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ABSTRACT

The Bernstein operator Bn for a simplex in IRd is naturally defined via the Bernstein
basis obtained from the barycentric coordinates given by its vertices. Here we consider a
generalisation of this basis and the Bernstein operator, which is obtained from generalised
barycentric coordinates that are given for more general configurations of points in IRd.
We call the associated polynomials a Bernstein frame, as they span the polynomials of
degree ≤ n, but may not be a basis. By using this redundant system we are able to give
geometrically motivated proofs of some basic properties of the corresponding generalised
Bernstein operator, such as the fact it is degree reducing and converges for all polynomials.
We also consider the conditions for polynomials in this Bernstein form to join smoothly.
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1. Introduction

The Bernstein operator [L53] and its variants [AC94] have important applications,
e.g., Bézier curves and surfaces [F02]. Here we consider a generalisation of this operator,
which is based on a redundant “Bernstein basis”.

The Bernstein operator Bn for a simplex in IRd is defined via the Bernstein basis for
Πn(IR

d) (the d–variate polynomials of degree ≤ n). This basis is obtained by taking powers
of the barycentric coordinates given by the vertices of the simplex. In the next section, we
outline the basic properties of generalised barycentric coordinates which are given by more
general configurations of points in IRd, e.g., the vertices of a convex polygon. These lead
naturally to an analogue of the Bernstein basis, a set of polynomials of degree n which
span Πn(IR

d). These are not a basis if they are given by more than d + 1 points, and so
we refer to this possibly redundant system as a Bernstein frame (cf. [C03]).

In Section 3, we define the generalised Bernstein operator given by a Bernstein frame.
We give geometrically motivated proofs of some basic properties of it. These include show-
ing that it is degree reducing and converges for all polynomials, that it reproduces the linear
polynomials, and more generally has the same spectral structure as the classical Bernstein
operator. Similar arguments in terms of a basis would be far more cumbersome. Finally,
we explore some applications of our generalised Bernstein operator. These include a de
Casteljau algorithm, shape preservation properties (Section 4), and smoothness conditions
in terms of the control points of the associated Bézier surfaces (Section 5).

2. The Bernstein frame

Let V consist of d + 1 affinely independent points in IRd, i.e., be the vertices of a d–
simplex. The barycentric coordinates (cf. [B87],[LS07]) of a point x ∈ IRd with respect
to V are the unique coefficients (ξv(x))v∈V ∈ IRV for which x can be written as an affine
combination of the points in V , i.e.,

x =
∑

v∈V

ξv(x)v,
∑

v∈V

ξv(x) = 1. (2.1)

We follow [B87] and index the barycentric coordinates by the points v ∈ V that they
correspond to, and use standard multiindex notation. It follows, from (2.1), that the ξv
are linear polynomials which are a basis for Π1(IR

d). More generally, for any n ≥ 1, the
polynomials

Bα :=

(
|α|

α

)

ξα, |α| = n (α ∈ ZZV
+)

are a basis for Πn(IR
d). Here |α| =

∑

v αv,
(
n
α

)
= n!

α! , and ξα =
∏

v ξ
αv
v .

From now on, let V be a sequence (or multiset) of m = |V | points with affine hull IRd,
so that each point x ∈ IRd can be written as an affine combination

x =
∑

v∈V

avv,
∑

v∈V

av = 1, (2.2)
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where the coefficients a = (av)v∈V are unique if and only if V consists of d + 1 points.
Following [W112], we call the unique minimal ℓ2–norm coefficients a ∈ IRV satisfying (2.2)
the (generalised barycentric) coordinates given by V , and denote them by (ξv(x))v∈V .
By construction, they satisfy (2.1). Each ξv is a linear polynomial, and they span Π1(IR

d),
since (2.1) gives

1 =
∑

v∈V

ξv(x), xj =
∑

v∈V

ξv(x)vj , j = 1, . . . , d, (2.3)

which is equivalent to the following reproduction formula for affine functions

f =
∑

v∈V

f(v)ξv, ∀f ∈ Π1(IR
d). (2.4)

From the formula for ξv given in [W112] it is easy to see:

• The coordinates of the barycentre c := 1
m

∑

v∈V v of V are ξv(c) =
1
m
, ∀v.

• ξv is constant (equal to 1
m
) if and only if v is the barycentre c.

• ξv = ξw if and only if v = w.

• The ξv are continuous functions of the points v ∈ V (with affine hull IRd).

These imply that the set of points where the coordinates are nonnegative

NV := {x ∈ IRd : ξv(x) ≥ 0, ∀v ∈ V } (2.5)

is a convex polytope, with the barycentre of V as an interior point. We call NV the region
of nonnegativity for the coordinates given by V (See Fig. 1).

Fig 1. The region of nonnegativity NV for V given by the vertices of a triangle,
square and pentagon.

We write V \w for the sequence (or multiset) obtained by removing the point w from
V (once), and Aff(V ) for the affine hull of the points in V . We recall:

Proposition 2.6 ([W112]). The generalised barycentric coordinates satisfy
(a) 1

m
< ξv(v) ≤ 1.

(b) ξv(w) = ξw(v).
(c) ξv(v) = 1 if and only if v 6∈ Aff(V \ v), in which case ξv = 0 on Aff(V \ v).
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(d)
∑

v ξv(v) = d+ 1.

