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ABSTRACT

This paper considers tight frame decompositions of the Hilbert space Pn of orthogonal
polynomials of degree n for a radially symmetric weight on IRd, e.g., the multivariate
Gegenbauer and Hermite polynomials. We explicitly construct a single zonal polynomial
p ∈ Pn with property that each f ∈ Pn can be reconstructed as a sum of its projections onto
the orbit of p under SO(d) (symmetries of the weight), and hence of its projections onto the
zonal polynomials pξ obtained from p by moving its pole to ξ ∈ S := {ξ ∈ IRd : |ξ| = 1}.
Furthermore, discrete versions of these integral decompositions also hold where SO(d) is
replaced by a suitable finite subgroup, and S by a suitable finite subset. One consequence
of our decomposition is a simple closed form for the reproducing kernel for Pn.
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1. Introduction

We construct orthogonal–type expansions (tight frames) with the simplest possible
form for the space Pn of orthogonal polynomials of degree n for a general radially symmetric
weight function on IRd. By way of motivation, first consider the Legendre polynomials
(constant weight) on the unit disc ID := {x ∈ IR2 : |x| ≤ 1} given by the inner product

〈f, g〉 :=

∫

ID

fg =

∫ 2π

0

∫ 1

0

(fg)(r cos θ, r sin θ) r dr dθ.

These polynomials, and bases for them, are often referred to as Zernike polynomials.
Let Un be the n–th Chebyshev polynomial of the second kind, and Rθ : IR2 → IR2 be

rotation through the angle θ, which acts on functions p : IR2 → IR via Rθp := p ◦ R−1
θ .

Then the polynomial p given by

p(x, y) :=
1√
π

Un(x), (1.1)

and each of its rotations Rθp have unit norm and belong to Pn. In [W08] it was shown
that each Legendre polynomial of degree n on the unit disc can be expressed as a sum of
its projections onto these “simple” polynomials as follows

f =
n + 1

k

k−1
∑

j=0

〈f,Rj
2π
k

p〉Rj
2π
k

p =
n + 1

2π

∫ 2π

0

〈f,Rθp〉Rθp dθ, ∀f ∈ Pn, (1.2)

where k ≥ n + 1 with k not even if k ≤ 2n. A special case of this is the orthogonal
expansion of [LS75]

f =

n
∑

j=0

〈f,R jπ

n+1

p〉R jπ

n+1

p, ∀f ∈ Pn. (1.3)

The calculations leading to (1.2) exploited the identification of IR2 with C||, and so it
is not immediately clear how these expansions generalise to d > 2. The generalisation of
(1.2) which is presented here has the following key features:

• The “simple” function p is replaced by a zonal function.

• The group of rotations 〈R 2π
k
〉 is replaced by an appropriate subgroup of SO(d).

We consider two possible interpretations for Rθp above

• The group element g = Rθ ∈ SO(2) acting on p.

• The ridge polynomial p in the direction e1 := (1, 0) with its direction changed to
ξ ∈ IR2, ξ := Rθe1, i.e.,

Rθp = pξ :=
1√
π

Un(〈·, ξ〉).
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The integral in (1.2) can then be expressed as

dim(Pn)

∫

g∈SO(2)

〈f, gp〉gp dµ2(g),
dim(Pn)

area(S)

∫

S

〈f, pξ〉pξ dξ

respectively, where µd is the normalised Haar measure on SO(d), and area(S) is the area
(length) of the circle S := {x ∈ IR2 : |x| = 1}.

The main result of this paper is for any d ≥ 2 the explicit construction of a zonal
polynomial p ∈ Pn for which

f = dim(Pn)

∫

g∈SO(d)

〈f, gp〉gp dµ(g) =
dim(Pn)

|G|
∑

g∈G

〈f, gp〉gp

=
dim(Pn)

area(S)

∫

S

〈f, pξ〉pξ dξ =
dim(Pn)

|V |
∑

ξ∈V

〈f, pξ〉pξ, ∀f ∈ Pn,

(1.4)

where G is suitable finite subgroup of SO(d), and V is suitable finite subset of the unit
sphere S. The integrals in (1.4) are known as continuous (tight) frame decompositions (cf
[C03:§5.8]), and the finite sums as tight frame decompositions.

Our approach to (1.4) is to first prove the continuous versions, which with hindsight
are the most natural decompositions as they inherit all the symmetries of the space Pn. We
then obtain the discrete decompositions from these. This is in contrast with [W08], where
the discrete versions were proved first, and then the continuous versions were obtained
from these by using a quadrature rule.

The rest of the paper is set out as follows. In the next section we give some of the basic
definitions and facts that our results are based on. This includes the definition of Pn and
a discussion of zonal and harmonic functions. Following that, we give the decomposition
of Pn into absolutely irreducible SO(d)–invariant subspaces. This is used in the following
sections to obtain the continuous and discrete frame decompositions of (1.4). One nice
application of our continuous tight frame decomposition is a simple closed form for the
reproducing kernel of Pn.

