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ABSTRACT

A finite frame for a finite dimensional Hilbert space is simply a spanning sequence.
We show that the linear functionals given by the dual frame vectors do not depend on the
inner product, and thus it is possible to extend the frame expansion (and other elements
of frame theory) to any finite spanning sequence for a vector space. The corresponding
coordinate functionals generalise the dual basis (the case when the vectors are linearly
independent), and are characterised by the fact that the associated Gramian matrix is an
orthogonal projection. Existing generalisations of the frame expansion to Banach spaces
involve an analogue of the frame bounds and frame operator.

The potential applications of our results are considerable. Whenever there is a natural
spanning set for a vector space, computations can be done directly with it, in an efficient
and stable way. We illustrate this with a diverse range of examples, including multivariate
spline spaces, generalised barycentric coordinates, and vector spaces over the rationals,
such as the cyclotomic fields.

Key Words: finite frames, vector spaces over the rationals, least squares (minimum norm)
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1. Introduction

Vectors (fj)
n
j=1 in a Hilbert space H are a frame for H if for some A,B > 0

A‖f‖2 ≤
∑

j

|〈f, fj〉|
2 ≤ B‖f‖2, ∀f ∈ H.

This is equivalent to (fj) spanning the finite dimensional space H. The well established
theory of frames (cf. [C03], [W11]), then gives the dual frame expansion

f =
∑

j

〈f, f̃j〉fj =
∑

j

〈f, fj〉f̃j , ∀f ∈ H, (1.1)

where the dual frame vectors (f̃j) are characterised by the fact that the coefficients (〈f, f̃j〉)
in the first expansion for f above have the minimal ℓ2–norm amongst all possible choices.
Such expansions, which generalise orthogonal and biorthogonal expansions, have many
applications, e.g., in wavelets and signal analysis (see [K94] and [CK07]).

A careful examination of the above characterisation of the dual frame vectors, shows
that the linear functionals cj : f 7→ 〈f, fj〉 (giving the coefficients with minimal ℓ2–norm)
do not depend on the inner product – though, when there is one, the Riesz representation
conveniently allows them to be expressed via the inner product with a dual frame vector.

This paper outlines the consequences of this simple observation: the extension of the
dual frame expansion, and other elements of frame theory, to finite spanning sequences for
a vector space X. Key features of our “canonical expansion” include

• It is easy to calculate.

• The corresponding coordinates have nice properties, which characterise them.

• It depends continuously on the frame vectors.

• It transforms naturally under linear maps, and preserves symmetries.

• The dimension of the vector space does not need to be known.

• There is an analogue for affine spaces, i.e., generalised barycentric coordinates.

The development is elementary, requiring no knowledge of frame theory. However, we do
indicate the corresponding notions in frame theory, when they exist. In these terms, our
principal result (Theorem 4.9) is

• If (fj)
n
j=1 spans a vector space X, then there is a unique inner product on X for

which it is a normalised tight frame, i.e., (1.1) holds with f̃j = fj .

If the success of finite frames in applications (cf. [CK07]) is anything to go by, then
the possible applications of these results are considerable. Whenever there is a natural
spanning set/sequence for a vector space or affine space, computations can be done directly
with it, in an efficient and stable way. This avoids the need to obtain a basis by thinning
or applying Gram–Schmidt to an ad hoc ordering of the spanning set, which may destroy
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the inherent geometry. Spanning sets also have natural advantages over bases is when the
dimension of the space is difficult to determine, e.g., multivariate spline spaces. A number
of indicative examples are given, including the cyclotomic fields as vector spaces over the
rationals (where the roots of unity form a natural spanning set). By way of contrast, the
generalisations of the frame expansion to Banach spaces initiated by [G91] typically involve
an analogue of the frame bounds and frame operator – something which can completely
be dispensed with in the finite dimensional case (where convergence is not an issue).

The rest of the paper is set out as follows. Next we give the basic linear algebra of a
spanning sequence Φ = (fj). In particular, we show that the linear dependencies of Φ can
be described in a canonical way, via an associated projection matrix PΦ (Lemma 3.3). We
define the canonical dual functionals cΦ = (cj) for Φ and characterise them (Section 4),
and then describe their coordinate like properties (Section 5). We conclude with a parallel
development for affine spanning sequences for affine spaces, i.e., generalised barycentric
coordinates.

2. Duality

Throughout, let IF denote a subfield of C, e.g., the rationals QQ or the reals IR, and
X be a d–dimensional vector space over IF. The IF–vector space of all linear functionals
λ : X → IF is called the (algebraic) dual X and is denoted by X ′. If (fj)

d
j=1 is a basis for

X, then the unique coefficients λj(f) for which f =
∑

j λj(f)fj define linear functionals
λj which are a basis for X ′, so that dim(X) = dim(X ′). These satisfy λj(fk) = δjk, and
are called the dual basis. The bidual X ′′ = (X ′)′ is canonically isomorphic to X via the
map

X → X ′′ : x 7→ x̂, x̂(λ) := λ(x), ∀λ ∈ X ′. (2.1)

Let ej denote the j–th standard basis vector for IFJ .
For a finite sequence Φ = (fj)j∈J in X we define the synthesis map

V = [fj ]j∈J : IFJ → X : a 7→
∑

j∈J

ajfj .

As the matrix notation suggests, this maps the coefficients (aj) to the linear combination
∑

j ajfj of the “columns” fj = V ej of V . Thus the sequence Φ spans X if and only if
V is onto X. Similarly, for a finite sequence Ψ = (λj)j∈J of linear functionals on X, the
analysis map is

Λ : X → IFJ , Λ(f) := (λj(f))j∈J ,

and we write Λ = (λj)j∈J for short (the same notation is used for the sequence Ψ). The
duality (2.1) gives that Λ is 1–1 if and only if (λj) spans X ′.

If X has an inner product, then each λ ∈ X ′ has a Riesz representation λ(x) = 〈x, f〉
for some f ∈ X. For this reason, the product of the analysis map and synthesis map of
finite sequences Ψ = (λj)j∈J and Φ = (fk)k∈K in X ′ and X

ΛV = (λj)j∈J [fk]k∈K = [λj(fk)]j∈J,k∈K

is often called the Gramian matrix of the sequences. Let IX denote the identity on X.
Our generalisation of (1.1) is an expansion of the following type.
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Proposition 2.2 (Dual sequences). Let (fj)j∈J and (λj)j∈J be spanning sequences for
a vector space X and its algebraic dual X ′, respectively, with Gramian

G := [λj(fk)]j,k∈J = ΛV, V := [fj ]j∈J : IFJ → X, Λ = (λj)j∈J : X 7→ IFJ .