Expanding the monomial basis for Πn(IR
d) in terms of ξ using (2.3), shows that the

polynomials

Bα :=

(
|α|

α

)

ξα, |α| = n (2.7)

span Πn(IR
d). By a dimension count, these

(
n+m−1
m−1

)
polynomials are basis if and only if

V consists of d + 1 affinely independent points. Thus, we refer to {Bα : |α| = n} as the
Bernstein frame given by the points V . This is a partition of unity, since applying the
multinomial theorem to (2.1) gives

∑

|α|=n

Bα =
∑

|α|=n

(
n

α

)

ξα =
(∑

v∈V

ξv

)n

= 1. (2.8)

A Bernstein frame is nonnegative on NV , the region of nonnegativity given by (2.5). There
have been studies of the approximation properties of linear operators given by partitions
of unity which may take negative values on the region of interest, see, e.g., [BD85].

Example 2.9. (See Fig. 2) For V = {0, 1
2 , 1} ⊂ IR the generalised barycentric coordinates

are

ξ0(x) =
5

6
− x, ξ 1

2
(x) =

1

3
, ξ1(x) = x−

1

6
.

Here, some polynomials in the Bernstein frame have degree < n. This is the case if and
only if the barycentre of V is a point of V . The coordinates for V = {0, 1

3 ,
2
3 , 1} are

ξ0(x) =
7

10
−

9

10
x, ξ 1

3
(x) =

2

5
−

3

10
x, ξ 2

3
(x) =

3

10
x+

1

10
, ξ1(x) =

9

10
x−

1

5
.
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Fig. 2. The Bernstein frame for Π2(IR) for V = {0, 1
2 , 1} and V = {0, 1

3 ,
2
3 , 1}.

We say a polynomial p ∈ Πn(IR
d) is in (Bernstein-Bézier) B-form if

p =
∑

|α|=n

cαBα, (2.10)
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The mesh function c : α 7→ cα is unique if and only if V consists of d + 1 points. The
mesh function with minimal ℓ2–norm gives a canonical B-form, i.e., what [W111] calls the
canonical coordinates of p with respect to {Bα}|α|=n.

Many familiar formulas for the Bernstein basis extend to a Bernstein frame. Here are
a couple of examples (also see Section 4). Let ev be the multiindex given by

ev(w) :=

{
1, v = w;
0,

and define Bα := 0 if α 6≥ 0.

Proposition 2.11. The Bernstein frame {Bα}|α|=n can be calculated recursively via

Bα =
∑

v∈V

ξvBα−ev , B0 = 1, (2.12)

and expressed in terms of the Bernstein frame for polynomials of degree n+ 1 via

Bα =
∑

v∈V

αv + 1

|α|+ 1
Bα+ev . (2.13)

Proof: We calculate
∑

v∈V

ξvBα−ev =
∑

v∈V

(
|α| − 1

α− ev

)

ξα =
∑

v∈V

αv

|α|

(
|α|

α

)

ξα = Bα,

and, using
∑

v ξv = 1, that

Bα = Bα

∑

v∈V

ξv =
∑

v∈V

|α|!

α!
ξαξv =

∑

v∈V

αv + 1

|α|+ 1

|α+ ev|!

(α+ ev)!
ξα+ev =

∑

v∈V

αv + 1

|α|+ 1
Bα+ev .

Proposition 2.14 (Differentiation). For u, v, w ∈ V , we have

Dv−wξu = ξu(v)− ξu(w) = ξv(u)− ξw(u).

Thus the Bernstein frame satisfies

Dv−wBα = |α|
∑

u∈V

(
ξu(v)− ξu(w)

)
Bα−eu .

Proof: Since ξu is affine

(Dv−wξu)(x) = lim
t→0

ξu(x+ t(v − w))− ξu(x)

t

= lim
t→0

ξu(x) + tξu(v)− tξu(w)− ξu(x)

t
= ξu(v)− ξu(w).

By the product and chain rules, we have

Dv−wBα =
|α|!

α!
Dv−w

∏

u∈V

ξαu
u ξα−αueu =

|α|!

α!

∑

u∈V

αuξ
αu−1
u

(
ξu(v)− ξu(w)

)
ξα−αueu

= |α|
∑

u∈V

(
ξu(v)− ξu(w)

) (|α| − 1)!

(α− eu)!
ξα−eu = |α|

∑

u∈V

(
ξu(v)− ξu(w)

)
Bα−eu .
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3. The generalised Bernstein operator

For a Bernstein frame (2.7) given by points V in IRd, we define a (generalised)
Bernstein operator Bn = Bn,V of degree n ≥ 1 by the usual formula

Bn(f) :=
∑

|α|=n

Bαf(vα), vα :=
∑

v∈V

αv

|α|
v, (3.1)

which is equivalent to

Bn(f) =
∑

v1∈V

· · ·
∑

vn∈V

f
(v1 + · · ·+ vn

n

)

ξv1 · · · ξvn .

Fig. 3. The points {vα}|α|=n used in the definition of Bn,V f , where n = 7 and
V is the vertices of a triangle, square, pentagon and hexagon (respectively).

This maps functions f which are nonnegative at the points (vα)|α|=k (which are contained
in T = conv(V ), the convex hull of the points in V ) to polynomials of degree ≤ n which
are nonnegative on the convex polytope (region of nonnegativity) NV given by (2.5), so
that

f ≥ 0 on T =⇒ Bnf ≥ 0 on NV , (3.2)

and reproduces the linear polynomials (cf. Theorem 3.19).
We now show that the generalised Bernstein operator is degree reducing, i.e.,

Bn(f) ∈ Πk(IR
d), ∀f ∈ Πk (k = 0, 1, . . .).

