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Abstract

The Bernstein operator Bn for a simplex in Rd is naturally defined via the Bernstein basis obtained
from the barycentric coordinates given by its vertices. Here we consider a generalisation of this basis and
the Bernstein operator, which is obtained from generalised barycentric coordinates that are given for more
general configurations of points in Rd . We call the associated polynomials a Bernstein frame, as they span
the polynomials of degree ≤ n, but may not be a basis. By using this redundant system we are able to give
geometrically motivated proofs of some basic properties of the corresponding generalised Bernstein opera-
tor, such as the fact it is degree reducing and converges for all polynomials. We also consider the conditions
for polynomials in this Bernstein form to join smoothly.
c⃝ 2014 Elsevier Inc. All rights reserved.
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1. Introduction

The Bernstein operator and its variants have been actively studied for over a century [23,17].
Initially, it was used to give a constructive proof of the Weierstrass density theorem, which cul-
minated in Korovkin’s theorem on approximation by positive linear operators [18]. Numerous
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examples have since been given [1], with most being univariate, often with many parameters
(akin to the very general families of orthogonal polynomials in the Askey scheme). Over the
last forty years, the shape preserving properties of the multivariate Bernstein operator have led
to important applications, most notably Bézier curves and surfaces [27,16,15] used in geometric
design.

By far the most studied multivariate generalisation is the Bernstein–Durrmeyer operator on a
simplex [22,2,9,3,13]. In [24] it was shown that it is not possible to extend the Bernstein operator,
and all its properties, to regions which are not simplices (or tensor products of them). Our gen-
eralisation is based on a redundant “Bernstein basis”, and relaxes the condition of being positive
on all of the region.

The Bernstein operator Bn for a simplex in Rd is defined via the Bernstein basis for Πn(Rd)

(the d-variate polynomials of degree ≤ n). This basis is obtained by taking powers of the
barycentric coordinates given by the vertices of the simplex. In the next section, we outline
the basic properties of the affine generalised barycentric coordinates introduced in [29], which
are given for more general configurations of points in Rd , e.g., the vertices of a convex polygon.
These lead naturally to an analogue of the Bernstein basis, a set of polynomials of degree n which
span Πn(Rd). These are not a basis if they are given by more than d + 1 points, and so we refer
to this possibly redundant system as a Bernstein frame (cf. [4]).

In Section 3, we define the generalised Bernstein operator given by a Bernstein frame. We
give geometrically motivated proofs of some basic properties of it. These include showing that it
is degree reducing and converges for all polynomials, that it reproduces the linear polynomials,
and more generally has the same spectral structure as the classical Bernstein operator. Similar
arguments in terms of a basis would be far more cumbersome. Finally, we explore some
applications of our generalised Bernstein operator. These include a de Casteljau algorithm, shape
preservation properties (Section 4), and smoothness conditions in terms of the control points of
the associated Bézier surfaces (Section 5).

2. The Bernstein frame

Let V consist of d + 1 affinely independent points in Rd , i.e., be the vertices of a d-simplex.
The barycentric coordinates (cf. [10,21]) of a point x ∈ Rd with respect to V are the unique
coefficients (ξv(x))v∈V ∈ RV for which x can be written as an affine combination of the points
in V , i.e.,

x =


v∈V

ξv(x)v,

v∈V

ξv(x) = 1. (2.1)

We follow [10] and index the barycentric coordinates by the points v ∈ V that they correspond
to, and use standard multi-index notation. It follows, from (2.1), that the ξv are linear polynomials
which are a basis for Π1(Rd). More generally, for any n ≥ 1, the polynomials

Bα :=


|α|

α


ξα, |α| = n(α ∈ ZV

+)

are a basis for Πn(Rd). Here |α| =


v αv,
 n

α


=

n!

α!
, and ξα

=


v ξ
αv
v .

From now on, let V be a sequence (or multiset) of m = |V | points with affine hull Rd , so that
each point x ∈ Rd can be written as an affine combination

x =


v∈V

avv,

v∈V

av = 1, (2.2)
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Fig. 1. The region of nonnegativity NV for V given by the vertices of a triangle, square and pentagon.

where the coefficients a = (av)v∈V are unique if and only if V consists of d + 1 points. Fol-
lowing [29], we call the unique minimal ℓ2-norm coefficients a ∈ RV satisfying (2.2) the
(generalised barycentric) coordinates given by V , and denote them by (ξv(x))v∈V . By con-
struction, they satisfy (2.1). Each ξv is a linear polynomial, and they span Π1(Rd), since (2.1)
gives

1 =


v∈V

ξv(x), x j =


v∈V

ξv(x)v j , j = 1, . . . , d, (2.3)

which is equivalent to the following reproduction formula for affine functions

f =


v∈V

f (v)ξv, ∀ f ∈ Π1(Rd). (2.4)

From the formula for ξv given in [29] it is easy to see:

• The coordinates of the barycentre c :=
1
m


v∈V v of V are ξv(c) =

1
m , ∀v.

• ξv is constant (equal to 1
m ) if and only if v is the barycentre c.

• Repeated points have the same coordinates, i.e., ξv = ξw if and only if v = w.
• The ξv are continuous functions of the points v ∈ V (with affine hull Rd ).

These imply that the set of points where the coordinates are nonnegative

NV := {x ∈ Rd
: ξv(x) ≥ 0, ∀v ∈ V } (2.5)

is a convex polytope, with the barycentre of V as an interior point. We call NV the region of
nonnegativity for the coordinates given by V (see Fig. 1).