Then the following are equivalent
(a) V Λ = IX .
(b) f =

∑

j λj(f)fj , ∀f ∈ X.
(c) λ =

∑

j λ(fj)λj , ∀λ ∈ X ′.

(d) G2 = G.
(e) V = V G.
(f) Λ = GΛ.

If (fj)j∈J and (λj)j∈J are spanning sequences for X and X ′ (with the same index
set) satisfying any of the conditions of Proposition 2.2, then (by analogy with the case of
bases) we say that they are dual. If (fj) is not a basis, then there are many sequences
of functionals which are dual to it. In Section 4, we show that there is a canonical choice
if IF is closed under complex conjugation, and give various characterisations for it. For
example, it is the unique choice for which the Gramian is an orthogonal projection matrix.

3. Linear dependencies and the associated projection

From now on, we assume that the field IF ⊂ C is closed under complex conjugation.
This ensures that if A is a matrix with entries in IF, then so is its Hermitian transpose A∗.
In particular, the inner product between vectors with entries from IF is in IF.

The linear combinations of a finite spanning sequence Φ = (fj)j∈J for a vector space
X can be conveniently described as elements of the range of the synthesis map

V = [fj ]j∈J : IFJ → X : a 7→
∑

j

ajfj .

The subspace of IFJ consisting of all (linear) dependencies is dep(Φ) := ker(V ), i.e.,

a = (aj)j∈J ∈ dep(Φ) ⇐⇒
∑

j

ajfj = 0.

Now let CJ (and hence IFJ) have the Euclidean inner product 〈x, y〉 =
∑

j xjyj , and

dep(Φ)⊥ := {x ∈ IFJ : 〈x, a〉 = 0,∀a ∈ dep(Φ)}.

For IF the real or complex field, we have the familar orthogonal decomposition

IFJ = dep(Φ)⊥ ⊕ dep(Φ).

It turns out that this also holds for any subfield IF of C which is closed under conjugation.
As this is not obvious or well known, even for IF = QQ (cf. [ER49]), we now give the details.
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Lemma 3.1 (Orthogonal projections in IFJ). Suppose that IF = IF, and let W be a
subspace of IFJ . Then there is the orthogonal direct sum decomposition

IFJ = W⊥ ⊕W, W⊥ := {x ∈ IFJ : 〈x, a〉 = 0,∀a ∈ W},

where the matrices P,Q ∈ IFJ×J giving the projections onto the components W⊥ and W
are complementary orthogonal projection matrices.

Proof: Clearly, we have a direct sum W⊕W⊥ (where W and W⊥ are orthogonal),
and so it suffices to show this subspace is all of IFJ , and that one of P or Q = I − P is an
orthogonal projection matrix with entries in IF. We do this by constructing Q explicitly.

Let (vk) be a basis for W. Observe that for v ∈ IFJ nonzero, the matrix giving the
orthogonal projection of CJ onto spanC{v} is 1

〈v,v〉vv∗ ∈ IFJ×J (since the field IF is closed

under conjugation). Thus applying Gram–Schmidt (without normalisation) to (vk) gives
an orthogonal basis (wk) for W ⊂ IFJ . Let Q :=

∑

k
1

〈wk,wk〉
wkw∗

k ∈ IFJ×J , which is an

orthogonal projection matrix, i.e., Q2 = Q and Q∗ = Q, with

Qa =
∑

k

〈a,wk〉

〈wk, wk〉
wk ∈ W, ∀a ∈ IFJ , Qa = a, ∀a ∈ W.

Let P := I − Q ∈ IFJ×J be the complementary orthogonal projection matrix. Then

a = Pa + Qa, ∀a ∈ IFJ .

which gives IFJ = W⊥ ⊕W, provided that Pa ∈ W⊥. Since (wk) is a basis for W, and

〈Pa,wk〉 = 〈(I − Q)a,Qwk〉 = 〈(Q − Q2)a,wk〉 = 〈0, wk〉 = 0, ∀k,

it follows that Pa ∈ W⊥, ∀a ∈ IFJ , which completes the proof.

For Φ = (fj)j∈J in X and W = dep(Φ), the associated projection PΦ ∈ IFJ×J

is the matrix P of Lemma 3.1 (and the linear map IFJ → IFJ that it gives), i.e., the
orthogonal projection onto dep(Φ)⊥, which is characterised by

ran(PΦ) = dep(Φ)⊥, ker(PΦ) = ran(I − PΦ) = dep(Φ).

The kernel of the synthesis map V = [fj ]j∈J is dep(Φ) = ran(I − PΦ), and so it can be
factored

V = V PΦ. (3.2)

We say spanning sequences (fj)j∈J and (gj)j∈J for vector spaces X and Y are similar
if there is an invertible linear map Q : X → Y with gj = Qfj , ∀j.
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Lemma 3.3 (Linear dependencies). Let Φ = (fj)j∈J and Ψ = (gj)j∈J be spanning
sequences for the IF–vector spaces X and Y . Then the following are equivalent

(a) Φ and Ψ are similar, i.e., there is a invertible linear map Q : fj 7→ gj .

(b) dep(Φ) = dep(Ψ) (the dependencies are equal).

(c) PΦ = PΨ (the associated projections are equal).

Proof: (a)=⇒(b). Suppose there is an invertible Q : X → Y with gj = Qfj , ∀j.
Then [gj ] = [Qfj ] = Q[fj ], so that dep(Ψ) = ker(Q[fj ]) = ker([fj ]) = dep(Φ).

(b)=⇒(c). This follows since PΦ depends only on W = dep(Φ).

(c)=⇒(a). Suppose that PΦ = PΨ. Let V = [fj ]j∈J and W = [gj ]j∈J . Since V = V PΦ

and ran(PΦ) = ker(V )⊥, the restriction map V | = V |ran(PΦ) : ran(PΦ) → X is a bijection,
as is W | = W |ran(PΨ) = W |ran(PΦ). Thus Q := W |(V |)−1 : X → Y is a bijection. Since
fj = V ej = V (PΦej), we have

Qfj = W (V |)−1V (PΦej) = WPΦej = WPΨej = Wej = gj ,

so that Φ and Ψ are similar.

More generally, since a linear map L : X → Y preserves linear combinations, we have

dep(LΦ) ⊃ dep(Φ) ⇐⇒ PLΦPΦ = PLΦ,

with equality if and only if L is 1–1, i.e., Φ and LΦ are similar.