Define the univariate and multivariate (falling) shifted factorials by

[x]n := x(x− 1) · · · (x− n+ 1), [α]β :=
∏

v∈V

[αv]
βv ,

and the multivariate Stirling numbers of the second kind by

S(τ, β) :=
∏

v∈V

S(τv, βv),

where S(τv, βv) are the Stirling numbers of the second kind. We note that

S(τ, β) = 0, β 6≤ τ, (3.3)
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and define (
|α|

α

)

:= 0, α 6≥ 0. (3.4)

These are related by

ατ =
∑

β≤τ

S(τ, β)[α]β . (3.5)

Lemma 3.6. For any τ and n, we have

∑

|α|=n

ατ

(
|α|

α

)

ξα =
∑

β≤τ

S(τ, β)[n]|β|ξβ . (3.7)

Proof: Since [|α|]|β|
(
|α−β|
α−β

)
=

(
|α|
α

)
[α]β (without restriction on α and β), (3.5)

gives
∑

β≤τ

S(τ, β)[|α|]|β|
(
|α− β|

α− β

)

=

(
|α|

α

)
∑

β≤τ

S(τ, β)[α]β =

(
|α|

α

)

ατ .

Thus, we calculate

∑

|α|=n

ατ

(
|α|

α

)

ξα =
∑

|α|=n

∑

β≤τ

S(τ, β)[|α|]|β|
(
|α− β|

α− β

)

ξα

=
∑

β≤τ

S(τ, β)[n]|β|ξβ
∑

|α|=n

α≥β

(
|α− β|

α− β

)

ξα−β =
∑

β≤τ

S(τ, β)[n]|β|ξβ ,

with the last equality given by the multinomial identity.

Theorem 3.8 (Degree reducing). The generalised Bernstein operator Bn is degree
reducing. More precisely,

Bn(ξ
β) =

[n]|β|

n|β|
ξβ +

∑

0<|γ|<|β|

[n]|γ|

n|β|
a(γ, β)ξγ , (3.9)

where w1, . . . , wm is the sequence of points in V , and

a(γ, β) :=
∑

|τ1|=βw1

· · ·
∑

|τm|=βwm

(
βw1

τ1

)

ξτ1(w1) · · ·

(
βwm

τm

)

ξτm(wm)S(τ1 + · · ·+ τm, γ).

(3.10)

Proof: Since each ξw is an affine function, and ξw(v) = ξv(w), we have

ξw(vα) = ξw

(∑

v∈V

αv

|α|
v
)

=
∑

v∈V

αv

|α|
ξw(v) =

∑

v∈V

αv

|α|
ξv(w),

6



and the multinomial identity gives

(ξβ)(vα) =
∏

w∈V

(∑

v∈V

αv

|α|
ξv(w)

)βw

=
∏

w∈V

∑

|τ |=βw

(
βw

τ

)
ατ

|α|βw
ξτ (w)

=
∑

|τ1|=βw1

· · ·
∑

|τm|=βwm

(
βw1

τ1

)

· · ·

(
βwm

τm

)

ξτ1(w1) · · · ξ
τm(wm)

ατ1+···+τm

|α||β|
.

Thus, by rearranging (3.1) and Lemma 3.6, we have

Bn(ξ
β) =

∑

|τ1|=βw1

· · ·
∑

|τm|=βwm

(
βw1

τ1

)

ξτ1(w1) · · ·

(
βwm

τm

)

ξτm(wm)
∑

|α|=n

ατ1+···+τm

n|β|

(
n

α

)

ξα

=
∑

|τ1|=βw1

· · ·
∑

|τm|=βwm

(
βw1

τ1

)

ξτ1(w1) · · ·

(
βwm

τm

)

ξτm(wm)

×
∑

γ≤τ1+···+τm

[n]|γ|

n|β|
S(τ1 + · · ·+ τm, γ)ξγ .

Here Bn(ξ
β) is written as a polynomial in ξ of degree ≤ |β|, so that Bn is degree reducing.

The terms of degree |β| can be simplified using the multinomial identity, ξv(wj) = ξwj
(v),

and (2.4), as follows

∑

|τ1|=βw1

· · ·
∑

|τm|=βwm

(
βw1

τ1

)

ξτ1(w1) · · ·

(
βwm

τm

)

ξτm(wm)
[n]|β|

n|β|
ξτ1+···+τm

=
[n]|β|

n|β|

m∏

j=1

( ∑

|τj |=βwj

(
βwj

τj

)

ξτj (wj)ξ
τj
)

=
[n]|β|

n|β|

m∏

j=1

(∑

v∈V

ξv(wj)ξv

)βwj

=
[n]|β|

n|β|

m∏

j=1

(∑

v∈V

ξwj
(v)ξv

)βwj

=
[n]|β|

n|β|

m∏

j=1

ξ
βwj
wj =

[n]|β|

n|β|
ξβ .

By collecting the terms of degree < |β|, we obtain (3.9). Here, (3.3) allows us to remove
the restriction γ ≤ τ1 + · · ·+ τm, and there are no terms of degree 0 since S(1, 0) = 0.