We write V \ w for the sequence (or multiset) obtained by removing the point w from V
(once), and Aff(V ) for the affine hull of the points in V . We recall:

Proposition 2.6 ([29]). The generalised barycentric coordinates satisfy

(a) 1
m < ξv(v) ≤ 1.

(b) ξv(w) = ξw(v).
(c) ξv(v) = 1 if and only if v ∉ Aff(V \ v), in which case ξv = 0 on Aff(V \ v).
(d)


v ξv(v) = d + 1.

Expanding the monomial basis for Πn(Rd) in terms of ξ using (2.3), shows that the polyno-
mials

Bα :=


|α|

α


ξα, |α| = n (2.7)
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Fig. 2. The Bernstein frame for Π2(R) for V = {0, 1
2 , 1} and V = {0, 1

3 , 2
3 , 1}.

span Πn(Rd). By a dimension count, these


n+m−1
m−1


polynomials are basis if and only if V con-

sists of d + 1 affinely independent points. Thus, we refer to {Bα : |α| = n} as the Bernstein
frame given by the points V . This is a partition of unity, since applying the multinomial theorem
to (2.1) gives

|α|=n

Bα =


|α|=n

 n

α


ξα

=


v∈V

ξv

n
= 1. (2.8)

A Bernstein frame is nonnegative on NV , the region of nonnegativity given by (2.5). There have
been studies of the approximation properties of linear operators given by partitions of unity which
may take negative values on the region of interest, see, e.g., [11].

Example 2.9 (See Fig. 2). For V = {0, 1
2 , 1} ⊂ R the generalised barycentric coordinates are

ξ0(x) =
5
6

− x, ξ 1
2
(x) =

1
3
, ξ1(x) = x −

1
6
.

Here, some polynomials in the Bernstein frame have degree < n. This is the case if and only if
the barycentre of V is a point of V . The coordinates for V = {0, 1

3 , 2
3 , 1} are

ξ0(x) =
7

10
−

9
10

x, ξ 1
3
(x) =

2
5

−
3

10
x, ξ 2

3
(x) =

3
10

x +
1

10
,

ξ1(x) =
9

10
x −

1
5
.

We say a polynomial p ∈ Πn(Rd) is in (Bernstein–Bézier) B-form if

p =


|α|=n

cα Bα. (2.10)

The mesh function c : α → cα is unique if and only if V consists of d + 1 points. The mesh
function with minimal ℓ2-norm gives a canonical B-form, i.e., what [28] calls the canonical
coordinates of p with respect to {Bα}|α|=n .
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Many familiar formulas for the Bernstein basis extend to a Bernstein frame. Here are a couple
of examples (also see Section 4). Let ev be the multi-index given by

ev(w) :=


1, v = w;

0,

and define Bα := 0 if α ≱ 0.

Proposition 2.11. The Bernstein frame {Bα}|α|=n can be calculated recursively via

Bα =


v∈V

ξv Bα−ev , B0 = 1, (2.12)

and expressed in terms of the Bernstein frame for polynomials of degree n + 1 via

Bα =


v∈V

αv + 1
|α| + 1

Bα+ev . (2.13)

Proof. We calculate
v∈V

ξv Bα−ev =


v∈V


|α| − 1
α − ev


ξα

=


v∈V

αv

|α|


|α|

α


ξα

= Bα,

and, using


v ξv = 1, that

Bα = Bα


v∈V

ξv =


v∈V

|α|!

α!
ξαξv =


v∈V

αv + 1
|α| + 1

|α + ev|!

(α + ev)!
ξα+ev

=


v∈V

αv + 1
|α| + 1

Bα+ev . �

Proposition 2.14 (Differentiation). For u, v, w ∈ V , we have

Dv−wξu = ξu(v) − ξu(w) = ξv(u) − ξw(u).

Thus the Bernstein frame satisfies

Dv−w Bα = |α|


u∈V


ξu(v) − ξu(w)


Bα−eu .

Proof. Since ξu is affine

(Dv−wξu)(x) = lim
t→0

ξu(x + t (v − w)) − ξu(x)

t

= lim
t→0

ξu(x) + tξu(v) − tξu(w) − ξu(x)

t
= ξu(v) − ξu(w).

By the product and chain rules, we have

Dv−w Bα =
|α|!

α!
Dv−w


u∈V

ξαu
u =

|α|!

α!


u∈V

αuξαu−1
u


ξu(v) − ξu(w)


ξα−αueu

= |α|


u∈V


ξu(v) − ξu(w)

 (|α| − 1)!

(α − eu)!
ξα−eu

= |α|


u∈V


ξu(v) − ξu(w)


Bα−eu . �
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Fig. 3. The points {vα}|α|=n used in the definition of Bn,V f , where n = 7 and V is the vertices of a triangle, square,
pentagon and hexagon (respectively).

3. The generalised Bernstein operator

For a Bernstein frame (2.7) given by points V in Rd , we define a (generalised) Bernstein
operator Bn = Bn,V of degree n ≥ 1 by the usual formula

Bn( f ) :=


|α|=n

Bα f (vα), vα :=


v∈V

αv

|α|
v, (3.1)

(see Fig. 3), which is equivalent to

Bn( f ) =


v1∈V

· · ·


vn∈V

f
v1 + · · · + vn

n


ξv1 · · · ξvn .

This maps functions f which are nonnegative at the points (vα)|α|=n (which are contained in
T = conv(V ), the convex hull of the points in V ) to polynomials of degree ≤ n which are non-
negative on the convex polytope (region of nonnegativity) NV given by (2.5), so that

f ≥ 0 on T H⇒ Bn f ≥ 0 on NV , (3.2)

and reproduces the linear polynomials (cf. Theorem 3.19).
We now show that the generalised Bernstein operator is degree reducing, i.e.,

Bn( f ) ∈ Πk(Rd), ∀ f ∈ Πk (k = 0, 1, . . .).