2. Basic definitions and results

Our results hold for the orthogonal polynomials given by an appropriate radially
symmetric measure µ (cf [X05]). However, for simplicity of exposition, we consider the
case where µ is given by Lebesgue integration with a radial weight function w on the ball

B = BR := {x ∈ IRd : |x| :=
√

x2
1 · · · + x2

d < R}

of radius 0 < R ≤ ∞. This covers all the cases of known interest.
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2.1. Orthogonal polynomials for a radially symmetric weight

Throughout, fix d ≥ 2 and let IB be the unit ball, and S the unit sphere in IRd, i.e.,

IB := B1 = {x ∈ IRd : |x| < 1}, S := {x ∈ IRd : |x| = 1}.

Let w : [0, R) → IR, 0 < R ≤ ∞ be a positive function for which

〈f, g〉 = 〈f, g〉w :=

∫

BR

f(x)g(x) w(|x|) dx (2.1)

defines an inner product on Πn (the polynomials on IRd of degree ≤ n).
By analogy with the univariate case, the space Pn = Pw

n of orthogonal polynomials
of degree n corresponding to the weight w(| · |) on BR is given by

Pn := {f ∈ Πn : 〈f, g〉w = 0,∀g ∈ Πn−1}.

This is a Hilbert space with the inner product given by (2.1), and has dimension

dim(Pn) =

(

n + d − 1

d − 1

)

.

The orthogonal polynomials on IB = B1 corresponding to the weight

w(r) := (1 − r2)αr2β , α > −1, β > −d

2
, (2.2)

will be called the generalised Gegenbauer polynomials, Gegenbauer polynomials
(when β = 0), and Legendre polynomials (when α = β = 0). Those on IRd = B∞

corresponding to the weight

w(r) = r2βe−r2

, β ≥ 0, (2.3)

are called generalised Hermite polynomials, and Hermite polynomials (β = 0).
The orthogonal group O(d) acts naturally on functions f defined on the ball BR via

gf := f ◦ g−1, g ∈ O(d).

It fixes w(| · |), so that g ∈ O(d) is a symmetry of our (radially symmetric) inner product,
i.e.,

〈f1, f2〉 = 〈gf1, gf2〉, ∀g ∈ O(d). (2.4)

2.2. Zonal functions

A function defined on the sphere S is said to be zonal (on the sphere S) with pole
ξ ∈ IRd, |ξ| = 1 if it is invariant under the action of the subgroup of O(d) which fixes ξ,
i.e., is constant on the intersection of S with any hyperplane in IRd which is orthogonal to
the vector ξ. We extend this notion as follows.
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Definition. We say a function f defined on a O(d)–invariant subset of IRd (such as S or
BR) is zonal with pole ξ ∈ S if it is invariant under the action of the subgroup of O(d)
which fixes ξ.

A function f is zonal if and only if it can be written in the form

f(x) = g(〈x, ξ〉, |x|).

Compare this with the corresponding conditions for being a ridge and radial function, i.e.,

f(x) = g(〈x, ξ〉) (ridge function with direction ξ), f(x) = g(|x|) (radial function).

Thus a zonal function on BR is a generalisation of a ridge function and of a radial function
(and a zonal function on S is the restriction of a ridge function).

If fη is zonal with pole η, then we can move the pole of fη to be ξ by applying any
g ∈ O(d) with ξ = gη. We use the notation fξ to denote the corresponding (well defined)
zonal function

fξ := gfη, g ∈ O(d), ξ = gη. (2.5)

2.3. Harmonic functions

A function f (defined on BR) is harmonic if it satisfies Laplace’s equation, i.e.,

∆f = 0, ∆ := D2
1 + · · ·D2

d.

Let Hn be the space of homogeneous harmonic polynomials of degree n. The map of
restriction of a function to the sphere f 7→ f |S applied to Hn has trivial kernel, so that

dim(Hn) = dim(Hn(S)), Hn(S) := {f |S : f ∈ Hn}.

The spaces Hn and Hn(S) are called (solid and surface) spherical harmonics of degree n,
are invariant under the action of O(d), and have dimension

dim(Hn) = dim(Hn(S)) =

(

n + d − 1

d − 1

)

−
(

n + d − 3

d − 1

)

=

(

n + d − 2

d − 2

)

+

(

n + d − 3

d − 2

)

(n ≥ 1).

(2.6)

Spherical harmonics of different degrees are orthogonal to each other with respect to the
inner product

〈f, g〉S :=

∫

S

f(ω)g(ω) dω, (2.7)

where dω denotes Lebesgue measure on the sphere. We will refer to the “area” of the
sphere S (whatever the dimension d is), and denote it by

area(S) :=

∫

S

1 dω =
2π

d
2

Γ(d
2 )

. (2.8)
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2.4. Zonal harmonics

The Zonal harmonic of degree k with pole ξ ∈ S is the unique function Z = Z
(k)
ξ ∈ Hk

which represents point evaluation at ξ with respect to the inner product (2.7) on Hk, i.e.,
with the property

f(ξ) = 〈f, Z
(k)
ξ 〉S =

∫

S

fZ
(k)
ξ , ∀f ∈ Hk. (2.9)