Remark 3.11. If V consists of d+ 1 affinely independent points, then

a(γ, β) =

{

S(β, γ), γ ≤ β;
0, γ 6≤ β,

and (3.9) simplifies to

Bn(ξ
β) =

[n]|β|

n|β|
ξβ +

∑

γ<β

[n]|γ|

n|β|
S(β, γ)ξγ .

7



This was proved in [CW02] (Lemma 2.1) for the case when βv0 = 0 for some v0 ∈ V .

Example 3.12 (Linear reproduction). For |β| = 1, we have

Bn(ξv) = ξv, ∀v ∈ V, (3.13)

i.e., Bn reproduces the linear polynomials Π1(IR
d) = span{ξv}v∈V . This is equivalent to

x =
∑

|α|=n

Bα(x)vα,
∑

|α|=n

Bα(x) = 1, x ∈ IRd. (3.14)

Example 3.15 (Quadratics). For |β| = 2, we recall S(1, 0) = 0, S(2, 1) = 1, so that

a(eu, 2ew) = ξ2u(v) = ξ2v(u), a(eu, ev + ew) = ξu(v)ξu(w) = (ξvξw)(u), v 6= w, (3.16)

and we obtain

Bn(ξ
β) =

(

1−
1

n

)

ξβ +
1

n

∑

u∈V

ξβ(u)ξu → ξβ , as n → ∞, |β| = 2. (3.17)

Since Bn is not a positive operator in general, the application of the Korovkin theory
is more involved (see Theorem 3.31). We easily obtain the following encouraging result.

Corollary 3.18 (Convergence). For all polynomials f , Bn(f) → f , as n → ∞.

Proof: It suffices to consider f = ξβ . For n ≥ |β|, (3.9) gives

Bn(ξ
β)− ξβ =

( [n]|β|

n|β|
− 1

)

ξβ −
∑

|γ|<|β|

[n]|γ|

n|β|
a(γ, β)ξγ ,

where [n]|β|

n|β| − 1, [n]|γ|

n|β| = O( 1
n
), as n → ∞.

The remaining eigenstructure of Bn is as follows.

Theorem 3.19 (Diagonalisation). The generalised Bernstein operator Bn given by
points V ⊂ IRd is diagonalisable, with eigenvalues

λ
(n)
k :=

[n]k

nk
, k = 1, . . . , n, 1 = λ

(n)
1 > λ

(n)
2 > · · · > λ(n)

n > 0.

Let P
(n)
k,V denote the λ

(n)
k –eigenspace. Then

P
(n)
1,V = Π1(IR

d), ∀n. (3.20)

For k > 1, P
(n)
k,V consists of polynomials of exact degree k, and is spanned by

p
(n)

ξβ
= ξβ +

∑

0<|α|<|β|

c(α, β, n)ξα, |β| = k, (3.21)
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where the coefficients can be calculated using (3.10) and the recurrence formula

c(α, β, n) :=
a(α, β)

1− |β|
, |α| = |β| − 1,

c(α, β, n) :=
[n]|α|

λ
(n)
|β| − λ

(n)
|α|

(a(α, β)

n|β|
+

∑

|α|<|γ|<|β|

c(γ, β, n)
a(α, γ)

n|γ|

)

, |α| < |β| − 1.

(3.22)

Proof: By Example 3.12, the λ
(n)
1 = 1 eigenspace P

(n)
1,V contains Π1(IR

d). Recall,

from (3.9), that Bn(ξ
β) has the form

Bn(ξ
β) = λ

(n)
|β| ξ

β +
∑

0<|γ|<|β|

[n]|γ|

n|β|
a(γ, β)ξγ . (3.23)

Motivated by this, we seek λ
(n)
k –eigenfunctions of the form

f = ξβ +
∑

0<|α|<|β|

c(α, β, n)ξα, |β| = k > 1.

We observe that for such an eigenfunction the coefficients c(α, β, n) are not unique – even

when V consists of d+ 1 points. Expanding Bn(f) = λ
(n)
k f using (3.23) gives

Bn(f) = Bn(ξ
β) +

∑

0<|γ|<|β|

c(γ, β, n)Bn(ξ
γ)

= λ
(n)
|β| ξ

β +
∑

0<|α|<|β|

[n]|α|

n|β|
a(α, β)ξα +

∑

0<|γ|<|β|

c(γ, β, n)
(

λ
(n)
|γ| ξ

γ +
∑

0<|α|<|γ|

[n]|α|

n|γ|
a(α, γ)ξα

)

= λ
(n)
|β| ξ

β +
∑

0<|α|<|β|

λ
(n)
|β| c(α, β, n)ξ

α.

(3.24)
Equating the ξα, 0 < |α| < |β| coefficients gives

λ
(n)
|β| c(α, β, n) =

[n]|α|

n|β|
a(α, β) + c(α, β, n)λ

(n)
|α| +

∑

|α|<|γ|<|β|

c(γ, β, n)
[n]|α|

n|γ|
a(α, γ). (3.25)

Since λ
(n)
|α| > λ

(n)
|β| , this is equivalent to

c(α, β, n) =
1

λ
(n)
|β| − λ

(n)
|α|

( [n]|α|

n|β|
a(α, β) +

∑

|α|<|γ|<|β|

c(γ, β, n)
[n]|α|

n|γ|
a(α, γ)

)

.