Define the univariate and multivariate (falling) shifted factorials by

[x]
n

:= x(x − 1) · · · (x − n + 1), [α]
β

:=


v∈V

[αv]
βv ,

and the multivariate Stirling numbers of the second kind by

S(τ, β) :=


v∈V

S(τv, βv),

where S(τv, βv) are the Stirling numbers of the second kind. We note that

S(τ, β) = 0, β ≰ τ, (3.3)

and define
|α|

α


:= 0, α ≱ 0. (3.4)
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These are related by

ατ
=


β≤τ

S(τ, β)[α]
β . (3.5)

Lemma 3.6. For any τ and n, we have
|α|=n

ατ


|α|

α


ξα

=


β≤τ

S(τ, β)[n]
|β|ξβ . (3.7)

Proof. Since [|α|]
|β|


|α−β|

α−β


=


|α|

α


[α]

β (without restriction on α and β), (3.5) gives
β≤τ

S(τ, β)[|α|]
|β|


|α − β|

α − β


=


|α|

α


β≤τ

S(τ, β)[α]
β

=


|α|

α


ατ .

Thus, we calculate
|α|=n

ατ


|α|

α


ξα

=


|α|=n


β≤τ

S(τ, β)[|α|]
|β|


|α − β|

α − β


ξα

=


β≤τ

S(τ, β)[n]
|β|ξβ


|α|=n
α≥β


|α − β|

α − β


ξα−β

=


β≤τ

S(τ, β)[n]
|β|ξβ ,

with the last equality given by the multinomial identity. �

Theorem 3.8 (Degree Reducing). The generalised Bernstein operator Bn is degree reducing.
More precisely,

Bn(ξβ) =
[n]

|β|

n|β|
ξβ

+


0<|γ |<|β|

[n]
|γ |

n|β|
a(γ, β)ξγ , (3.9)

where w1, . . . , wm is the sequence of points in V , and

a(γ, β) :=


|τ1|=βw1

· · ·


|τm |=βwm


βw1

τ1


ξ τ1(w1) · · ·


βwm

τm


ξ τm (wm)

× S(τ1 + · · · + τm, γ ). (3.10)

Proof. Since each ξw is an affine function, and ξw(v) = ξv(w), we have

ξw(vα) = ξw


v∈V

αv

|α|
v


=


v∈V

αv

|α|
ξw(v) =


v∈V

αv

|α|
ξv(w),

and the multinomial identity gives

(ξβ)(vα) =


w∈V


v∈V

αv

|α|
ξv(w)

βw

=


w∈V


|τ |=βw


βw

τ


ατ

|α|βw
ξ τ (w)

=


|τ1|=βw1

· · ·


|τm |=βwm


βw1

τ1


· · ·


βwm

τm


ξ τ1(w1) · · · ξ τm (wm)

ατ1+···+τm

|α||β|
.
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Thus, by rearranging (3.1) and Lemma 3.6, we have

Bn(ξβ) =


|τ1|=βw1

· · ·


|τm |=βwm


βw1

τ1


ξ τ1(w1) · · ·


βwm

τm


ξ τm (wm)

×


|α|=n

ατ1+···+τm

n|β|

 n

α


ξα

=


|τ1|=βw1

· · ·


|τm |=βwm


βw1

τ1


ξ τ1(w1) · · ·


βwm

τm


ξ τm (wm)

×


γ≤τ1+···+τm

[n]
|γ |

n|β|
S(τ1 + · · · + τm, γ )ξγ .

Here Bn(ξβ) is written as a polynomial in ξ of degree ≤ |β|, so that Bn is degree reducing. The
terms of degree |β| can be simplified using the multinomial identity, ξv(w j ) = ξw j (v), and (2.4),
as follows

|τ1|=βw1

· · ·


|τm |=βwm


βw1

τ1


ξ τ1(w1) · · ·


βwm

τm


ξ τm (wm)

[n]
|β|

n|β|
ξ τ1+···+τm

=
[n]

|β|

n|β|

m
j=1

 
|τ j |=βw j


βw j

τ j


ξ τ j (w j )ξ

τ j


=
[n]

|β|

n|β|

m
j=1


v∈V

ξv(w j )ξv

βw j

=
[n]

|β|

n|β|

m
j=1


v∈V

ξw j (v)ξv

βw j
=

[n]
|β|

n|β|

m
j=1

ξ
βw j
w j =

[n]
|β|

n|β|
ξβ .

By collecting the terms of degree < |β|, we obtain (3.9). Here, (3.3) allows us to remove the
restriction γ ≤ τ1 + · · · + τm , and there are no terms of degree 0 since S(1, 0) = 0. �

Since [n]
|γ |

= 0, |γ | > n, the formula (3.9) implies that Bn is degree reducing.

Remark 3.11. If V consists of d + 1 affinely independent points, then

a(γ, β) =


S(β, γ ), γ ≤ β;

0, γ ≰ β,

and (3.9) simplifies to

Bn(ξβ) =
[n]

|β|

n|β|
ξβ

+


γ<β

[n]
|γ |

n|β|
S(β, γ )ξγ .

This was proved in [7, Lemma 2.1] for the case when βv0 = 0 for some v0 ∈ V .