Example 1. The sequence (PΦej) of the columns of the matrix PΦ (which span dep(Φ)⊥)
is similar to Φ, since the synthesis map of these columns is PΦ, which has kernel dep(Φ).
This gives a canonical representative of the similarity class of the spanning sequence Φ. In
particular, there is a vector space isomorphism (cf. Theorem 4.9)

L = LΦ : X 7→ ran(PΦ) : fj 7→ PΦej , ∀j. (3.4)

When Φ is a basis ran(PΦ) = IFJ and Lfj = ej , the standard basis for IFJ .

4. The canonical dual functionals

Recall, the (Moore–Penrose) pseudoinverse of a linear map A : H → K between finite
dimensional Hilbert spaces, is the unique linear map A+ : K → H satisfying

AA+A = A, A+AA+ = A+, (AA+)∗ = AA+, (A+A)∗ = A+A. (4.1)

We can now define the canonical dual functionals to a spanning sequence.

5



Lemma 4.2 (Existence). Let X be a vector space over a field IF, with IF = IF. Suppose
that Φ = (f1, . . . , fn) are vectors which span X. Then there exist unique coefficients
cΦ(f) = (cj(f))n

j=1 ∈ IFn of minimal ℓ2–norm for which

f =

n
∑

j=1

cj(f)fj . (4.3)

These are given by
cΦ(f) = (ΛV )+Λf, V = [f1, . . . , fn], (4.4)

where Λ = (λk)m
k=1 : X → IFm is any 1–1 linear map, i.e., λ1, . . . , λm span X ′. Further,

the Gramian
[cj(fk)]nj,k=1 = cΦV = (ΛV )+ΛV = PΦ, (4.5)

where PΦ is the orthogonal projection matrix associated with Φ.

Proof: Let a = c(f) ∈ IFn be a solution to (4.3), i.e., to V a = f . Since the linear
functionals λ1, . . . , λm span X ′, the equation V a = f is equivalent to λk(V a) = λk(f), ∀k,
i.e.,

ΛV a = Λf,

where ΛV ∈ IFm×n and Λf ∈ IFn. This (possibly) underdetermined linear system has a
unique minimal ℓ2–norm (least squares) solution a ∈ Cn given by a = c(f) = (ΛV )+Λf .
Since this solution does not depend on the particular choice of Λ, we can take λ1, . . . , λm to
be a basis for X ′, so that ΛV is onto. In this case, the explicit formula for the pseudoinverse
gives

(ΛV )+ = (ΛV )∗(ΛV (ΛV )∗)−1 ∈ IFn×d, (4.6)

and so we conclude that a ∈ IFn. By (4.4), the cj : X → IF are linear functionals.
By the properties (4.1) of the pseudoinverse, the Gramian matrix G = (ΛV )+ΛV is

Hermitian, and
G2 = (ΛV )+(ΛV (ΛV )+ΛV ) = (ΛV )+ΛV = G.

Thus G is an orthogonal projection matrix, and ker(G) = ker(V ) = dep(Φ) = ker(PΦ)
gives G = PΦ.

The sequence of linear functionals cΦ = c = (cj) defined by (4.4) do not depend on
the choice of Λ. Indeed, they can be calculated from PΦ (which depends only on Φ) via

cΦ(f) = PΦa, f = V a.

We will refer to cΦ as the canonical dual functionals or (linear) coordinates for the
spanning sequence Φ = (fj). When Φ is a basis they are simply the dual functionals.

Remark: Minimal ℓ2–norm solutions, such as cΦ(f) above, have been used extensively in
numerical linear algebra, where the method is referred to as total least squares. It is used
in spline theory, e.g., selecting the (natural) cubic interpolating spline which minimises the
L2–norm of the second derivative.
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Example 2. Suppose X is a Hilbert space over IR or C. If Φ = (fj) is finite frame for X,
i.e., a spanning sequence for X, then V = [fj ] is onto, so that Λ = V ∗ : f 7→ (〈f, fj〉) is
1–1, and so by (4.4), the canonical dual functionals c = cΦ are given by

c = (V ∗V )+V ∗ ⇐⇒ cj(f) = 〈f, V (V ∗V )+ej〉 (since (A+)∗ = (A∗)+).

In frame theory the Riesz representers V (V ∗V )+ej are called the dual frame vectors. They

are usually denoted f̃j , and computed via

f̃j = S−1fj , S := V V ∗, (4.7)

where S is called the frame operator. By (4.5) and (4.7), the associated projection is

PΦ = cΦV = (V ∗V )+V ∗V = [〈fk, f̃j〉] = V ∗S−1V. (4.8)

The projection matrix of (4.8) is the Gramian of the canonical tight frame Ψ = (f can
j ),

i.e.,

PΦ = [〈f can
k , f can

j 〉], f can
j := S− 1

2 fj , S := V V ∗.

This frame is similar to Φ (by its definition), and has the property that cΨ
j (f) = 〈f, fcan

j 〉.
In the absense of some canonical identification between X and X ′ (such as that given by
the Riesz representation), there is no analogue of the canonical dual frame for a spanning
sequence Φ for a vector space X. That being said, the columns of PΦ, which are the
orthogonal projection of the orthonormal basis (ej), form a normalised tight frame (for
their span) which is similar to Φ via (3.4), and is unique (up to a unitary transformation).
In this way, each Φ is uniquely associated with a normalised tight frame.

Further, (3.4) induces a unique inner product on X for which Φ is a normalised tight
frame, namely

〈f, g〉X := 〈LΦf, LΦg〉, ∀f, g ∈ X.

This formulation of our canonical coordinates is a new result in frame theory:

Theorem 4.9. Let Φ = (fj) be a finite spanning sequence for a vector space X. Then
there exists a unique inner product on X for which Φ is a normalised tight frame, namely

〈fj , fk〉X := 〈PΦej , PΦek〉 = (PΦ)kj . (4.10)

Proof: If Φ is a normalised tight frame for 〈·, ·〉X , then its Gramian is PΦ, i.e.,
(4.10) holds. We have already observed that this defines an inner product on X (for which
Φ is a normalised tight frame).
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The canonical dual functionals can be characterised in a number of ways:

Theorem 4.11 (Characterisation). Let X be a vector space over a field IF, with IF = IF.
Suppose that Φ = (fj) in X and Ψ = (λj) in X ′ are dual, with Gramian matrix

G = ΛV = [λj(fk)], V := [fj ] : IFJ → X, Λ = (λj) : X → IFJ .

Then the following are equivalent
(a) (λj) are the canonical dual functionals for (fj).

(b) (f̂j) are the canonical dual functionals for (λj).
(c) For all f ∈ X, the a = (aj) with f =

∑

j ajfj of minimal ℓ2–norm is a = (λj(f)).
(d) For all λ ∈ X ′, the b = (bj) with λ =

∑

j bjλj of minimal ℓ2–norm is b = (λ(fj)).
(e) G = G∗, i.e., G is an orthogonal projection.
(f) G = PΦ.
(g) GT = PΨ.
(h) PΨ = PT

Φ .