From this we can define suitable c(α, β, n) recursively, as in (3.22), starting from

c(α, β, n) :=
1

λ
(n)
|β| − λ

(n)
|α|

[n]|α|

n|β|
a(α, β) =

a(α, β)

1− |β|
, |α| = |β| − 1.

A simple dimension count shows that the eigenfunction {pξβ}|β|=k, so defined, span a

space P
(n)
k,V of dimension

(
k+d−1
d−1

)
. Again, by dimension counting, we conclude that Bn is

diagonalisable, with P
(n)
1,V = Π1(IR

d).
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Example 3.26 (Quadratic eigenfunctions). Using (3.16), we have

p
(n)

ξβ
= ξβ −

∑

u∈V

ξβ(u)ξu, |β| = 2. (3.27)

In general, p
(n)
ξα does depend on n (cf. [CW00]).

Despite the fact the coefficients in (3.21) are not unique, we can take their limit as
n → ∞. This indicates that the redundant expansion (3.21) is natural.

Corollary 3.28 (Limits of the eigenfunctions). For 0 < |α| < |β|,

lim
n→∞

c(α, β, n) = c∗(α, β),

where

c∗(α, β) :=
a(α, β)

1− |β|
, |α| = |β| − 1,

c∗(α, β) :=
2

(|β| − |α|)(−|α| − |β|+ 1)

∑

|γ|=|α|+1

c∗(γ, β)a(α, γ), |α| < |β| − 1.
(3.29)

Thus, the eigenfunctions of (3.21) satisfy

p
(n)

ξβ
→ p∗ξβ := ξβ +

∑

0<|α|<|β|

c∗(α, β)ξα, as n → ∞. (3.30)

Proof: Fix β. We use strong induction on j = |β| − |α| = 1, . . . , |β| to prove the
limit exists. For |α| = |β| − 1 (j = 1) the limit is clear. Suppose the limit of c(γ, β, n)
exists for all γ with |α| < |γ| < |β|. Then taking the limit of (3.22) gives

lim
n→∞

c(α, β, n) =
2

(|β| − |α|)(|β| − |α| − 2|β|+ 1)

∑

|γ|=|α|+1

c∗(γ, β)a(α, γ).

This follows from the calculations

λ
(n)
|β| − λ

(n)
|α| =

[n]|α|[n− |α|]|β|−|α|

n|β|
−

[n]|α|

n|α|
=

[n]|α|

n|β|
([n− |α|]|β|−|α| − n|β|−|α|),

[n−|α|]|β|−|α|−n|β|−|α| =
1

2
(|β|− |α|)(−|α|− |β|+1)n|β|−|α|−1+lower order powers of n.

Since p
(n)

ξβ
, p∗

ξβ
⊂ Π|β|(IR

d), we have the convergence asserted in (3.30).
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We now prove the strongest Korovkin theorem that the restricted positivity property
(3.2) allows. Since this requires a modification of the usual argument, which is not stated
in the literature, we give a self contained proof. This result supercedes Corollary 3.18.

Theorem 3.31 (Korovkin). Let T = TV be the convex hull of V , and NV be the region
of nonnegativity. For f ∈ C(T ), Bnf → f uniformly on NV .

Proof: Let ε > 0, and M be the maximum of f over T . Since f is uniformly
continuous on the compact set T , there is a δ > 0 such that |f(s)−f(t)| < ε, ∀‖s− t‖ < δ.
Thus, we obtain the estimate

|f(s)− f(t)| ≤ ε+ 2M
‖s− t‖2

δ2
, ∀s, t ∈ T,

For fixed t, we have

−ε−
2M

δ2
‖ · −t‖2 ≤ f − f(t) ≤ ε+

2M

δ2
‖ · −t‖2 on T ,

and so applying Bn (which reproduces constants) and using (3.2) gives

−ε−
2M

δ2
Bn

(
‖ · −t‖2

)
≤ Bnf − f(t) ≤ ε+

2M

δ2
Bn

(
‖ · −t‖2

)
on NV .

This last step is the main difference in argument. For t ∈ NV , evaluating at t gives

|Bnf(t)− f(t)| ≤ ε+
2M

δ2
Bn

(
‖ · −t‖2

)
(t), ∀t ∈ NV . (3.32)

We now estimate Bn(‖ · −t‖2)(t). From (2.1), we obtain

‖ · −t‖2 = 〈
∑

v

{ξvv − ξvt},
∑

w

{ξww − ξwt}〉 =
∑

v

∑

w

ξvξw〈v − t, w − t〉.

Thus, (3.17) gives

Bn

(
‖ · −t‖2

)
=

∑

v

∑

w

{(

1−
1

n

)

ξvξw +
1

n

∑

u∈V

ξv(u)ξw(u)ξu

}

〈v − t, w − t〉

=
(

1−
1

n

)

‖ · −t‖2 +
1

n

∑

v

∑

w

∑

u∈V

ξv(u)ξw(u)ξu〈v − t, w − t〉

=
(

1−
1

n

)

‖ · −t‖2 +
1

n

∑

u∈V

ξu〈u− t, u− t〉,

so that

Bn

(
‖ · −t‖2

)
(t) =

1

n

∑

u∈V

‖u− t‖2ξu(t) =
1

n

(∑

u∈V

‖u‖2ξu(t)− ‖t‖2
)

≤
1

n
D2,

where D := diam(T ) is the diameter of T . Thus, we obtain the uniform estimate

|Bnf(t)− f(t)| ≤ ε+
1

n

2MD2

δ2
, t ∈ NV ,

and conclude that Bnf → f uniformly on NV .
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4. Applications to CAGD

We now consider how our generalised Bernstein operator Bn = Bn,V might be used
in CAGD (computer aided geometric design) to describe polynomials defined on convex
polyhedra which are not simplices. We first observe that the Korovkin theory does not
allow a Bernstein type operator which is positive on the entire region T = conv(V ) if the
points of V are not the vertices of a simplex or a cube.