Example 3.12 (Linear Reproduction). For |β| = 1, we have

Bn(ξv) = ξv, ∀v ∈ V, (3.13)

i.e., Bn reproduces the linear polynomials Π1(Rd) = span{ξv}v∈V . This is equivalent to

x =


|α|=n

Bα(x)vα,

|α|=n

Bα(x) = 1, x ∈ Rd . (3.14)
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Example 3.15 (Quadratics). For |β| = 2, we recall S(1, 0) = 0, S(2, 1) = 1, so that

a(eu, 2ew) = ξ2
u (v) = ξ2

v (u),

a(eu, ev + ew) = ξu(v)ξu(w) = (ξvξw)(u), v ≠ w,
(3.16)

and we obtain

Bn(ξβ) =


1 −

1
n


ξβ

+
1
n


u∈V

ξβ(u)ξu → ξβ , as n → ∞, |β| = 2. (3.17)

Since Bn is not a positive operator in general, the application of the Korovkin theory is more
involved (see Theorem 3.31). We easily obtain the following encouraging result.

Corollary 3.18 (Convergence). For all polynomials f , Bn( f ) → f , as n → ∞.

Proof. It suffices to consider f = ξβ . For n ≥ |β|, (3.9) gives

Bn(ξβ) − ξβ
=


[n]

|β|

n|β|
− 1


ξβ

−


|γ |<|β|

[n]
|γ |

n|β|
a(γ, β)ξγ ,

where [n]
|β|

n|β|
− 1, [n]

|γ |

n|β|
= O( 1

n ), as n → ∞. �

The remaining eigenstructure of Bn is as follows.

Theorem 3.19 (Diagonalisation). The generalised Bernstein operator Bn given by points V ⊂

Rd is diagonalisable, with eigenvalues

λ
(n)
k :=

[n]
k

nk , k = 1, . . . , n, 1 = λ
(n)
1 > λ

(n)
2 > · · · > λ(n)

n > 0.

Let P(n)
k,V denote the λ

(n)
k -eigenspace. Then

P(n)
1,V = Π1(Rd), ∀n. (3.20)

For k > 1, P(n)
k,V consists of polynomials of exact degree k, and is spanned by

p(n)

ξβ = ξβ
+


0<|α|<|β|

c(α, β, n)ξα, |β| = k, (3.21)

where the coefficients can be calculated using (3.10) and the recurrence formula

c(α, β, n) :=
a(α, β)

1 − |β|
, |α| = |β| − 1,

c(α, β, n) :=
[n]

|α|

λ
(n)
|β|

− λ
(n)
|α|

a(α, β)

n|β|
+


|α|<|γ |<|β|

c(γ, β, n)
a(α, γ )

n|γ |


, |α| < |β| − 1.

(3.22)

Proof. By Example 3.12, the λ
(n)
1 = 1 eigenspace P(n)

1,V contains Π1(Rd). Recall, from (3.9), that
Bn(ξβ) has the form

Bn(ξβ) = λ
(n)
|β|

ξβ
+


0<|γ |<|β|

[n]
|γ |

n|β|
a(γ, β)ξγ . (3.23)
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Motivated by this, we seek λ
(n)
k -eigenfunctions of the form

f = ξβ
+


0<|α|<|β|

c(α, β, n)ξα, |β| = k > 1.

We observe that for such an eigenfunction the coefficients c(α, β, n) are not unique—even when
V consists of d + 1 points. Expanding Bn( f ) = λ

(n)
k f using (3.23) gives

Bn( f ) = Bn(ξβ) +


0<|γ |<|β|

c(γ, β, n)Bn(ξγ )

= λ
(n)
|β|

ξβ
+


0<|α|<|β|

[n]
|α|

n|β|
a(α, β)ξα

+


0<|γ |<|β|

c(γ, β, n)

λ

(n)
|γ |

ξγ
+


0<|α|<|γ |

[n]
|α|

n|γ |
a(α, γ )ξα


= λ

(n)
|β|

ξβ
+


0<|α|<|β|

λ
(n)
|β|

c(α, β, n)ξα. (3.24)

Equating the ξα , 0 < |α| < |β| coefficients gives

λ
(n)
|β|

c(α, β, n) =
[n]

|α|

n|β|
a(α, β) + c(α, β, n)λ

(n)
|α|

+


|α|<|γ |<|β|

c(γ, β, n)
[n]

|α|

n|γ |
a(α, γ ). (3.25)

Since λ
(n)
|α|

> λ
(n)
|β|

, this is equivalent to

c(α, β, n) =
1

λ
(n)
|β|

− λ
(n)
|α|


[n]

|α|

n|β|
a(α, β) +


|α|<|γ |<|β|

c(γ, β, n)
[n]

|α|

n|γ |
a(α, γ )


.

From this we can define suitable c(α, β, n) recursively, as in (3.22), starting from

c(α, β, n) :=
1

λ
(n)
|β|

− λ
(n)
|α|

[n]
|α|

n|β|
a(α, β) =

a(α, β)

1 − |β|
, |α| = |β| − 1.

A simple dimension count shows that the eigenfunction {pξβ }|β|=k , so defined, span a space P(n)
k,V

of dimension


k+d−1
d−1


. Again, by dimension counting, we conclude that Bn is diagonalisable,

with P(n)
1,V = Π1(Rd). �

Example 3.26 (Quadratic Eigenfunctions). Using (3.16), we have

p(n)

ξβ = ξβ
−


u∈V

ξβ(u)ξu, |β| = 2. (3.27)

In general, p(n)
ξα does depend on n (cf. [6]).