(i) dep(Ψ) = dep(Φ).

Proof: By Proposition 2.2 and (3.2), Φ and Ψ being dual is equivalent to

V PΦΛ = V Λ = IX .

Thus Λ is a right inverse of V PΦ. Since V PΦcΦ = IX and V PΦ is 1–1 on ran(PΦ), Λ must
have the form

Λ = cΦ + (I − PΦ)R, R : X → IFJ , (4.12)

and by (4.5)
G = ΛV = cΦV + (I − PΦ)RV = PΦ + (I − PΦ)RV PΦ. (4.13)

(a)⇐⇒(c), (b)⇐⇒(d). By definition.

(a)=⇒(b). Suppose Ψ = (λj) = (cΦ
j ). Since Ψ = (cΦ

j ) spans X ′ and (f̂j) spans X ′′,
we can use Lemma 4.2 to calculate the canonical dual functionals for Ψ = (λj) as

cΨ = (LW )+L, W := [cΦ
j ] : IFJ → X ′, L = (f̂j) : X ′ → IFJ .

Since LW = [f̂j(c
Φ
k )] = [cΦ

k (fj)] = PT
Φ , a projection matrix, we have (LW )+ = LW , and

so
cΨ
j (λ) = (PT

Φ Lλ)j =
∑

k

(PT
Φ )jk(Lλ)k =

∑

k

cΦ
k (fj)f̂k(λ) =

∑

k

cΦ
k (fj)λ(fk)

= λ
(

∑

k

cΦ
k (fj)fk

)

= λ(fj) = f̂j(λ), ∀λ ∈ X ′ =⇒ cΨ
j = f̂j .

(b)=⇒(g). Since (f̂j) are the canonical dual functionals for Ψ, (4.5) gives

PΨ = [f̂j(λk)] = [λk(fj)] = GT .

(g)=⇒(e). Since PΨ = P ∗
Ψ, we have G = PT

Ψ = (P ∗
Ψ)T = (PT

Ψ )∗ = G∗.
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(e)=⇒(f). Since PΦ = P ∗
Φ and V = V PΦ, by (4.13), we have G = G∗ if and only if

(I − PΦ)RV = ((I − PΦ)RV PΦ)∗ = PΦ(RV )∗(I − PΦ). (4.14)

The operator above maps into ran(I − PΦ) ∩ ran(PΦ) = 0, and so is zero, giving G = PΦ.
(f)=⇒(h). Suppose G = PΦ. Then (4.5) gives λj(fk) = cΦ

j (fk), ∀j, k. Since (fk) spans

X, this gives λj = cΦ
j , ∀j. By (a)=⇒(b), we have cΨ

j = f̂j , and hence

PΨ = [cΨ
j (λk)] = [f̂j(c

Φ
k )] = [cΦ

k (fj)] = PT
Φ .

(h)=⇒(i). Suppose PΨ = PT
Φ . Then dep(Ψ) = ker(PΨ) = ker(PT

Φ ) gives

a ∈ dep(Ψ) ⇐⇒ PT
Φ a = 0 ⇐⇒ PT

Φ a = P ∗
Φa = PΦa = 0 ⇐⇒ a ∈ dep(Φ).

(i)=⇒(a). In view of (4.12) it suffices to show (I − PΦ)R = 0, where PΦ is thought of
as a map IFJ → IFJ . Let a ∈ ran(I − PΦ) = ker(PΦ) = dep(Φ). Then

a ∈ dep(Φ) = ker(PΦ) =⇒ a∗cΦV = a∗PΦ = (PΦa)∗ = 0 =⇒ a∗cΦ = 0,

a ∈ dep(Φ) = dep(Ψ) =⇒
∑

j

ajλj = aT Λ = 0 =⇒ a∗Λ = 0.

Thus (4.12) gives
ran((I − PΦ)R) ⊥ a, ∀a ∈ ran(I − PΦ),

and so (I − PΦ)R = 0, since IFJ = ran(I − PΦ) ⊕ ran(PΦ) (orthogonal direct sum).

Example 3. Suppose that Φ = (fj)
n
j=1 has just one dependency: f1 + f2 + · · · + fn = 0.

Then a = (1, 1, . . . , 1) spans dep(Φ), so that PΦ = I−QΦ = I− 1
na∗a, d = dim(X) = n−1,

i.e.,

cj(fk) =

{

1 − 1
d+1 , j = k;

−1
d+1 , j 6= k.

Example 4. By Theorem 4.9, each spanning sequence Φ is associated with the unique
normalised tight frame with Gramian PΦ. Via this identification we can extend elements
of frame theory to spanning sequences. For example, we say Φ is equiangular if the
tight frame given by the columns of PΦ = [pjk] is, i.e., PΦ has constant diagonal and
|pjk| = C, j 6= k. Equiangular sequences of vectors are useful in many applications (cf.
[SH03], [HP04], [R05]). An analytic construction of d2 equiangular vectors (or lines) in
Cd (for a general d) is an important problem in a number of areas (cf. [RBSC04], [A05]).
The current approach to this (successful for small values of d) is to obtain Φ as the orbit
of a single vector v ∈ Cd under the action of a discrete Heisenberg group. Given the above
observations, a general construction might come as a spanning sequence of d2 vectors for
a d–dimensional space (which is not presented as Cd), as was done in Example 3.
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Example 5. Let ω be the n–th root of unity ω = e2πi/n. The cyclotomic field QQ[ω] is a
QQ–vector space of dimension d = ϕ(n), where ϕ is the Euler Phi function. A natural span-
ning sequence for this space is given by the n–th roots themselves Φ = (1, ω, ω2, · · · , ωn−1).
In the coordinates for Φ, multiplication by ω is given by the cyclic forward shift operator S,
i.e., cΦ(ωf) = ScΦ(f), and so PΦ is a circulant matrix. Circulant matrices are (unitarily)
diagonalised by the Fourier transform matrix (characters χj of ZZn), and so (with a little
calculation [CW10]) one obtains

PΦ =
∑

j∈ZZ∗

n

1

n
χjχ

∗
j , χj = (1, ωj , ω2j , . . . , ω(n−1)j)T , (4.15)

where ZZ∗
n is the (multiplicative) group of units in ZZn, and (by Galois theory) nPΦ ∈ ZZn×n.

Thus the canonical coordinates are given by

cj(ω
k) = νn(j − k) =

1

n

∑

ℓ∈ZZ∗

n

ωℓ(j−k).