Theorem 4.1 ([MRS94]). Let T be a convex polygon with five or more vertices. There is
no positive linear operator L : C(T ) → C(T ) which reproduces Π1(IR

2) and maps Π2(IR
2)

to itself other than the identity.

We recall, that our Bn reproduces Π1(IR
2) and maps Π2(IR

2), but has the restricted
positivity property (3.2), i.e.,

f ≥ 0 on T =⇒ Bnf ≥ 0 on NV ,

where NV is the region of nonnegativity (2.5). In the multivariate case, the description
of other shape preserving properties is involved (cf. [S91]). We mention some which do
generalise easily. These suggest that the target region for representing polynomials on
should perhaps be the convex polyhedron NV , rather than T = conv(V ).

Proposition 4.2 (Shape preservation). Let T = TV be the convex hull of V , and NV

be the region of nonnegativity. If f is convex on T , then

Bnf ≥ Bn+1f ≥ · · · ≥ f on NV . (4.3)

Proof: Fix x ∈ NV . By (2.1), and a calculation, we have the convex combinations

x =
∑

|α|=n

Bα(x)vα, vβ =
∑

v∈V

βv

|β|
vβ−ev .

Hence for f convex, Jensen’s inequality gives

Bnf(x) =
∑

|α|=n

Bα(x)f(vα) ≥ f(x),
∑

v∈V

βv

|β|
f(vβ−ev ) ≥ f(vβ). (4.4)

By the degree raising formula (2.13), we have

Bnf =
∑

|α|=n

Bαf(vα) =
∑

v∈V

∑

|α|=n

αv + 1

|α|+ 1
Bα+evf(vα),

so that

Bnf −Bn+1f =
∑

|β|=n+1

cβBβ , cβ :=
∑

v∈V

βv

|β|
f(vβ−ev )− f(vβ).

By (4.4), cβ ≥ 0, so that Bnf ≥ Bn+1f on NV .
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A polynomial in B-form can be calculated via the de Casteljau algorithm. We present
this in terms of the blossom (polar form) of a polynomial p ∈ Πn(IR

d), which we recall

(cf. [R89], [DLG91], [DMS92]) is the unique symmetric n–affine function
ω
p with

ω
p(t, . . . , t) = p(t), ∀t ∈ IRd. (4.5)

Proposition 4.6 (de Casteljau algorithm). Suppose that p ∈ Πn(IR
d) has the B-form

p =
∑

|α|=n

cαBα. (4.7)

Then the blossom of p at t1, . . . , tn can be calculated from (cα)|α|=n via
for j = 1 to n do

cα :=
∑

v∈V

ξv(tj)cα+ev , |α| = n− j

end for

with c0 =
ω
p(t1, . . . , tn). In particular, taking t1 = · · · = tn = t gives c0 = p(t).

Proof: Suppose p ∈ Πn(IR
d) is in the B-form (4.7), i.e., equivalently

p =
∑

v1

· · ·
∑

vn

cev1+···+evn
ξv1 · · · ξvn . (4.8)

Then its blossom is given by

P (t1, . . . , tn) :=
∑

v1

· · ·
∑

vn

cev1+···+evn
ξv1(t1) · · · ξvn(tn), (4.9)

since P clearly defines an n–affine function, which, by (4.8), satisfies (4.5). The n steps of
the algorithm are the averagings given by the n sums in (4.9).

In the terminology of [DMS92], this is a symmetric simplicial algorithm (here the
points V need not be the vertices of a simplex).

The coefficients cα in the B-form (4.7) of p are not unique, unless V is the vertices of
a simplex. Using (2.1) to expand, we have

p(t) =
ω
p(t, . . . , t) =

ω
p(
∑

v1

ξv1(t)v1, . . . ,
∑

vn

ξvn(t)vn)

=
∑

v1

· · ·
∑

vn

ξv1(t) · · · ξvn(t)
ω
p(v1, . . . , vn),

and so the coefficients cα in (4.7) can be chosen to be the blossoms

bα =
ω
p(α · V ), α · V := (. . . , v, . . . , v

︸ ︷︷ ︸

αv times

, . . .), (4.10)

which we call the blossoming coefficients.
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Proposition. For any p of the form (4.7), the blossoming coefficients b = (bα)|α|=n are
given by the matrix multiplication

b = Qc, Q = [qαβ ]|α|=n,|β|=n, qαβ :=
ω

Bβ(α · V ).

For n > 1, our calculations show that the blossoming coefficients are not the ℓ2–norm
minimising choice (which is given by multiplication by an orthogonal projection matrix).

Remark 4.11. The previous discussion extends to p = (p1, . . . , ps) : IRd → IRs, where
pj ∈ Πn(IR

d) and cα ∈ IRs, by considering coordinates. Since vector valued p are used in
practice, e.g., Bézier curves in IR3, we henceforth state our results in this setting.