Despite the fact the coefficients in (3.21) are not unique, we can take their limit as n → ∞.
This indicates that the redundant expansion (3.21) is natural.
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Corollary 3.28 (Limits of the Eigenfunctions). For 0 < |α| < |β|,

lim
n→∞

c(α, β, n) = c∗(α, β),

where

c∗(α, β) :=
a(α, β)

1 − |β|
, |α| = |β| − 1,

c∗(α, β) :=
2

(|β| − |α|)(−|α| − |β| + 1)


|γ |=|α|+1

c∗(γ, β)a(α, γ ), |α| < |β| − 1.
(3.29)

Thus, the eigenfunctions of (3.21) satisfy

p(n)

ξβ → p∗

ξβ := ξβ
+


0<|α|<|β|

c∗(α, β)ξα, as n → ∞. (3.30)

Proof. Fix β. We use strong induction on j = |β| − |α| = 1, . . . , |β| to prove that the limit
exists. For |α| = |β| − 1 ( j = 1) the limit is clear. Suppose the limit of c(γ, β, n) exists for all γ

with |α| < |γ | < |β|. Then taking the limit of (3.32) gives

lim
n→∞

c(α, β, n) =
2

(|β| − |α|)(|β| − |α| − 2|β| + 1)


|γ |=|α|+1

c∗(γ, β)a(α, γ ).

This follows from the calculations

λ
(n)
|β|

− λ
(n)
|α|

=
[n]

|α|
[n − |α|]

|β|−|α|

n|β|
−

[n]
|α|

n|α|
=

[n]
|α|

n|β|
([n − |α|]

|β|−|α|
− n|β|−|α|),

[n − |α|]
|β|−|α|

− n|β|−|α|

=
1
2
(|β| − |α|)(−|α| − |β| + 1)n|β|−|α|−1

+ lower order powers of n.

Since p(n)

ξβ , p∗

ξβ ⊂ Π|β|(Rd), we have the convergence asserted in (3.30). �

We now prove the strongest Korovkin theorem that the restricted positivity property (3.2) al-
lows. Since this requires a modification of the usual argument, which is not stated in the literature,
we give a self contained proof. This result supercedes Corollary 3.18.

Theorem 3.31 (Korovkin). Let T = TV be the convex hull of V , and NV be the region of
nonnegativity. For f ∈ C(T ), Bn f → f uniformly on NV .

Proof. Let ε > 0, and M be the maximum of f over T . Since f is uniformly continuous on the
compact set T , there is a δ > 0 such that | f (s) − f (t)| < ε, ∀∥s − t∥ < δ. Thus, we obtain the
estimate

| f (s) − f (t)| ≤ ε + 2M
∥s − t∥2

δ2 , ∀s, t ∈ T .

For fixed t , we have

−ε −
2M

δ2 ∥ · −t∥2
≤ f − f (t) ≤ ε +

2M

δ2 ∥ · −t∥2 on T ,
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and so applying Bn (which reproduces constants) and using (3.2) gives

−ε −
2M

δ2 Bn

∥ · −t∥2

≤ Bn f − f (t) ≤ ε +
2M

δ2 Bn

∥ · −t∥2 on NV .

This last step is the main difference in argument. For t ∈ NV , evaluating at t gives

|Bn f (t) − f (t)| ≤ ε +
2M

δ2 Bn

∥ · −t∥2(t), ∀t ∈ NV . (3.32)

We now estimate Bn(∥ · −t∥2)(t). From (2.1), we obtain

∥ · −t∥2
=


v

{ξvv − ξvt},

w

{ξww − ξwt}


=


v


w

ξvξw⟨v − t, w − t⟩.

Thus, (3.17) gives

Bn

∥ · −t∥2

=


v


w


1 −

1
n


ξvξw +

1
n


u∈V

ξv(u)ξw(u)ξu


⟨v − t, w − t⟩

=


1 −

1
n


∥ · −t∥2

+
1
n


v


w


u∈V

ξv(u)ξw(u)ξu⟨v − t, w − t⟩

=


1 −

1
n


∥ · −t∥2

+
1
n


u∈V

ξu⟨u − t, u − t⟩,

so that

Bn

∥ · −t∥2(t) =

1
n


u∈V

∥u − t∥2ξu(t) =
1
n


u∈V

∥u∥
2ξu(t) − ∥t∥2


≤

1
n

D2,

where D := diam(T ) is the diameter of T . Thus, we obtain the uniform estimate

|Bn f (t) − f (t)| ≤ ε +
1
n

2M D2

δ2 , t ∈ NV ,

and conclude that Bn f → f uniformly on NV . �

4. Applications to CAGD

We now consider how our generalised Bernstein operator Bn = Bn,V might be used in CAGD
(computer aided geometric design) to describe polynomials defined on convex polyhedra which
are not simplices. We first observe that the Korovkin theory does not allow a Bernstein type
operator which is positive on the entire region T = conv(V ) if the points of V are not the
vertices of a simplex or a cube.

Theorem 4.1 ([24]). Let T be a convex polygon with five or more vertices. There is no positive
linear operator L : C(T ) → C(T ) which reproduces Π1(R2) and maps Π2(R2) to itself other
than the identity.

We recall that our Bn reproduces Π1(R2) and maps Π2(R2), but has the restricted positivity
property (3.2), i.e.,

f ≥ 0 on T H⇒ Bn f ≥ 0 on NV ,

where NV is the region of nonnegativity (2.5). In the multivariate case, the description of other
shape preserving properties is involved (cf. [26]). We mention some which do generalise easily.
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These suggest that the target region for representing polynomials on should perhaps be the convex
polyhedron NV , rather than T = conv(V ).