We recall some basic facts about zonal harmonics (cf [SW71] and[ABR92]).
The zonal harmonic Z (defined on S, IB or IRd) is the unique function in Hk (up to

a scalar) which is zonal with pole ξ. The norm of Z is

‖Z(k)
ξ ‖2

S = 〈Z(k)
ξ , Z

(k)
ξ 〉S = Z

(k)
ξ (ξ) =

dim(Hk)

area(S)
,

and the zonal harmonics of a given degree can be obtained from a single one via rotations

Z
(k)
gξ = gZ

(k)
ξ = Z

(k)
ξ ◦ g−1, ∀g ∈ O(d). (2.10)

There is an explicit formula for Z in terms of ultraspherical polynomials

Z
(k)
ξ (x)

‖Z(k)
ξ ‖S

=
(d + 2k − 2)

√

area(S)
√

dim(Hk)

[k/2]
∑

j=0

(−1)j d(d + 2) · · · (d + 2k − 2j − 4)

2jj!(k − 2j)!
〈x, ξ〉k−2j |x|2j

=

√

dim(Hk)

area(S)

k!

(d − 2)k
|x|kC

d−2

2

k

( 〈x, ξ〉
|x|

)

(d > 2)

=

√

dim(Hk)

area(S)

k!

(d−1
2 )k

|x|kP
( d−3

2
, d−3

2
)

k

( 〈x, ξ〉
|x|

)

.

(2.11)
Here (a)n := a(a + 1) · · · (a + n − 1) denotes the Pochhammer symbol.

2.5. Angular and radial parts

We will repeatedly use the fact that if a function f defined on BR can be factored
into an angular and radial part

f(x) = Θ
( x

|x|
)

R(|x|),

then (by Fubini’s theorem) it can be integrated

∫

BR

f(x) dx =

∫

S

∫ R

0

Θ(ω)R(r) rd−1dr dω =
(

∫

S

Θ(ω) dω
)(

∫ R

0

R(r) rd−1dr
)

.

2.6. The O(d)–invariant subspaces of Pn

Our construction is based on the decomposition of Pn into O(d)–invariant subspaces.
This can be deduced from the orthonormal basis given in [X05:Th. 4.7] by observing each
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polynomial in that basis belongs to some Vj . Since our description differs slightly (we use
orthogonal polynomials with argument | · |2 instead of even orthogonal polynomials with
argument | · |), for completeness and motivation, we provide an indicative proof.

Recall that each homogeneous polynomial p of degree n can be written uniquely in
the form

p(x) =
∑

0≤j≤n
2

|x|2jpn−2j(x) =

[ n
2
]

∑

j=0

|x|2jpn−2j(x), (2.12)

where pn−2j ∈ Hn−2j (see [SW71:Th.2.1]).

We use the Jacobi polynomials P
(α,β)
n , which have the normalisation

P (α,β)
n (x) =

(n + α + β + 1)n

2nn!
xn + lower order terms, (2.13)

and the generalised Laguerre polynomials Lα
n which are given by

Lα
n(x) :=

1

n!
x−αex dn

dxn
(xn+αe−x),

∫ ∞

0

(Lα
n(x))2 xαe−x dx =

Γ(α + n + 1)

n!
.

Lemma 2.14. For 0 ≤ j ≤ n
2 , let Pj = Pn,d,w

j be an orthogonal polynomial of degree j
for the univariate weight

t 7→ tn−2j+ d−2

2 w(
√

t) (2.15)

on [0, R2). Then Pn can be written as an orthogonal direct sum of O(d)–invariant subspaces

Pn =
⊕

0≤j≤n
2

Vj , Vj := Hn−2jPj(| · |2). (2.16)

The inner product on Vj is given by

〈h1Pj(| · |2), h2Pj(| · |2)〉 = 〈h1, h2〉S‖Pj‖2
w, ∀h1, h2 ∈ Hn−2j , (2.17)

where

‖Pj‖2
w :=

1

2

∫ ∞

0

|Pj(t)|2 tn−2j+ d−2

2 w(
√

t) dt. (2.18)

In particular, for the generalised Gegenbauer weight (2.2), we may take

Pj = P
(α,n−2j+ d−2

2
+β)

j (2(·) − 1),

‖Pj‖2
w =

1

2

Γ(j + α + 1)Γ(n − j + d
2 + β)

(α + n + d
2 + β)j!Γ(α + n − j + d

2 + β)
,

(2.19)

and for the generalised Hermite weight (2.3), we may take

Pj = L
n−2j+ d−2

2
+β

j , ‖Pj‖2
w =

1

2

Γ(n − j + d
2 + β)

j!
. (2.20)
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Proof: First we show that Vj ⊂ Pn. Let hn−2j ∈ Hn−2j and Pj be a univariate
polynomial of degree j. In view of (2.12), the polynomial hn−2jPj(| · |2) is in Pn if and only
if it is orthogonal to all polynomials of the form Qℓ(| · |2)pk−2ℓ, where Qℓ is a univariate
polynomial of degree ℓ and pk−2ℓ ∈ Hk−2ℓ, 0 ≤ k < n, 0 ≤ ℓ ≤ k

2 , i.e.,

〈hn−2jPj(| · |2), Qℓ(| · |2)pk−2ℓ〉

=
(

∫

S

hn−2j(ω)pk−2ℓ(ω) dω
)(

∫ R

0

Pj(r
2)Qℓ(r

2)rn−2j+k−2ℓ+d−2w(r) rdr
) (2.21)

is zero. The orthogonality of spherical harmonics of different degrees with respect to (2.7)
implies the above inner product vanishes except for when n − 2j = k − 2ℓ, in which case
ℓ = j − 1

2 (n − k) < j, and the change of variables t = r2 allows the second factor to be
written

∫ R

0

Pj(r
2)Qℓ(r

2)rn−2j+n−2j+d−2w(r) rdr =

∫ R2

0

Pj(t)Qℓ(t) tn−2j+ d−2

2 w(
√

t)
dt

2
.

