j)}µ∈ZZs
2\{0},j∈ZZs . This is also a Riesz basis of Hi,

and the constants in the norm equivalence can be chosen independently of i when the pre-

wavelets are used. The Riesz basis property ensures the stability of our calculations which

are done using the aforementioned bases, and only involve finite sequences of coefficients.

Using these orthogonal bases the Riesz representation of a (compactly supported)

linear functional λ defined on the orthogonal direct sum Pk = SM (2k·) = H0 ⊕ · · · ⊕Hk

can be written as

RPk
(λ) = RH0(λ) + · · ·+RHk

(λ), (3.1)

where, by (2.5),

RH0(λ) =
∑

j∈ZZs

λ
(
M(· − j)

)
M(· − j),

RHi
(λ) =

∑

µ∈ZZs
2\{0}

∑

j∈ZZs

λ
(
2is/2ψµ(2i · −j)

)
2is/2ψµ(2i · −j), i = 1, . . . , k.

(3.2)

Our construction uses the functions given by (3.2), where the λ are the functionals being

matched. Since these functionals have support contained in Ω, all but a finite number of

the coefficients in (3.2) are zero, the relevant ones being those where

supp(M(· − j)) ∩ Ω 6= {}, supp(ψµ(2i · −j)) ∩ Ω 6= {},

respectively. The only calculations used are vector space operations on the RHi
(λ), which

will be performed using the vectors of relevant coefficients from (3.2). As already discussed,

these calculations are stable.

Let λ1, . . . , λn be the n linear functionals that are to be matched. For us these are

the point evaluations f 7→ (θ), θ ∈ Θ, though the method is quite general, and could be

applied to any λi with compact support such as derivative values (Hermite interpolation).

13



We now construct the minimal degree interpolation space V (multilevel spline space)

using the method of [W99], which is effectively Gauss elimination applied to a matrix with

entries from a vector space. For each λi, let

hik := RHk
(λi|Hk

) ∈ Hk, k = 0, 1, . . . ,

so that (3.1) becomes

RPk
(λi|Pk

) = hi0 + hi1 + hi2 + · · ·+ hik,

and the i–th row of A := [hij ] represents λi

A =




h10 h11 h12 · · ·
h20 h21 h22 · · ·
...

...
...

hn0 hn1 hn2 · · ·


 ←→




λ1

λ2
...
λn


 = Λ. (3.3)

To the matrix A (and the vector Λ) apply Gauss elimination (by segments) to obtain

a row echelon form (see [B94] and [W99]). The difference between this and the classical

method is that since entries of a given column now come from a vector space (as opposed

to the one dimensional space IR) some may be linearly independent, and so elementary

row operations can not make all but one of them zero. In this case we allow the possibility

of more than one pivot in a given column (all of which are linearly independent).

The row echelon form gives a new set of functionals with the same span as λ1, . . . , λn,

and their Riesz representations. By the construction, the pivots are linearly independent.

Those in the k–th column are a basis for the space

Vk := RPk
(span{λ1, . . . , λn}) ∩Hk,

and the n–dimensional space V := V0 ⊕ V1 ⊕ · · · is a minimal degree interpolation space.

This is easily seen by observing that the value of a new linear functional applied to a

function from a column up to that in which its leading term occurs is given by the inner

product of the function and this leading term. Pivoting strategies to minimise the errors

in this calculation are suggested in [W99].

Now that the interpolation space has been identified the interpolant can be constructed

in the usual way by solving a (Vandermonde) matrix system. We suggest that this is done

by performing an elimination (back substitution) to an orthogonal reduced row echelon

form of A as discussed in [W99]. First apply elementary row operations to make the pivots

p1, . . . , pn orthonormal (Gram–Schmidt within each grade). Then introduce zeros in all

14



entries above the pivots in a given row to obtain linear functionals Λ⊥ = [λ⊥i ] = MΛ with

λ⊥i (pj) = δij . Thus, the interpolant to f is given by

LΛf =

n∑

i=1

piλ
⊥
i (f).

In the special case where H0 = SM , the Riesz representors of evaluation at grid points

are shifts of each other

RH0(δj) = gj = φ(· − j), j ∈ ZZs, φ := M ∗′ M(−·).

These shifts form a Riesz basis when the symbol

M̃(ω) :=
∑

j∈ZZs

M(j)e−ijω

does not vanish, and so φ̂ = M̃(−·)M̂ has no 2π–periodic zeros. Since any finite set of these

shifts is linearly independent, a dimension count shows that the least level interpolation

space to Θ ⊂ ZZs only uses functions from the ground level, i.e., is given by

VΘ := span{φ(· − j) : j ∈ Θ}.

Moreover, the Gramian matrix for this interpolation is sparse since φ has compact support.

4. Examples

Here we give some univariate and bivariate examples of our scheme that illustrate the

effect of scaling the ground space (the “bump” phenomenon), and the behaviour of the

interpolant at the end points. We also see that the nature of the data itself plays a role.