Proposition 4.2 (Shape Preservation). Let T = TV be the convex hull of V , and NV be the
region of nonnegativity. If f is convex on T , then

Bn f ≥ Bn+1 f ≥ · · · ≥ f on NV . (4.3)

Proof. Fix x ∈ NV . By (2.1), and a calculation, we have the convex combinations

x =


|α|=n

Bα(x)vα, vβ =


v∈V

βv

|β|
vβ−ev .

Hence for f convex, Jensen’s inequality gives

Bn f (x) =


|α|=n

Bα(x) f (vα) ≥ f (x),

v∈V

βv

|β|
f (vβ−ev ) ≥ f (vβ). (4.4)

By the degree raising formula (2.13), we have

Bn f =


|α|=n

Bα f (vα) =


v∈V


|α|=n

αv + 1
|α| + 1

Bα+ev f (vα),

so that

Bn f − Bn+1 f =


|β|=n+1

cβ Bβ , cβ :=


v∈V

βv

|β|
f (vβ−ev ) − f (vβ).

By (4.4), cβ ≥ 0, so that Bn f ≥ Bn+1 f on NV . �

A polynomial in B-form can be calculated via the de Casteljau algorithm. We present this in
terms of the blossom (polar form) of a polynomial p ∈ Πn(Rd), which we recall (cf. [25,12,8])

is the unique symmetric n-affine function
ω
p with

ω
p (t, . . . , t) = p(t), ∀t ∈ Rd . (4.5)

Proposition 4.6 (de Casteljau Algorithm). Suppose that p ∈ Πn(Rd) has the B-form

p =


|α|=n

cα Bα. (4.7)

Then the blossom of p at t1, . . . , tn can be calculated from (cα)|α|=n via
for j = 1 to n do

cα :=


v∈V

ξv(t j )cα+ev , |α| = n − j

end for

with c0 =
ω
p (t1, . . . , tn). In particular, taking t1 = · · · = tn = t gives c0 = p(t).

Proof. Suppose p ∈ Πn(Rd) is in the B-form (4.7), i.e., equivalently

p =


v1

· · ·


vn

cev1+···+evn
ξv1 · · · ξvn . (4.8)
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Then its blossom is given by

P(t1, . . . , tn) :=


v1

· · ·


vn

cev1+···+evn
ξv1(t1) · · · ξvn (tn), (4.9)

since P clearly defines an n-affine function, which, by (4.8), satisfies (4.5). The n steps of the
algorithm are the averagings given by the n sums in (4.9). �

In the terminology of [8], this is a symmetric simplicial algorithm (here the points V need not
be the vertices of a simplex).

The coefficients cα in the B-form (4.7) of p are not unique, unless V is the vertices of a
simplex. Using (2.1) to expand, we have

p(t) =
ω
p (t, . . . , t) =

ω
p


v1

ξv1(t)v1, . . . ,

vn

ξvn (t)vn


=


v1

· · ·


vn

ξv1(t) · · · ξvn (t)
ω
p (v1, . . . , vn),

and so the coefficients cα in (4.7) can be chosen to be the blossoms

bα =
ω
p (α · V ), α · V := (. . . , v, . . . , v  

αv times

, . . .), (4.10)

which we call the blossoming coefficients.

Proposition. For any p of the form (4.7), the blossoming coefficients b = (bα)|α|=n are given by
the matrix multiplication

b = Qc, Q = [qαβ ]|α|=n,|β|=n, qαβ :=
ω

Bβ (α · V ).

For n > 1, our calculations show that the blossoming coefficients are not the ℓ2-norm min-
imising choice (which is given by multiplication by an orthogonal projection matrix).

Remark 4.11. The previous discussion extends to p = (p1, . . . , ps) : Rd
→ Rs , where p j ∈

Πn(Rd) and cα ∈ Rs , by considering coordinates. Since vector valued p are used in practice,
e.g., Bézier curves in R3, we henceforth state our results in this setting.

We define the control points of the curve (d = 1), surface (d = 2), etc., given by t →

p(t) ∈ Rs , where p has B-form (4.7), to be
vα

cα


: |α| = n


⊂ Rd+s .

Since the B-form is not unique when V has more than d + 1 points, a given curve (surface, etc.)
may be given by different sets of control points. This redundancy has advantages from the point
of view of design, as a given surface could be arrived at by a number of different choices of
control points. Equivalently, each control point has less influence on the surface, and so moving
a control point causes a small change of shape making the fine tuning of a surface easier. Once
a suitable surface has been obtained it can be presented in terms of a set of canonical control
points—if so desired.
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By combining (3.14) and (4.7), we have
x

p(x)


=


|α|=n

cα Bα(x), cα :=


vα

cα


. (4.12)

Thus a point

x, p(x)


on the curve (surface, etc.) can be calculated by the de Casteljau algorithm

applied to the vectors (cα)|α|=n ⊂ Rd+s . Many basic properties of Bézier curves and surfaces
follow from (4.12). We now list these using the terminology of [16].

Convex hull property: Since


|α|=n Bα(x) = 1 and Bα(x) ≥ 0, x ∈ NV , the point

x, p(x)


is an affine combination (also called a barycentric combination in CAGD) of the control points
(cα)|α|=n , which is a convex combination if x ∈ NV .

Affine invariance: For A : Rs
→ Rℓ an affine map, we have

A


p(x)


=


|α|=n

(Acα)Bα(x).

Invariance under affine parameter transformations: For A : Rd
→ Rd an invertible affine

map, Bα(Ax) = A(Bα(x)), so that

p(Ax) =


|α|=n

cα A

Bα(x)


.