By our choice for Pj this integral is zero, and so we conclude that hn−2jPj(| · |2) ∈ Vj . A
similar calculation shows that the Vj are orthogonal to each other.

Since space Hn−2j and the polynomial Pj(| · |2) are O(d)–invariant, so is the subspace
Vj := Hn−2jPj(| · |2).

For the generalised Gegenbauer weight, we have

tn−2j+ d−2

2 w(
√

t) = tn−2j+ d−2

2 (1 − t)αtβ ,

so that Pj = P
(α,n−2j+ d−2

2
+β)

j (2(·) − 1), and for the generalised Hermite weight, we have

tn−2j+ d−2

2 w(
√

t) = tn−2j+ d−2

2 tβe−t,

so that Pj = L
n−2j+ d−2

2
+β

j . The calculation of (2.19) and (2.20) are straightforward.

The dimension of the Vj is given by dim(Vj) = dim(Hn−2j), and the formula (2.6).

3. Continuous tight frames for Pn

The continuous tight frame decomposition given here can be viewed as an example of
the continuous analogue of [VW05:Th. 6.18]. Let

Pn =
⊕

0≤j≤n
2

Vj , dim(Vj) = dim(Hn−2j) (3.1)

be the decomposition Pn into O(d)–invariant subspaces given by (2.16). The representation
of SO(d) on the harmonic polynomials Hk is absolutely irreducible (see [FH87:Th. I.5]),
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i.e., if p is any nonzero polynomial in the complex vector space Hk then {gp}g∈SO(d) spans
Hk. In view of (2.17), it follows that (3.1) is an orthogonal decomposition of Pn into
absolutely irreducible SO(d)–invariant subspaces Vj .

Further, none of the Vj are C||SO(d)–isomorphic to each other (cf [FH87:Prop. I.10]),
where we recall that SO(d)–invariant subspaces Vj and Vk are C||SO(d)–isomorphic if there
is a C||–vector space isomorphism S : Vj → Vk for which

gS(f) = S(gf), ∀f ∈ Vj , ∀g ∈ SO(d).

This is easily seen for d ≥ 3 where (2.6) implies that the Vj have different dimensions, and
for d = 2 from following the explicit description of Vj

Vj = span{(x, y) 7→ ℜ((a + ib)(x + iy)n−2j)Pj(x
2 + y2) : a, b ∈ IR}.

Our main result uses Schur’s Lemma (see, e.g., [JL93:9.1]) in the following form. If
S : Vj → Vk is a C||SO(d)–homomorphism (between absolutely irreducible SO(d)–invariant
subpaces), then either S = 0 or it is a C||SO(d)–isomorphism of the form Sf = cf , ∀f ∈ Vj

where c ∈ C|| is a fixed scalar.
Henceforth, let the orthogonal polynomials Pj for the weight (2.15) be normalised so

that the coefficient of (·)j is positive, i.e.,

Pj(|x|2)
‖Pj‖w

=

j
∑

k=0

pj
k|x|2k = pj

j |x|2j + lower order terms, pj
j > 0. (3.2)

Theorem 3.3. Let p ∈ Pn be any unit norm polynomial of the form

p =
∑

0≤j≤n
2

√

dim(Hn−2j)

dim(Pn)
pj , pj ∈ Vj , ‖pj‖ = 1. (3.4)

Then {gp}g∈SO(d) is an isometric continuous tight frame for Pn, i.e.,

f = dim(Pn)

∫

SO(d)

〈f, gp〉gp dµ(g), ∀f ∈ Pn, (3.5)

where µ denotes the normalised Haar measure on SO(d), and these are all such p ∈ Pn.
Moreover, p can be chosen to be a zonal function, in which case

f =
dim(Pn)

area(S)

∫

S

〈f, pξ〉pξ dξ, ∀f ∈ Pn. (3.6)

There are a finite number of such p = pξ with a given pole ξ. Amongst these, we call

pξ :=

√

area(S)

dim(Pn)

∑

0≤j≤n
2

Z
(n−2j)
ξ

Pj(| · |2)
‖Pj‖w

. (3.7)
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the canonical choice of p. This uniquely maximises the value pξ(rξ), where r > 0 is any
number with

r > max{t ≥ 0 : t2 is a root of Pj , 0 ≤ j ≤ n

2
}.

Proof: Let G := SO(d). Choose vj ∈ Vj , vk ∈ Vk, and define S : Vj → Vk by

Sf =

∫

G

〈f, gvj〉gvk dµ(g), ∀f ∈ Vj .