Interpolation from SM (·/h) to data on the integer mesh hZZs is uniquely possible when

M̃ does not vanish, and has good approximation properties as h → 0. This suggests the

rule of thumb that when the interpolation points have a ‘density’ like that of hZZs, i.e.,

sup
x∈Ω

inf
θ∈Θ
‖x− θ‖ ≈ h

then the ground space should be SM (·/h). A higher or lower starting level of dilation may

be desirable for data which is varying rapidly and slowly, respectively.
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4.1. Cubic spline example

Here we illustrate our method using the cubic spline prewavelet. Consider interpola-

tion at the 10 scattered points

Θ = {0.1755, 0.6241, 1.5088, 3.1686, 4.3299, 6.2966, 7.5399, 8.4326, 8.6842, 9.6802}

in the interval Ω = [0, 10], to data which is varying rapidly, and varying slowly.
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H0 = SM (·/2) H0 = SM

H0 = SM (2·) H0 = SM (4·)

Fig. 4.1. The multilevel cubic spline interpolants to rapidly varying data ±1 at the

10 scattered points Θ in the interval Ω = [0, 10]. Notice the beginning of the “bump”

effect for interpolation points with larger separations.

First we take as the ground space the cubic splines with breakpoints at the even

integers, that is H0 = SM (·/2). The number of B–splines in this space with support inter-

secting Ω (and hence available for the interpolation space) is 8, and all of this 8–dimensional

space is used. Since our prewavelet has support [−4, 10], there is a 23–dimensional space

available at the next level, and the remaining 2 dimensions are taken from it.
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Next we take the ground space with breakpoints at the integers, i.e., H0 = SM . Here

all of the interpolation space is taken from the ground level, where a 13–dimensional space

is available. This is the suggested scaling.

In the third and fourth examples we take the ground space with breakpoints at the

half and quarter integers, i.e., SM (2·) and SM (4·). Here the interpolation space is taken

entirely from the ground level.
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Fig. 4.2. The multilevel cubic spline interpolants to slowly varying data from one arc

of x 7→ sin(πx/10) at the same 10 scattered points used in Fig. 4.1., with the same

breakpoints. Notice the “bump” effect as the spline mesh becomes more dilated.

In Fig. 4.1., the third example provides perhaps the best fit, which shows that for rapidly

varying data some over dilation of the ground space may be appropriate. On the other

hand, the first example of Fig. 4.2. clearly gives the best fit, which indicates that for

smoother data some under dilation of the ground space is desirable.

In all the calculations we performed the majority of the interpolation space came from
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the ground space when the scaling rule of thumb was adopted. Indeed, to find a set up

where more than two levels was used it was necessary to “clump” points together to force

the introduction of higher dilation wavelets to resolve them.

4.2. Comparison with the classical cubic spline interpolants

We compared our interpolant with the classical cubic spline interpolants in a variety

of situations. The differences we observed relate to the behaviour at the boundary, and the

“energy minimisation” properties of the cubic spline interpolant. The classical cubic spline

interpolants give “minimal energy interpolants” to given data (see [B78:Ch.V]), whilst ours

give interpolants with the simplest structure (as described in the introduction). Thus for

problems where the interpolant should have minimal energy (the bending of plate for a

car body) one should use the classical cubic splines, but where the data comes from an

unknown function which does not have “low energy”, we suggest, with appropriate scaling,

that our interpolant might be more desirable. When data was given at the end points of Ω,

or the derivative is known at the first and last interpolation point so that the complete cubic

spline interpolant can be used, then the classical methods invariably performed better.
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−15

−10

−5

0

5

Fig. 4.3. The multilevel cubic spline interpolant of Fig. 4.1. for ground level SM (2·),

together with the cubic spline interpolant to the same (rapidly varying) data with the

not–a–knot end condition (thin line). Notice the differing behaviour at the endpoints.
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Example (Cubic spline end conditions). Consider interpolation to

Θ := {1, 2, . . . , n},

from the space SM generated by the cubic spline M . Let Mj denote the cubic B–spline

centred at j. Then the representor of point evaluation at j can be written as

Rj =
1

6
Mj−1 +

2

3
Mj +

1

6
Mj+1.

Here

suppMj = [j − 2, j + 2], suppRj = [j − 3, j + 3].

As remarked at the end of Section 3, interpolation from V := span{R1, . . . , Rn} to Θ is

correct. For n ≥ 4 this spline space has the following basis

4

19
M0 +

15

19
M1,

1

5
M1 +

4

5
M2,M3,M4, . . .Mn−3,Mn−2,

4

5
Mn−1 +

1

5
Mn,

15

19
Mn +

4

19
Mn+1.

The Gramian matrix for the basis R1, . . . , Rn is the diagonally dominant bidiagonal matrix

[Rj(i)]
n
i,j=1 =

1

36




18 8 1
8 18 8 1
1 8 18 8 1

. . .
. . .

. . .
. . .

. . .

1 8 18 8 1
1 8 18 8

1 8 18




.

If the interpolant is written as s =
∑n+1

j=0 ajMj , then the coefficients can be found by

solving the diagonally dominant tridiagonal system

15a0 − 4a1 + a2 = 0,

1

6
aj−1 +

2

3
aj +

1

6
aj+1 = f(j), j = 1, . . . , n,

an−1 − 4an + 15an+1 = 0.

(4.1)

The cubic spline end condition implied by (4.1) is not any of those given in [B78:IV]. By

way of comparison, the “natural” and not–a–knot end conditions for the left end point are

s′′(1) = a0 − 2a1 + a2 = 0, s′′′(2+)− s′′′(2−) = a0 − 4a1 + 6a2 − 4a3 + a4 = 0,

respectively.
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4.3. Box spline example

We now give examples our scheme for the M222 box spline. For the interpolation

points Θ we take [0, 4]2 ∩ ZZ2 with the point (1, 1) replaced by (1/2, 1/2).
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Fig. 4.4. Lagrange functions for interpolation on the grid Θ. The first is for the point

(1/2, 1/2), and the second for the point (2, 2).
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