The formula (4.15) makes a direct connection between dimQQ(QQ[ω]) = ϕ(n) and ZZ∗
n, or,

equivalently, the primitive n–th roots {ωj : j ∈ ZZ∗
n}. The primitive n–th roots are a

natural basis for QQ[ω] when n is prime (and square free [T10]), but not in general, e.g., for
n = 4 the primitive roots {−i, i} are linearly dependent over QQ. When the primitive roots
are not a basis, bases with additional properties can be constructed in a noncanonical way.
Most prominently used are the integral bases (each element of the ring of integers has its
coefficients in ZZ), and power bases (these have the form {1, z, z2, · · · , , zd−1}).

The projection QΦ = I − PΦ onto dep(Φ) is circulant, and so there is a spanning
set for dep(Φ) which has cyclic symmetry, i.e., {SjaΦ : 0 ≤ j < n} where S is the cyclic
forward shift operator and

aΦ = n(e1 − PΦe1) = ne1 −
∑

ℓ∈ZZ∗

n

χℓ ∈ ZZn.

There is a large body of research on the dependencies (over ZZ) of the n–th roots of unity,
largely concerned with finding vanishing sums with minimal numbers of terms (cf. [M65],
[CJ76], [LL00], [S08]). To the best of our knowledge the spanning sequence {SjaΦ} is
new.

As an example, when n = 6, ZZ∗
6 = {1, 5} and the coordinates for Φ = {1, ω, . . . , ω5},

ω := e
2πi
6 are given by

PΦ =
1

6
(χ1χ

∗
1 + χ5χ

∗
5) =

1

6















2 1 −1 −2 −1 1
1 2 1 −1 −2 −1
−1 1 2 1 −1 −2
−2 −1 1 2 1 −1
−1 −2 −1 1 2 1
1 −1 −2 −1 1 2















.
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Thus aΦ = (4,−1, 1, 2, 1,−1)T , i.e., the dependencies between the roots can be expressed
as

4ωj − ωj+1 + ωj+2 + 2ωj+3 + ωj+4 − ωj+5 = 0, 0 ≤ j < 6.

Example 6. We can define matrices with respect to spanning sequences in the usual way.
The (canonical) matrix representing a linear map L : X → Y with respect to spanning
sequences Φ = (fj)

n
j=1 and Ψ = (gk)m

k=1 for X and Y is the A = AL ∈ IFm×n given by

j–th column of A = Aej = cΨ(Lfj).

i.e., cΨ(Lf) = A(cΦ(f)), ∀f ∈ X. The map L 7→ AL is linear, and L can be recovered
from A = AL via

L = WAcΦ, W = [gk].

Computations with such matrices are stable, since AL depends continuously on Φ and Ψ.

5. Properties of the linear coordinates

We now show that the linear coordinates cΦ for a sequence of vectors Φ transform
naturally under linear maps and symmetries. This, together with the fact that they depend
continuously on Φ makes them ideal for applications such as multivariate spline spaces.
First we consider the coordinate like properties of cΦ which generalise the biorthogonality
of a basis and its dual basis, and follow from the fact that PΦ is a projection matrix.

We write the sequence obtained by removing the vector fj from Φ = (f1, . . . , fn) as

Φ \ fj := (f1, . . . , fj−1, fj+1, . . . , fn).

Proposition 5.1 (Properties of cΦ). Let cΦ = (cj) be the coordinates (canonical dual
functionals) for a finite spanning sequence Φ = (fj) for a vector space X. Then

(a) 0 ≤ |cj(fk)| ≤ 1, cj(fj) ≥ 0, and cj(fk) = ck(fj).
(b) |cj(fk)| = 1 if and only if k = j and fj 6∈ span(Φ \ fj), in which case cj(fj) = 1 and
cj = 0 on span(Φ \ fj).
(c) cj(fj) = 0 if and only if fj = 0.
(d) cj = αck, α ∈ IF if and only if fj = αfk.
(e)

∑

j cj(fj) = d = dim(X).

Proof: Recall that P = [pjk] = PΦ = [cj(fk)] is an orthogonal projection matrix.

(a) Since P = P ∗, we have cj(fk) = pjk = pkj = ck(fj), and ‖Px‖ ≤ ‖x‖, ∀x, gives

0 ≤ |cj(fk)| = |pjk| ≤ ‖Pek‖ =
(

∑

j

|pjk|
2
)1/2

≤ ‖ek‖ = 1.

Since P is positive semidefinite, we have cj(fj) = e∗jPej ≥ 0.
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(b) We have |cj(fk)| = 1 in the above if and only if Pek = ek and |pjk| = 1, i.e., j = k,
cj(fj) = 1 and cj(fℓ) = 0, ℓ 6= j. The condition Pej = ej is equivalent to the j–th column
of P not being in the span of the others, and since the columns of P and the vectors of Φ
have the same linear dependencies, this is the same as fj 6∈ span(Φ \ fj).

(c) Suppose that cj(fj) = 0. Then for any t ∈ IR, we may write

fj =
∑

k 6=j

ck(fj)fk = tfj + (1 − t)
∑

k 6=j

ck(fj)fk.

The coefficients in the first linear combination above have minimal ℓ2–norm, so that

t2 + {(1 − t)2 − 1}
∑

k 6=j

|ck(fj)|
2 = t2

{

1 +
∑

k 6=j

|ck(fj)|
2
}

− 2t
∑

k 6=j

|ck(fj)|
2 ≥ 0,

and so (by taking t → 0) we conclude that
∑

k 6=j |ck(fj)|
2 = 0, i.e., ck(fj) = 0, ∀k. Thus

fj =
∑

k ck(fj)fk = 0. The converse is immediate.
(d) Suppose that cj = αck. Then cj(fℓ) = αck(fℓ), ∀ℓ, i.e., e∗jP = αe∗kP , which gives

Pej = αPek =⇒ fj =
∑

ℓ

cℓ(fj)fℓ =
∑

ℓ

αcℓ(fk)fℓ = αfk.

Conversely, if fj = αfk, i.e., cℓ(fj) = cℓ(αfk) = αcℓ(fk), ∀ℓ, then the second part of (a)
gives

cj(fℓ) = cℓ(fj) = αcℓ(fk) = αck(fℓ), ∀ℓ =⇒ cj = αck.

(e) For any dual sequences, we may use Proposition 2.2 to calculate
∑

j

λj(fj) = trace(G) = trace(ΛV ) = trace(V Λ) = trace(IX) = dim(X) = d,

or take the trace of P (an orthogonal projection matrix of rank d).