Then S is a C||G–isomorphism, since by (2.4) it follows that S commutes with every g ∈ G

gS(f) = g

∫

G

〈f, hvj〉hvk dµ(h) =

∫

G

〈gf, ghvj〉ghvk dµ(h) = S(gf).

But none of the Vj are C||G–isomorphic, so Schur’s Lemma gives

∫

G

〈f, gvj〉gvk dµ(g) = 0, ∀f ∈ Vj , j 6= k, (3.8)

∫

G

〈f, gvj〉gvj dµ(g) = cf, ∀f ∈ Vj , (3.9)

where c ∈ C||. Now

trace(〈·, gvj〉gvj) = trace(gvj(gvj)
∗) = trace(gvjv

∗
j g∗) = trace(v∗

j vj) = ‖vj‖2,

so taking the trace of (any matrix representing) the operators Vj → Vj defined by (3.9)
gives

cdim(Vj) = trace(c IdVj
) = trace

∫

G

〈·, gvj〉gvj dµ(g) =

∫

G

trace(〈·, gvj〉gvj) dµ(g)

=

∫

G

‖vj‖2 dµ(g) = ‖vj‖2µ(G) = ‖vj‖2,

and so (3.8) becomes

∫

G

〈f, gvj〉gvj dµ(g) =
‖vj‖2

dim(Vj)
f, ∀f ∈ Vj . (3.10)

Let p ∈ Pn be a polynomial of the form

p =
∑

0≤j≤n
2

cjvj , vj ∈ Vj , ‖vj‖ = 1, cj ∈ C||.

It suffices to prove (3.5) for f ∈ Vj , since both sides of (3.5) are linear functions of f . For
f ∈ Vj , (3.8) and (3.10) give

∫

G

〈f, gp〉gp dµ(g) =
∑

0≤ℓ≤n
2

∑

0≤k≤n
2

cℓck

∫

G

〈f, gvℓ〉gvk dµ(g) =
|cj |2

dim(Vj)
f.
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This will be a scalar multiple λf of f and give a p of unit norm if and only if

|cj |2
dim(Vj)

= λ, ‖p‖2 =
∑

j

|cj |2 = 1 ⇐⇒ λ =
1

∑

j dim(Vj)
, |cj | =

√

dim(Vj)

dim(Pn)
.

Thus all polynomials p for which (3.5) holds are given by (3.4).
All the choices for p which are zonal with pole ξ are obtained by taking the harmonic

factor of the Vj component to be a scalar multiple of the zonal harmonic Z
(n−2j)
ξ , i.e.,

pξ =

√

area(S)

dim(Pn)

∑

0≤j≤n
2

sjZ
(n−2j)
ξ

Pj(| · |2)
‖Pj‖w

, sj ∈ {−1, 1}.

The value of these pξ at rξ is

pξ(rξ) =
∑

0≤j≤n
2

sjcj , cj :=

√

area(S)

dim(Pn)
rn−2jZ

(n−2j)
ξ (ξ)

Pj(r
2)

‖Pj‖w
> 0.

This is clearly maximised by the choice sj = 1, ∀j, which gives (3.7).
Finally, suppose p is zonal, so that pξ is zonal with pole ξ ∈ S. Let Gξ be the subgroup

of SO(d) which fixes ξ, i.e.,

Gξ := {g ∈ SO(d) : gξ = ξ} ≈ SO(d − 1).

with normalised Haar measure denoted by ν. Then by [SD80:Th. III.3.2] the integral of
(3.5) can be computed

∫

SO(d)

〈f, gp〉gp dµ(g) =
1

area(S)

∫

S

∫

SO(d−1)

〈f, gp〉gp dν(g) dξ

=
1

area(S)

∫

S

∫

Gξ

〈f, pξ〉pξ dν(g) dξ =
1

area(S)

∫

S

〈f, pξ〉pξ dξ,

which gives (3.6).

For d > 2 the decomposition (3.6) is preferable to (3.5), as the underlying manifold S
has dimension d− 1 (and is easily parametrised), whereas SO(d) has dimension 1

2d(d− 1).
The canonical choice for p = pξ depends continuously on the weight w. By (2.11), it

has the structural form

pξ(x) =
∑

0≤k≤j≤n
2

cjk|x|2k〈x, ξ〉n−2j .

For the Legendre polynomials we will see that it reduces to a ridge function.
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Example 1. Let P4 be the quartic Legendre polynomials on the unit disc. Write the
summands of the canonical choice pξ(x) as

vj :=

√

area(S)

dim(Pn)
Z

(n−2j)
ξ (x)

Pj(|x|2)
‖Pj‖w

.

Then by (2.11) and (2.19), one has

v0 =
1√
π

(

2|x|4 − 16|x|2〈x, ξ〉2 + 16〈x, ξ〉4
)

,

v1 =
1√
π

(

−8|x|4 + 16|x|2〈x, ξ〉2 + 6|x|2 − 12〈x, ξ〉2
)

,

v2 =
1√
π

(

6|x|4 − 6|x|2 + 1
)

,

and so the canonical choice is

pξ(x) := v0 + v1 + v2 =
1√
π

(

16〈x, ξ〉4 − 12〈x, ξ〉2 + 1
)

=
1√
π

U4(〈x, ξ〉).