We define the control points of the curve (d = 1), surface (d = 2), etc, given by
t 7→ p(t) ∈ IRs, where p has B-form (4.7), to be

{(
vα
cα

)

: |α| = n
}

⊂ IRd+s.

Since the B-form is not unique when V has more than d+1 points, a given curve (surface,
etc) may be given by different sets of control points. This redundancy has advantages from
the point of view of design, as a given surface could be arrived at by a number of different
choices of control points. Equivalently, each control point has less influence on the the
surface, and so moving a control point causes a small change of shape making the fine
tuning of a surface easier. Once a suitable surface has been obtained it can be presented
in terms of a set of canonical control points – if so desired.

By combining (3.14) and (4.7), we have
(

x

p(x)

)

=
∑

|α|=n

cαBα(x), cα :=

(
vα
cα

)

. (4.12)

Thus a point
(
x, p(x)

)
on the curve (surface, etc) can be calculated by the de Casteljau

algorithm applied to the vectors (cα)|α|=n ⊂ IRd+s. Many basic properties of Bézier curves
and surfaces follow from (4.12). We now list these using the terminology of [F02].

Convex hull property: Since
∑

|α|=n Bα(x) = 1 and Bα(x) ≥ 0, x ∈ NV , the point
(
x, p(x)

)
is an affine combination (also called a barycentric combination in CAGD) of the

control points (cα)|α|=n, which is a convex combination if x ∈ NV .

Affine invariance: For A : IRs → IRℓ an affine map, we have

A
(
p(x)

)
=

∑

|α|=n

(Acα)Bα(x).

Invariance under affine parameter transformations: For A : IRd → IRd an invertible
affine map, Bα(Ax) = A(Bα(x)), so that

p(Ax) =
∑

|α|=n

cαA
(
Bα(x)

)
.
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Symmetry: Suppose that A is an affine map which maps (the multiset) V to V . Then
ξv(x) = ξAv(Ax) (see [W112]), so that

Bα(x) = Bα◦A−1(Ax),

where α ◦A−1 : V → ZZ+ denotes the multiindex v 7→ αA−1v. Using this we obtain

p(x) =
∑

|α|=n

cαBα(x) =
∑

|α|=n

cαBα◦A−1(Ax) =
∑

|β|=n

cβ◦ABβ(Ax).

Invariance under barycentric combinations: The affine combination of two curves
(surfaces, etc) is given by corresponding affine combination of the control points, i.e.,

λ
∑

|α|=n

bαBα(x) + (1− λ)
∑

|α|=n

cαBα(x) =
∑

|α|=n

{
λbα + (1− λ)cα

}
Bα(x), λ ∈ IR.

Endpoint interpolation: If v ∈ V satisfies v 6∈ Aff(V \ v), then Prop. 2.6 gives

(Bnf)(v) = f(v).

The remaining property given in [F02] is pseudolocal control, i.e., the fact that Bα

is peaked at the point vα, and so moving the control point cα has the most influence on
the curve (surface, etc) near the point vα. Numerical calculations indicate some degree of
localisation of the Bα near vα, but we do not make any quantitative statements here.

To summarise, the main features of our Bernstein polynomial approximations on a
nonsimplicial convex polytope are:

• A surface may be determined by several different choices of control points.

• Moving the control points has less influence on the shape if there are many of them.

• On NV the surface is a convex combination of the control points.

• Convex functions are monotonely approximated from above by Bn on NV .

Typical applications, that require a single polynomial defined on a convex polytope,
include the description and construction of finite elements on regular polygons and the
design of hexagonal lenses (cf. [D87]).

5. Smoothness and multivariate splines

We now consider the possible application of our results to multivariate spline theory,
where surfaces are constructed by joining polynomial pieces together smoothly. There is
a highly developed theory (and associated software) that involves polynomials defined on
simplices, based on the description of the smoothness conditions in terms of the control
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points (cf. [B87], [LS07]). We assume that the reader is familiar with this, and we inves-
tigate how it extends to partitions involving nonsimplical cells. There was work in this
direction (see [L89], [CL90]) on mixed grid partitions where in the bivariate case the cells
were triangles and parallelograms, and in the trivariate case they were tetrahedrons, prisms

and parallelopipeds. The B-form developed for nonsimplicial cells was for polynomials of
coordinate degree n (as were the spline spaces), rather than total degree n, though the
positioning of the control points is the same as we propose. Bivariate C1–quadratics on a
polygonal partition were considered in [Wh90].

We will give our results in terms of the blossoming coefficients. The following is
adapted from the [B87], [R89] and [L91] (cf. [W13]). If (cα) are the blossoming coefficients,
then we refer to the (cα) of (4.12) as the blossoming control points of p =

∑
cαBα.

Let

r · x := x, . . . , x
︸ ︷︷ ︸

r times

,

Theorem 5.1.. Let W be a set of points in IRd, with L = Aff(W ). Then the polynomials
f, g ∈ Πn(IR

d) have all derivatives of order ≤ r on L equal if and only if

ω

f(w1, . . . , wn−r, r · x) =
ω
g(w1, . . . , wn−r, r · x), w1, . . . , wn−r ∈ W, x ∈ IRd. (5.2)

Let

α · V := (. . . , v, . . . , v
︸ ︷︷ ︸

αv times

, . . .), α ∈ ZZ+
V .