There are similar properties for the sum of the squares of the coordinates:

Proposition 5.2. Let cΦ = (cj) be the coordinates (canonical dual functionals) for a
finite spanning sequence Φ = (fj) for a vector space X, and

CΦ(f) :=
∑

j

|cj(f)|2.

Then
(a) CΦ(f) ≥ 0 with equality if and only if f = 0.
(b) CΦ(fj) ≤ 1 with equality if and only if fj 6∈ span(Φ \ fj).
(c)

∑

j CΦ(fj) = dim(X) = d.

Proof: Since CΦ(fk) = ‖PΦek‖
2, a careful reading of the proof of Proposition 5.1

gives (a) and (b). Let ‖A‖F :=
√

trace(A∗A) be the Frobenius norm. Since PΦ is an
orthogonal projection of rank d, we obtain

∑

j

CΦ(fj) =
∑

j

‖PΦek‖
2 = ‖PΦ‖

2
F = trace(P ∗

ΦPΦ) = trace(PΦ) = d.
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The coordinates transform naturally under the action of a linear transformation:

Proposition 5.3 (Linear maps). Let Φ = (f1, . . . , fn) be vectors which span the vector
space X, L : X → Y be an invertible linear map, and Ψ := LΦ = (Lf1, . . . , Lfn). Then
the canonical dual functionals for Φ and Ψ satisfy

cLΦ
j (Lf) = cΦ

j (f), ∀f ∈ X. (5.4)

Proof: Choose Λ as in (4.4), so that

cΦ(f) = (ΛV )+Λf, V = [fj ].

Then ΛL−1 : Y → IFm is 1–1, and so, with W = [Lfj ] = LV , we have

cΨ(Lf) = (ΛL−1W )+ΛL−1(Lf) = (ΛV )+Λf = cΦ(f).

Let GL(X) be the general linear group of all invertible linear transformations X → X.
In [VW10] the symmetry group of a finite frame Φ = (fj)j∈J for a Hilbert space was
defined as the group of permutations on the index set J given by

Sym(Φ) := {σ ∈ SJ : ∃Lσ ∈ GL(X) with Lσfj = fσj ,∀j ∈ J}. (5.5)

This does not depend on the inner product, and so extends to finite spanning sequences
for vector spaces. The symmetry group of similar spanning sequences is the same, and can
be computed from PΦ.

A spanning sequence and its canonical dual functionals have the same symmetries:

Proposition 5.6 (Symmetries). Let Φ = (fj) be a finite spanning sequence for a vector
space X. Then Φ and its canonical dual functionals have the same symmetry group, i.e.,

Sym(Φ) = Sym(cΦ).

Proof: In [VW10] is was shown that similar spanning sequences have the same
symmetry group, and (by considering the associated tight frame) that a permutation σ is
a symmetry of Φ if and only if P ∗

σPΦPσ = PΦ, where Pσ is the permutation matrix given
by Pσej = eσj . Let Ψ = cΦ, then Theorem 4.11 gives PΦ = PT

Ψ , and so we obtain

σ ∈ Sym(Φ) ⇐⇒ P ∗
σPΦPσ = PΦ ⇐⇒ P ∗

σPT
Ψ Pσ = PT

Ψ

⇐⇒ P ∗
σPΨPσ = PΨ ⇐⇒ σ ∈ Sym(Ψ),

since PT
σ = P ∗

σ .
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Example 7. Let X = Π′
1 be the dual of the (three dimensional) space of linear polynomials

on IR2. Consider the spanning sequence for X given by the point evaluations

Φ =
(

δ(0,0), δ(1,0), δ(0,1), δ(a,b)

)

, δx : f 7→ f(x).

The canonical dual coordinates cΦ are in X ′ = Π′′
1 . By (2.1) they can be identified with

linear polynomials f(0,0), . . . , f(a,b) ∈ Π1. By direct computation, using (4.4) and (4.6)
with (λj) the image of the basis 1, x, y for Π1 under the bidual map Π1 → Π′′

1 , we obtain

f(0,0)(x, y) =
(ab − 1 − a − b2)x + (ab − 1 − b − a2)y + 1 + a2 + b2

2(1 + ab + a2 − a + b2 − b)
,

f(1,0)(x, y) =
(2 + ab − a + 2b2 − 2b)x + (a − a2 − 2ab)y + ab + a2 − a

2(1 + ab + a2 − a + b2 − b)
,

f(0,1)(x, y) =
(b − b2 − 2ab)x + (2 + ab − b + 2a2 − 2a)y + ab + b2 − b

2(1 + ab + a2 − a + b2 − b)
,

f(a,b)(x, y) =
(2a + b − 1)x + (a + 2b − 1)y + 1 − a − b

2(1 + ab + a2 − a + b2 − b)
.

(5.7)

Note that these polynomials are continuous functions of (a, b).

Example 8. For a given triangulation ∆, the multivariate spline space Sr
k(∆) consists of

all Cr piecewise polynomial functions of degree ≤ k on ∆ (cf. [LS07]). To compute with
these spaces (which give good global approximations based on the local approximation
power of polynomials) the prevailing approach is to find a suitable basis (ideally consisting
of functions with small support). A major obstacle in the construction of such bases is
determining the dimension of Sr

k(∆), which is sensitive to perturbation (cf Ch. 9 of [LS07]).
Usually this is done by giving an explicit determining set (cf. [AS87]). For example, the
triangulations ∆s and ∆n (see Fig. 1) have dim(S1

2 (∆s)) = 8, dim
(

S1
2 (∆n)

)

= 7, i.e., a
perturbation of the interior singular vertex of ∆s causes the dimension to drop by 1. To get
around this, singular vertices are either avoided (or carefully accounted for), or a uniform
triangulation is used (cf. box splines [BHR93]).

Using our results, one could construct a spanning sequence of (minimally supported)
splines, and use the canonical dual functionals. Alternatively, one could go down the route
of Example 7, and specify the canonical dual functionals first, and then compute the splines
that they are the coordinates for. We undertook this calculation in MAPLE for the example
∆n of Fig. 1, for the points (0, 0), (1, 0), (1, 1), (0, 1) and a singular vertex (a, b) 6= ( 1

2 , 1
2 ).

First we took the 8 linear functionals given by point evaluation at the vertices on the
boundary and the midpoints of the boundary edges. The canonical dual spline functions
depend continuously on (a, b) 6= ( 1

2 , 1
2 ). Their Bernstein–Bézier coefficients are rational

functions of (a, b) with a common denominator (a − 1
2 )2 + (b − 1

2 )2. As expected, these
dual splines do not have a limit as (a, b) → ( 1

2 , 1
2 ), though they do have limits if the path

to the limit is restricted to a fixed direction.
Next we took the 13 linear functionals given by the Bernstein-Bézier coefficients of a

spline in S1
2 (∆n). Again the dual splines had rational BB–coefficients (this time with a

common denominator being a polynomial in (a, b) of degree 10). Other variations showed
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similar behaviour. Despite this being quite a restricted example, already features expected
for larger triangulations became apparent, e.g., the dual spline to a point evaluation being
localised around the point.