Symmetry: Suppose that A is an affine map which maps (the multiset) V to V . Then ξv(x) =

ξAv(Ax) (see [29]), so that

Bα(x) = Bα◦A−1(Ax),

where α ◦ A−1
: V → Z+ denotes the multi-index v → αA−1v . Using this we obtain

p(x) =


|α|=n

cα Bα(x) =


|α|=n

cα Bα◦A−1(Ax) =


|β|=n

cβ◦A Bβ(Ax).

Invariance under barycentric combinations: The affine combination of two curves (surfaces,
etc.) is given by corresponding affine combination of the control points, i.e.,

λ

|α|=n

bα Bα(x) + (1 − λ)

|α|=n

cα Bα(x) =


|α|=n


λbα + (1 − λ)cα


Bα(x), λ ∈ R.

Endpoint interpolation: If v ∈ V satisfies v ∉ Aff(V \ v), then Proposition 2.6 gives

(Bn f )(v) = f (v).

The remaining property given in [16] is pseudolocal control, i.e., the fact that Bα is peaked
at the point vα , and so moving the control point cα has the most influence on the curve (surface,
etc.) near the point vα . Numerical calculations indicate some degree of localisation of the Bα

near vα , but we do not make any quantitative statements here.
To summarise, the main features of our Bernstein polynomial approximations on a nonsim-

plicial convex polytope are:

• A surface may be determined by several different choices of control points.
• On NV the surface is a convex combination of the control points.
• Convex functions are monotonely approximated from above by Bn on NV .
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Typical applications, that require a single polynomial defined on a convex polytope, include
the description and construction of finite elements on regular polygons and the design of
hexagonal lenses (cf. [14]).

5. Smoothness and multivariate splines

We now consider the possible application of our results to multivariate spline theory, where
surfaces are constructed by joining polynomial pieces together smoothly. There is a highly devel-
oped theory (and associated software) that involves polynomials defined on simplices, based on
the description of the smoothness conditions in terms of the control points (cf. [10,21]). We as-
sume that the reader is familiar with this, and we investigate how it extends to partitions involving
nonsimplical cells. There was work in this direction (see [19,5]) on mixed grid partitions where
in the bivariate case the cells were triangles and parallelograms, and in the trivariate case they
were tetrahedrons, prisms and parallelopipeds. The B-form developed for nonsimplicial cells
was for polynomials of coordinate degree n (as were the spline spaces), rather than total degree
n, though the positioning of the control points is the same as we propose. Bivariate C1-quadratics
on a polygonal partition were considered in [31].

We will give our results in terms of the blossoming coefficients. The following theorem is
adapted from [10,25,20]. The paper [30] outlines why these approaches are all equivalent. If (cα)

are the blossoming coefficients, then we refer to the (cα) of (4.12) as the blossoming control
points of p =


cα Bα . Let

r · x := x, . . . , x  
r times

.

Theorem 5.1. Let W be a set of points in Rd , with L = Aff(W ). Then the polynomials f, g ∈

Πn(Rd) have all derivatives of order ≤ r on L equal if and only if

ω

f (w1, . . . , wn−r , r · x) =
ω
g (w1, . . . , wn−r , r · x), w1, . . . , wn−r ∈ W, x ∈ Rd . (5.2)

Lemma 5.3. Let c be the blossoming coefficients of (4.10) for p ∈ Πn(Rd). Then
ω
p (α · V, r · x) =


|β|=r

cα+β Bβ(x), |α| = n − r, r = 0, . . . , n.

Proof. Since the blossom
ω
p is n-affine, we have

ω
p (α · V, r · x) =

ω
p


α · V,


v1∈V

ξv1(x)v1, . . . ,

vr ∈V

ξvr (x)vr



=


v1∈V

· · ·


vr ∈V

ξv1(x) · · · ξvr (x)
ω
p (α · V, v1, . . . , vr )

=


|β|=r

cα+β Bβ(x). �

Combining Theorem 5.1 and Lemma 5.3 gives smoothness conditions for the Cr -joining of
polynomials in terms of their blossoming B-form coefficients.
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We now illustrate this for C1-quadratics on a region consisting of a triangle and a quadrilateral
with a common edge.

Example 5.4 (C1-Quadratics on Triangle and Quadrilateral). Without loss of generality,
suppose the vertices of the triangle and quadrilateral are

V = {v1, v2, v3} = {0, e1, a}, a2 ≠ 0, Ṽ = {ṽ1, ṽ2, ṽ3, ṽ4} = {0, e1, b, −e2},

so the common edge has endpoints v1 = ṽ1 = 0 and v2 = ṽ2 = e1 = (1, 0). We index the
generalised barycentric coordinates ξ and ξ̃ by both their order and the points themselves, e.g.,
ξ3 and ξa = ξ(a1,a2), whichever is the most convenient. We have

ξ1(x, y) = (1 − x) +
a1 − 1

a2
y, ξ2(x, y) = x −

a1

a2
y, ξ3(x, y) =

1
a2

y,

ξ̃(0,0)(x, y) =
−(b2

2 + b1b2 + b1 + 1)x + (b2
1 + b1b2 − b1 + 1)y + b2

1 + b2
2 + 1

2(b2
1 + b2

2 − b1b2 + b2 − b1 + 1)

ξ̃(1,0)(x, y) =
(2b2

2 − b1b2 + 2b2 − b1 + 2)x + (b2
1 − 2b1b2 − b1)y + b2

1 − b1b2 − b1

2(b2
2 + b2 + 1 − b1b2 − b1 + b2

1)
,

ξ̃(b1,b2)(x, y) =
(2b1 − b2 − 1)x + (2b2 − b1 + 1)y + b2 − b1 + 1

2(b2
2 + b2 + 1 − b1b2 − b1 + b2

1)
,

ξ̃(0,−1)(x, y)

=
(−b2

2 + 2b1b2 − b2)x + (−2b2
1 + b1b2 + 2b1 − b2 − 2)y + b2

2 − b1b2 + b2

2(b2
2 + b2 + 1 − b1b2 − b1 + b2

1)
.