Lemma 5.3. Let c be the blossoming coefficients of (4.10) for p ∈ Πn(IR
d). Then

ω
p(α · V, r · x) =

∑

|β|=r

cα+βBβ(x), |α| = n− r, r = 0, . . . , n.

Proof: Since the blossom
ω
p is n–affine, we have

ω
p(α · V, r · x) =

ω
p(α · V,

∑

v1∈V

ξv1(x)v1, . . . ,
∑

vr∈V

ξvr (x)vr)

=
∑

v1∈V

· · ·
∑

vr∈V

ξv1(x) · · · ξvr (x)
ω
p(α · V, v1, . . . , vr)

=
∑

|β|=r

cα+βBβ(x).

16



Combining Theorem 5.1 and Lemma 5.3 gives smoothness conditions for the Cr–
joining of polynomials in terms of their blossoming B–form coefficients.

We now illustrate this for C1–quadratics on a region consisting of a triangle and a
quadrilateral with a common edge.

Example 5.4 (C1–quadratics on triangle and quadrilateral). Without loss of gen-
erality, suppose the vertices of the triangle and quadrilateral are

V = {v1, . . . , v3} = {0, e1, a}, a2 6= 0, Ṽ = {ṽ1, . . . , ṽ4} = {0, e1, b,−e2},

so the common edge has endpoints v1 = ṽ1 = 0. and v2 = ṽ2 = e1 = (1, 0). We index the
generalised barycentric coordinates ξ and ξ̃ by both their order and the points themselves,
e.g., ξ3 and ξa = ξ(a1,a2), whichever is the most convenient. We have

ξ1(x, y) = (1− x) +
a1 − 1

a2
y, ξ2(x, y) = x−

a1

a2
y, ξ3(x, y) =

1

a2
y,

ξ̃(0,0)(x, y) =
−(b22 + b1b2 + b1 + 1)x+ (b21 + b1b2 − b1 + 1)y + b21 + b22 + 1

2(b21 + b22 − b1b2 + b2 − b1 + 1)

ξ̃(1,0)(x, y) =
(2b22 − b1b2 + 2b2 − b1 + 2)x+ (b21 − 2b1b2 − b1)y + b21 − b1b2 − b1

2(b22 + b2 + 1− b1b2 − b1 + b21)
,

ξ̃(b1,b2)(x, y) =
(2b1 − b2 − 1)x+ (2b2 − b1 + 1)y + b2 − b1 + 1

2(b22 + b2 + 1− b1b2 − b1 + b21)
,

ξ̃(0,−1)(x, y) =
(−b22 + 2b1b2 − b2)x+ (−2b21 + b1b2 + 2b1 − b2 − 2)y + b22 − b1b2 + b2

2(b22 + b2 + 1− b1b2 − b1 + b21)
,

Suppose that f, g ∈ Π2(IR
2) are quadratics with blossoming coeffient B–forms

f =
∑

|ga|=2

α∈ZZV
+

cαBα, g =
∑

|ga|=2

α∈ZZṼ
+

c̃αB̃α.

In Theorem 5.1, we take n = 2, and

W = {v1, v2} = {ṽ1, ṽ2} = {0, e1}.

For r = 0, the condition for f and g to have a continuous join on the line L = Aff(W ) is
given by the two element sequences from W = {v1, v2}, i.e.,

ω

f(v1, v1) =
ω
g(v1, v1),

ω

f(v1, v2) =
ω
g(v1, v2),

ω

f(v2, v2) =
ω
g(v2, v2).

which by Lemma 5.3 is

c(2,0,0) = c̃(2,0,0,0), c(1,1,0) = c̃(1,1,0,0), c(0,2,0) = c̃(0,2,0,0).
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For r = 1, the condition for f and g to have a C1–join on L is given by the one element
sequences from W = {v1, v2}, i.e.,

ω

f(v1, x) =
ω
g(v1, x),

ω

f(v2, x) =
ω
g(v2, x).

By Lemma 5.3, these equalities of linear polynomials in x can be written

c(2,0,0)ξ1 + c(1,1,0)ξ2 + c(1,0,1)ξ3 = c̃(2,0,0,0)ξ̃1 + c̃(1,1,0,0)ξ̃2 + c̃(1,0,1,0)ξ̃3 + c̃(1,0,0,1)ξ̃4,

c(1,1,0)ξ1 + c(0,2,0)ξ2 + c(0,1,1)ξ3 = c̃(1,1,0,0)ξ̃1 + c̃(0,2,0,0)ξ̃2 + c̃(0,1,1,0)ξ̃3 + c̃(0,1,0,1)ξ̃4.

Since the blossoming control points for the quadrilateral are simply those for corresponding
triangles, it follows that these smoothness conditions have the usual geometric interpreta-
tion: that all the control points involved (3 and 4 respectively, see Fig. 4) lie in a common
plane.

Fig. 4. The C1–smoothness conditions of Example 5.4.

6. Future work

For applications where it is desirable to have generalised barycentric coordinates which
are nonnegative on the convex hull of V , one could modify the definition of (ξv(x))v∈V for
x ∈ conv(V ) to be the unique minimal ℓ2–norm coefficients a ∈ IRV satisfying

x =
∑

v∈V

avv,
∑

v∈V

av = 1, av ≥ 0. (6.1)

With this definition ξv is a continuous piecewise linear polynomial, which coincides with
with the original on NV .
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