Fig. 1. The triangulations ∆s (singular vertex) and ∆n (nonsingular vertex).

6. Generalised barycentric coordinates

We now give the analogue of our results for affine spaces. An affine space X is, in
effect, a vector space for which there is no distinguished point that plays the role of the
origin in a vector space (or, equivalently, the translation of a vector subspace). As such,
we can take affine combinations of “points” in X, i.e., linear combinations where the sum
of the coefficients is 1, and differences of points to obtain “vectors” (see [R08] for details).

Let X be an affine space with affine dimension d+1 (the number of points in affinely
independent affine spanning set for X), for short affdim(X) = d+1. A sequence p1, . . . , pn

of n = d + 1 points in X is affinely independent if and only if each point x ∈ X can be
written uniquely as an affine combination of them, i.e.,

x =
∑

j

ξj(x) pj ,
∑

j

ξj(x) = 1. (6.1)

The functions ξj , so defined, are called barycentric coordinates. They are affine functions
that are nonnegative on the simplex given by the convex hull of the points. They satisfy
natural symmetry and affine transformation properties. Because of these properties, they
are used extensively in CAGD (computer aided geometric design), see, e.g., [B87].

If a sequence of points P = (p1, . . . , pn) has affine span X, but they are not affinely
independent, then we can define generalised barycentric coordinates (ξj) as follows:

Lemma 6.2 (Existence). Let X be an affine space over a field IF, with IF = IF. Suppose
that P = (p1, . . . , pn) are points with affine span X. Then there exist unique coefficients
ξP (x) = (ξj(x))n

j=1 ∈ IFn of minimal ℓ2–norm for which

x =
n

∑

j=1

ξj(x)pj ,

n
∑

j=1

ξj(x) = 1. (6.3)
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These are given by

ξj(x) = cj(x − bP ) +
1

n
, bP :=

1

n

n
∑

j=1

pj , (6.4)

where cΦ = (cj) are the canonical dual functionals for the vectors Φ = (fj), fj := pj − bP .

Proof: We seek to minimise
∑

j |ξj(x)|2 subject to

x =
∑

j

ξj(x)pj ,
∑

j

ξj(x) = 1. (6.5)

Write ξj(x) = aj(x) + 1
n . Then

∑

j ξj(x) = 1 is equivalent to
∑

j aj(x) = 0, and so

∑

j

|ξj(x)|2 =
∑

j

{

|aj(x)|2 +
1

n
aj(x) +

1

n
aj(x) +

1

n2

}

=
∑

j

|aj(x)|2 +
1

n
.

Since
∑

j fj =
∑

j(pj − bP ) =
∑

j pj − nbP = 0, expanding gives

x =
∑

j

ξj(x)pj =
∑

j

ξj(x)fj +
∑

j

ξj(x)bp =
∑

j

{aj(x) +
1

n
}fj + bp =

∑

j

aj(x)fj + bp.

Thus we must minimise
∑

j |aj(x)|2, subject to the constraints

x − bP =
∑

j

aj(x)fj ,
∑

j

aj(x) = 0.

By Lemma 4.2, the minimiser subject to just the first constraint is aj(x) = cj(x − bP ).
But

∑

j fj = 0 implies the dependency
∑

j cj = 0 (by Theorem 4.11), and so the second
constraint is also satified by this choice for aj(x).

The ξj defined above are affine functions, which we call the canonical barycentric
coordinates corresponding to the points P . These were introduced in [W09] via Riesz
representors, in a setting where the “vectors” in X were endowed with an inner product.
There a number of examples and their geometry was considered. In particular, the region
of nonnegativity for the canonical barycentric coordinates ξP = (ξj)

N = NP := {x ∈ X : ξj(x) ≥ 0, ∀j},

was considered. This is a convex polytope with the barycentre bP as an interior point.
For points P = (p1, . . . , pn) in IRd, a sequence of functions λj : Ω → IR, j = 1, . . . , n

(defined on Ω ⊂ IRd containing P ) are called generalised barycentric coordinates if
(6.1) holds for all x ∈ Ω (cf. [FHK06], [LS08]). Thus our canonical barycentric coordinates
are generalised barycentric coordinates for the affine space IRd (typically these are piecewise
polynomials or rational functions). From the formula in (6.4), we observe that
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• The coordinates of the barycentre bP are ξj(bP ) = 1
n , ∀j.

• The functions ξj are constant (equal to 1
n ) if and only if pj is the barycentre bP .

• ξj = ξk if and only if pj = pk.

• The ξj are continuous functions of the points p1, . . . , pn (with affine hull X).

Example 9. Let V be a set of d + 1 affinely independent points with affine span X, and
ℓ = (ℓv)v∈V be the corresponding barycentric coordinates. If P = (pj) is a sequence of
points in V , with each v appearing with multiplicity mv ≥ 1, then the canonical barycentric
coordinates (ξj) for P with pj = v are equal, and they add to ℓv, giving

ξj =
1

mv
ℓv when pj = v. (6.6)

We now give the analogues of Propositions 5.1 and 5.2. Denote the affine span (hull)
of the points in P = (pj) by Aff(P ).

Proposition 6.7. Let X be an affine space, ξP = (ξj) be the canonical barycentric
coordinates for a sequence of points P = (p1, . . . , pn) whose affine span is X. Then
(a) 0 ≤ |ξj(pk)| ≤ 1, ξj(pj) ≥

1
n and ξj(pk) = ξk(pj).

(b) |ξj(pk)| = 1 if and only if k = j and pj 6∈ Aff(P \ pj), in which case ξj(pj) = 1 and
ξj = 0 on Aff(P \ pj).
(c) ξj(pj) = 1

n if and only if pj = bP .
(d) ξj = ξk if and only if pj = pk.
(e)

∑

j ξj(pj) = d + 1 = affdim(X).

Proof: Most follows directly from Proposition 5.1 and the fact ξj(pk) = cj(fk)+ 1
n .