Suppose that f, g ∈ Π2(R2) are quadratics with blossoming coefficient B-forms

f =


|α|=2

α∈ZV
+

cα Bα, g =


|α|=2

α∈ZṼ
+

c̃α B̃α.

In Theorem 5.1, we take n = 2, and

W = {v1, v2} = {ṽ1, ṽ2} = {0, e1}.

For r = 0, the condition for f and g to have a continuous join on the line L = Aff(W ) is given
by the two element sequences from W = {v1, v2}, i.e.,

ω

f (v1, v1) =
ω
g (v1, v1),

ω

f (v1, v2) =
ω
g (v1, v2),

ω

f (v2, v2) =
ω
g (v2, v2) (5.5)

which by Lemma 5.3 is

c(2,0,0) = c̃(2,0,0,0), c(1,1,0) = c̃(1,1,0,0), c(0,2,0) = c̃(0,2,0,0). (5.6)

For r = 1, the condition for f and g to have a C1-join on L is given by the one element sequences
from W = {v1, v2}, i.e.,

ω

f (v1, x) =
ω
g (v1, x),

ω

f (v2, x) =
ω
g (v2, x).

By Lemma 5.3, these equalities of linear polynomials in x can be written as

c(2,0,0)ξ1 + c(1,1,0)ξ2 + c(1,0,1)ξ3 = c̃(2,0,0,0)ξ̃1 + c̃(1,1,0,0)ξ̃2 + c̃(1,0,1,0)ξ̃3 + c̃(1,0,0,1)ξ̃4,

c(1,1,0)ξ1 + c(0,2,0)ξ2 + c(0,1,1)ξ3 = c̃(1,1,0,0)ξ̃1 + c̃(0,2,0,0)ξ̃2 + c̃(0,1,1,0)ξ̃3 + c̃(0,1,0,1)ξ̃4.
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Fig. 4. The C1-smoothness conditions of Example 5.4.

Since the blossoming control points for the quadrilateral are simply those for corresponding
triangles, it follows that these smoothness conditions have the usual geometric interpretation:
that all the control points involved (3 and 4 respectively, see Fig. 4) lie in a common plane.

Remark 5.7. Smoothness conditions across an affine subspace L can be developed so long as
the points on L which are in common have affine span L . For example, if L is the line through
v1 and v2, and V and Ṽ have at least two distinct common points on L , say v1 and v2, then
the C0-smoothness condition across L is (5.5), which by Lemma 5.3 gives something similar to
(5.6), depending the other points in V and Ṽ . If a point of {v1, v2} is repeated in V or Ṽ , then it
may be that α · V = β · V , without α = β, in which case cα = cβ , and either may be taken in
the smoothness condition.

6. Future work

For applications where it is desirable to have generalised barycentric coordinates which
are nonnegative on the convex hull of V , one could modify the definition of (ξv(x))v∈V for
x ∈ conv(V ) to be the unique minimal ℓ2-norm coefficients a ∈ RV satisfying

x =


v∈V

avv,

v∈V

av = 1, av ≥ 0. (6.1)

This is well defined, since the set of a ∈ RV satisfying (6.1) is a nonempty closed convex set,
and so has a unique element of minimal norm. With this definition, ξv is a continuous piecewise
linear polynomial defined on conv(V ), which coincides with the original on NV .
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[15] G. Farin, Triangular Bernstein–Bézier patches, Comput. Aided Geom. Design 3 (1986) 83–127.
[16] G. Farin, Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide, fifth ed., Academic Press,

San Diego, 2002.
[17] R.T. Farouki, The Bernstein polynomial basis: a centennial retrospective, Comput. Aided Geom. Design 29 (2012)

379–419.
[18] P.P. Korovkin, On convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk

SSSR (NS) 90 (1953) 961–964.
[19] M.-J. Lai, On construction of bivariate and trivariate vertex splines on arbitrary mixed grid partitions (dissertation),

Texas A & M Univ., 1989.
[20] Ming Jun Lai, A characterization theorem of multivariate splines in blossoming form, Comput. Aided Geom. Design

8 (1991) 513–521.
[21] M.-J. Lai, L.L. Schumaker, Spline Functions on Triangulations, Cambridge University Press, Cambridge, 2007.
[22] Bing-Zheng Li, Approximation by multivariate Bernstein–Durrmeyer operators and learning rates of least-squares

regularized regression with multivariate polynomial kernels, J. Approx. Theory 173 (2013) 33–55.
[23] G.G. Lorentz, Bernstein Polynomials, Toronto Press, Toronto, 1953.
[24] F.-J. Muñoz-Delgado, V. Ramı́rez González, T. Sauer, Domains for Bernstein polynomials, Appl. Math. Lett. 7

(1994) 7–9.
[25] L. Ramshaw, Blossoms are polar forms, Comput. Aided Geom. Design 6 (1989) 323–358.
[26] T. Sauer, Multivariate Bernstein polynomials and convexity, Comput. Aided Geom. Design 8 (1991) 465–478.
[27] H. Speleers, On multivariate polynomials in Bernstein–Bézier form and tensor algebra, J. Comput. Appl. Math. 236
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