The formulas for the other zonal polynomials with pole ξ (up to to multiplication by ±1)
are given by v0 − v1 + v2 (is a rotation of pξ by π

2 ), qξ(x) := v0 + v1 − v2 and v0 − v1 − v2

(is a rotation of qξ by π
2 ).

Fig 1. Contour plots of the quartic Legendre polynomials pξ and qξ from Ex. 1
for ξ = (1, 0). Clearly the canonical choice pξ is a ridge function.

The following result (cf [BS06]) allows us to determine when p is a ridge function.

Lemma 3.11. A homogeneous ridge polynomial can be expressed in terms of the Zonal
harmonics as follows

〈x, ξ〉n =
n! area(S)

2n(d
2 )n

∑

0≤j≤n
2

(n − j + d
2 )j

j!
|x|2jZ

(n−2j)
ξ (x),

11



where n ≥ 1 and |ξ| = 1.

For p to be a ridge function, each of its homogeneous terms must be ridge functions.
In particular its leading term p↑(x), which is given by

p↑(x) :=

√

area(S)

dim(Pn)

∑

0≤j≤n
2

Z
(n−2j)
ξ (x)pj

j |x|2j ,

must be a scalar multiple of 〈x, ξ〉n. In view of Lemma 3.11 and the fact the polynomials
{| · |2jZn−2j

ξ }0≤j≤n
2

are linearly independent, this is equivalent to the pj
j of (3.2) satifying

pj
j = c

(n − j + d
2 )j

j!
, 0 ≤ j ≤ n

2
, (3.12)

for some constant c > 0.
For the Gegenbauer polynomials, (2.13) and (2.19) give

pj
j =

√

2(α + n + d
2 )j!Γ(α + n − j + d

2 )

Γ(j + α + 1)Γ(n − j + d
2 )

(α + n − j + d
2 )j

j!
, (3.13)

and so it follows the canonical choice for p is a ridge function if (and only if) α = 0.
In this way, we recover the result of Petrushev [P99] that the decomposition (3.6)

holds for the Legendre polynomials.

Corollary 3.14 (Legendre polynomials [P99]). For the constant weight 1 on the unit
ball, the canonical choice for p in Theorem 3.3 is the ridge polynomial given by

pξ(x) =

√
2n + d

√

area(S)
√

dim(Pn)
Cd/2

n (〈x, ξ〉). (3.15)

Proof: Let p = pξ be the canonical choice (3.7) for w = 1 on IB. By (3.13)

pj
j =

√
2n + d

(n − j + d
2 )j

j!
,

and so by Lemma 3.11 the leading term of p (term of highest degree of the decomposition
of p into its homogeneous components) is given by

p↑(x) =

√

area(S)

dim(Pn)

∑

0≤j≤n
2

Z
(n−2j)
ξ (x)

√
2n + d

(n − j + d
2 )j

j!
|x|2j

=

√

area(S)

dim(Pn)

√
2n + d

1

area(S)

2n(d
2 )n

n!
〈x, ξ〉n,

12



which is a ridge function. It is well known (cf [DX01:Prop. 6.1.13]) that C
d/2
n (〈·, ξ〉), ξ ∈ S is

a Legendre polynomial. Since orthogonal polynomials of degree n are uniquely determined
by their leading terms, and the ultraspherical polynomials have the normalisation

Cd/2
n (〈x, ξ〉) =

(d
2 )n2n

n!
〈x, ξ〉n + lower order terms

we therefore conclude that

pξ(x) =

√
2n + d

√

area(S)
√

dim(Pn)

(2n(d
2 )n

n!
〈x, ξ〉n + · · ·

)

=

√
2n + d

√

area(S)
√

dim(Pn)
Cd/2

n (〈x, ξ〉).

Example 2. For the Legendre polynomials on the disc, (3.15) gives

pξ(x) =

√
2n + 2√

2π
√

n + 1
C1

n(〈x, ξ〉) =
1√
π

Un(〈x, ξ〉),

and both (3.5) and (3.6) reduce to

f =
n + 1

2π

∫ 2π

0

〈f,Rθpξ〉Rθpξ dθ,

which is the integral formula of (1.2).
For the Legendre polynomials on the unit ball in IR3, (3.15) gives

pξ(x) =

√
2n + 3

√
4π

√

(

n+2
2

)

C
3
2
n (〈x, ξ〉).

The integral in (3.5) is over the manifold SO(3) of dimension 3, and the integral in (3.6)
is over S which has dimension 2.

4. The reproducing kernel

The reproducing kernel for Pn is the unique function Kn which satisfies

f(x) = 〈Kn(x, ·), f〉 =

∫

BR

Kn(x, y)f(y) w(|y|) dy, ∀f ∈ Pn.