Hence we consider only those parts of (a) and (b) requiring further proof.
Since pk can be written as the affine combination 1pk +

∑

j 6=k 0pj , and the canonical
barycentric coordinates have minimal ℓ2–norm amonst all affine combinations giving pk,
we have

∑

j

|ξj(pk)|2 ≤ 12 +
∑

j 6=k

02 = 1 =⇒ |ξj(pk)| ≤ 1. (6.8)

Since ξk(pk) ≥ 1
n , we can have |ξj(pk)| = 1 if and only k = j and there is equality in (6.8),

i.e., ξℓ(pj) = 0, ℓ 6= j. Thus ξj(pℓ) = ξℓ(pj) = 0, ℓ 6= j, and so ξj = 0 on Aff(P \ pj).
Conversely, suppose that pj 6∈ Aff(P \ pj). Then the only way pj can be expressed as

an affine combination of the points in P is as 1pj +
∑

k 6=j 0pk, so that λj(pj) = 1.

Proposition 6.9. Let X be an affine space, ξP = (ξj)
n
j=1 be the canonical barycentric

for a finite sequence of points P = (pj) with affine span X, and

SP (x) :=
∑

j

|ξj(x)|2.

Then
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(a) SP (x) ≥ 1
n with equality if and only if x = bP (the barycentre).

(b) SP (pj) ≤ 1 with equality if and only if pj 6∈ Aff(P \ pj).
(c)

∑

j SP (pj) = affdim(X) = d + 1.

Proof: Let (cj) be the canonical dual functionals for Φ = (fj), fj := pj − bP , and
recall (from the proof of Lemma 6.2) that

∑

j cj = 0. Thus expanding gives

SP (x) =
∑

j

|cj(x − bP ) +
1

n
|2 =

∑

j

|cj(x − bP )|2 +
1

n
= CΦ(x − bP ) +

1

n
.

Hence (a) and (c) follow from the corresponding results for CΦ.
(b) Follows from (6.8) and the proof of Proposition 6.7.

The generalised barycentric coordinates map under affine transformations as follows:

Proposition 6.10 (Affine maps). Let A : X → Y be an invertible affine map between
affine spaces X and Y , and P = (p1, . . . , pn) be points in X with affine span X. Then the
canonical barycentric coordinates for P and Q := AP = (Ap1, . . . , Apn) satisfy

ξQ(Ax) = ξP (x), ∀x ∈ X.

Proof: Write Ax = L(x− bP ) + a, where L is a linear map (on the vectors in X),
and bP := 1

n

∑

j pj is the barycentre of P . Then the barycentre of Q is

bQ =
1

n

∑

j

(

L(pj − bP ) + a
)

= L
( 1

n

∑

j

(pj − bP )
)

+ a,

and so Ax − bQ = L(x − bP ). Let Φ = (pj − bP )n
j=1 and Ψ = (Apj − bQ)n

j=1 = LΦ. Then
using (5.4), we obtain

ξ
Q
j (Ax) = cΨ

j (Ax − bQ) +
1

n
= cLΦ

j (L(x − bP )) +
1

n
= cΦ

j (x − bP ) +
1

n
= ξP

j (x).

By analogy with (5.5), symmetry group of a sequence of points P = (pj)j∈J with
affine span X is defined by

Sym(P ) := {σ ∈ SJ : ∃Aσ : X → X an affine map with Aσpj = pσj ,∀j ∈ J}.

Proposition 6.11 (Symmetries). Let P = (pj) be a finite sequence of points with affine
span X. Then P and its canonical barycentric coordinates ξP have the same symmetries,
i.e.,

Sym(P ) = Sym(ξP ).

Proof: It σ ∈ Sym(P ), then the corresponding affine map Aσ fixes the barycentre
bP , so that Lσ(x − bP ) := Aσx − bP gives a linear map on vectors, and one obtains

Sym(P ) = Sym(Φ), Φ = (fj), fj := pj − bP .

Similarly, Sym(ξP ) = Sym(cΦ), and so the result follows from Proposition 5.6.
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Example 10. Four points in IR2. In view of Proposition 6.10, we suppose, without loss
of generality, that

P =
(

(

0
0

)

,

(

1
0

)

,

(

0
1

)

,

(

a

b

)

)

,

where there are no restrictions on (a, b). By direct computation, we find that the canonical
barycentric coordinates are given by (5.7), i.e., ξp = fp, ∀p ∈ P , where the barycentric
coordinates are indexed by the points of P .

Example 11. Generalised Bernstein polynomials. Let (ξj) be the generalised barycentric
coordinates for points P = (p1, . . . , pn) with Aff(P ) = X. By the multinomial theorem,

(ξ1 + · · · + ξn)k =
∑

|α|=k

(

k

α

)

ξα = 1,

(

k

α

)

:=
k!

α!
, ξα =

∏

j

ξ
αj

j ,

where α is a multi-index, i.e., α ∈ ZZn
+, |α| := α1 + · · · + αn. Thus the polynomials

Bα :=

(

|α|

α

)

ξα : X → IF, |α| = k,

span the polynomials of degree ≤ k, and form a partition of unity. They are a basis if and
only if n = affdim(X), in which case they are called the multivariate Bernstein basis.

Example 12. The “dual” affine expansion. Let Q = (ξP
j ) be the generalised barycentric

coordinates for points P = (p1, . . . , pn) with affine span X. The affine span of Q is Π1(X),
the affine space of all affine maps (linear polynomials) λ : X → IF. We claim that

ξ
Q
j = p̂j , p̂j(λ) := λ(pj), ∀λ ∈ Π1(X),

i.e., there is the following “dual” of the expansion (6.3)

λ =
n

∑

j=1

p̂j(λ)ξP
j ,

n
∑

j=1

p̂j(λ) = 1, ∀λ ∈ Π1(X). (6.12)

We recall that

ξP
j (x) = cΦ

j (x − bP ) +
1

n
, Φ = (fj), fj := pj − bP , (6.13)

and
∑

j fj = 0 implies
∑

j cΦ
j = 0, so that bQ = 1

n . Thus

ξ
Q
j (λ) = cΨ

j (λ −
1

n
) +

1

n
, Ψ = (ξP

j −
1

n
).

Now (6.13) gives ξP
j − 1

n = LcΦ
j , where L is the linear transformation Lg := g(· − bP ).

Hence L−1Ψ = cΦ, and from (5.4) we obtain

cL−1Ψ
j (L−1λ) = cΨ

j (λ) = ccΦ

j (L−1λ) = ccΦ

j (λ(· + bP )).
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Since ccΦ

j = f̂j , this gives

cΨ
j (λ −

1

n
) = (λ(· + bP ) −

1

n
)(fj) = λ(fj + bP ) −

1

n
=⇒ ξ

Q
j (λ) = λ(pj).

The second sum in (6.12) follows the theory, or directly:
∑

p̂j(λ) = nb̂P (λ) = nλ(bP ) = 1.
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