From (3.6), we calculate

f(x) =
dim(Pn)

area(S)

∫

S

〈f, pξ〉pξ(x) dξ =
dim(Pn)

area(S)

∫

S

∫

BR

f(y)pξ(y)w(|y|) dy pξ(x) dξ

=

∫

BR

dim(Pn)

area(S)

∫

S

pξ(x)pξ(y) dξ f(y) w(|y|)dy,

13



and hence

Kn(x, y) =
dim(Pn)

area(S)

∫

S

pξ(x)pξ(y) dξ. (4.1)

In particular, for the Legendre polynomials (3.15) gives the formula of [X07:Prop. 3.1]

Kn(x, y) =
2n + d

(area(S))2

∫

S

Cd/2
n (〈x, ξ〉)Cd/2

n (〈ξ, y〉) dξ,

which plays a key role in the reconstruction of a function on the ball from its Radon projec-
tions. This can also be deduced from [P99], and plays an important role in approximation
by neural networks. For the Gegenbauer weight (α > − 1

2 ) [X99] (see also [X01]) gives the
following formula

Kn(x, y) =
(2n + 2α + d)Γ(α + d

2 )

Γ( 1
2 )Γ(α + 1

2 ) area(S)Γ(d
2 )

∫ 1

−1

C
α+ d

2
n (〈x, y〉+ t

√

1−|x|2
√

1−|y|2)(1− t2)α− 1
2 dt.

We can simplify our formula for Kn by using the orthogonal decomposition of Pn.

Theorem 4.2. The reproducing kernel for Pn is given by the following formulas

Kn(x, y) =
dim(Pn)

area(S)

∫

S

pξ(x)pξ(y) dξ =
∑

0≤j≤n
2

Pj(|x|2)Pj(|y|2)
‖Pj‖2

w

Z(n−2j)(x, y), (4.3)

where the polynomial Z(k) is given by

Z(k)(x, y) := |x|k|y|kZ
(k)
x
|x|

(
y

|y| ) = |x|k|y|kZ
(k)
y

|y|
(

x

|x| ).

Proof: The first formula is (4.1). From the formula (2.11) one obtains

Z
(k)
ξ (x) = |x|kZ

(k)
x
|x|

(ξ), ξ ∈ S, x ∈ IRd \{0}. (4.4)

Substitute (3.7) into (4.1), and use (4.4) and the orthogonality of zonal harmonics of
different degrees to obtain

Kn(x, y) =

∫

S

(

∑

0≤j≤n
2

Z
(n−2j)
ξ (x)

Pj(|x|2)
‖Pj‖w

)(

∑

0≤k≤n
2

Z
(n−2k)
ξ (y)

Pk(|y|2)
‖Pk‖w

)

dξ

=

∫

S

(

∑

0≤j≤n
2

|x|n−2jZ
(n−2j)
x
|x|

(ξ)
Pj(|x|2)
‖Pj‖w

)(

∑

0≤k≤n
2

|y|n−2kZ
(n−2k)
y

|y|
(ξ)

Pk(|y|2)
‖Pk‖w

)

dξ

=
∑

0≤j≤n
2

|x|n−2j Pj(|x|2)
‖Pj‖w

|y|n−2j Pj(|y|2)
‖Pj‖w

∫

S

Z
(n−2j)
x
|x|

(ξ)Z
(n−2j)
y

|y|
(ξ) dξ,

for x and y nonzero. By the reproducing kernel property (2.9) of zonal harmonics
∫

S

Z
(n−2j)
x
|x|

(ξ)Z
(n−2j)
y

|y|
(ξ) dξ = Z

(n−2j)
x
|x|

(
y

|y| ) = Z
(n−2j)
y

|y|
(

x

|x| ),

and so we obtain (4.3). Further, by (2.11) can expand Z(k)(x, y) as

Z(k)(x, y) =
(d + 2k − 2)

area(S)

[k/2]
∑

j=0

(−1)j d(d + 2) · · · (d + 2k − 2j − 4)

2jj!(k − 2j)!
〈x, y〉k−2j |x|2j |y|2j ,

which is a polynomial. Hence (4.3) extends to the case when x or y is zero.
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We observe that the polynomial (x, y) 7→ Kn(x, y) is of coordinate degree n in x and
y, and depends only on 〈x, y〉, |x|2 and |y|2.

5. Finite tight frames for Pn

For a fixed x ∈ IRd and f ∈ Pn, (3.6) gives

f(x) =
dim(Pn)

area(S)

∫

S

〈f, pξ〉pξ(x) dξ.

The above integral of the polynomial ξ 7→ 〈f, pξ〉pξ(x) of degree 2n can be replaced by an
appropriate quadrature rule (spherical design) to obtain a discrete form of (3.6).

Definition. A finite subset V of S together with weights cξ ∈ IR, ξ ∈ V is called a
quadrature (or cubature) rule of degree k for the sphere if

1

area(S)

∫

S

f dξ =
∑

ξ∈V

cξf(ξ), ∀f ∈ Πk.

V is termed a spherical k–design if cξ = 1
|V | , ∀ξ ∈ V .

Here |V | denotes the cardinality of the set V . There is an extensive literature on
cubature rules for the sphere, in the first instance see [St71] and [Se01] (equal weights).

Theorem 5.1 (Finite tight frame). Let V ⊂ S be a cubature rule of degree 2n for the
sphere S with weights (cξ)ξ∈V , and p = pξ the canonical choice (3.7). Then we have

f = dim(Pn)
∑

ξ∈V

cξ〈f, pξ〉pξ, ∀f ∈ Pn, (5.2)

which for equal weights reduces to

f =
dim(Pn)

|V |
∑

ξ∈V

〈f, pξ〉pξ, ∀f ∈ Pn. (5.3)

Proof: Let x ∈ IRd and f ∈ Pn. Then (3.6) and the quadrature rule of degree 2n
give

f(x) =
dim(Pn)

area(S)

∫

S

〈f, pξ〉pξ(x) dξ = dim(Pn)
∑

ξ∈V

cξ〈f, pξ〉pξ(x),

which is (5.2). Set cξ = 1
|V | to obtain (5.3).
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This result uses cubature rules to obtain tight frames of orthogonal polynomials.
Usually the opposite relationship is exploited: orthogonal polynomials play a pivotal role
in obtaining cubature rules (cf [CMS01]).

Example 1. Consider d = 2. Let Vk be any set of k equally spaced points on the cirle S.
These give an equal weight quadrature rule of degree k − 1 for S. Hence for k ≥ 2n + 1
(5.3) holds for V = Vk. This also extends to when k ≥ n + 1 and k is odd by the following
argument. In this case V2k can be written as the disjoint union Vk ∪ RπVk, and so using
Rπpξ = (−1)npξ, we calculate

f =
dim(Pn)

2k

∑

ξ∈V2k

〈f, pξ〉pξ =
dim(Pn)

2k

∑

ξ∈Vk

(〈f,Rπpξ〉Rπpξ + 〈f,Rπpξ〉Rπpξ)

=
dim(Pn)

2k

∑

ξ∈Vk

2〈f,Rπpξ〉Rπpξ =
dim(Pn)

k

∑

ξ∈Vk

〈f,Rπpξ〉Rπpξ, ∀f ∈ Pn.

In a similar vein, we can obtain discrete versions of (3.5).

Definition. A finite subgroup G of SO(d) is said to generate a spherical t–design if the
set V = {gη}g∈G is a spherical t–design for some (and hence every) η ∈ S.

In the literature such groups are said to be t–homogeneous, see, e.g., [SHC03] and [HP04].

Corollary 5.4. If G is a finite subgroup of SO(d) which generates a spherical 2n–design,
and p = pξ the canonical choice (3.7). Then we have

f =
dim(Pn)

|G|
∑

g∈G

〈f, gp〉gp, , ∀f ∈ Pn. (5.5)

Proof: Let V = {gξ}g∈G in (5.3), and use (2.5).

Example 2. Let d = 2. Similarily to Example 1, (5.5) holds for G = 〈R 2π
k
〉 ⊂ SO(2), the

cyclic group of rotations through multiples of 2π/k (of order k), where n+1 ≤ k ≤ 2n and
k odd, or k > 2n. In particular, this gives the finite tight frame decompositions of [W08]
(generalised Gegenbauer polynomials) and [W07] (generalised Hermite polynomials).

A less tractable (but possibly weaker) condition which ensures (5.5) for the canonical
choice of p is that the representation of G on Hn−2j , 0 ≤ j ≤ n

2 is absolutely irreducible.
In this case a discrete version of Theorem 3.3 holds.

It also happens that the weakest condition on SO(d) that could be required for (5.5) to
hold, that {gp}g∈G spans Pn for some p ∈ Pn, does ensure such a decomposition (though
not necessarily for p the canonical choice).

Let Πhom
n denote the space of homogeneous polynomials of degree n.

16



Theorem 5.6. Let G be a finite subgroup of SO(d) for which there exists a q↑ ∈ Πhom
n

for which {gq↑}g∈G spans Πhom
n . Then there exists a p ∈ Pn for which

f =
dim(Pn)

|G|
∑

g∈G

〈f, gp〉gp = dim(Pn)

∫

SO(d)

〈f, gp〉gp dµ(g), ∀f ∈ Pn.

Proof: Let q be the orthogonal projection of q↑ onto Pn. Since {hq↑}h∈G spans
Πhom

n , and each polynomial in Pn is uniquely determined by its leading term, Φ := {hq}h∈G

spans Pn. Following [W08:§2], let S : Pn → Pn be the frame operator for Φ, which is
given by

Sf :=
∑

h∈G

〈f, hq〉hq, ∀f ∈ Pn,

and p := S− 1
2 q, which generates the canonical dual frame to Φ, i.e.,

f =
dim(Pn)

|G|
∑

h∈G

〈f, hp〉hp, ∀f ∈ Pn.

This implies for all g ∈ SO(d) that

gf =
dim(Pn)

|G|
∑

h∈G

〈gf, ghp〉ghp =⇒ f =
dim(Pn)

|G|
∑

h∈G

〈f, ghp〉ghp, ∀f ∈ Pn.

Integrate the last equality over the normalised Haar measure, which is right invariant, to
obtain

f =
dim(Pn)

|G|
∑

h∈G

∫

SO(d)

〈f, ghp〉ghp dµ(g) =
dim(Pn)

|G|
∑

h∈G

∫

SO(d)

〈f, gp〉gp dµ(g)

= dim(Pn)

∫

SO(d)

〈f, gp〉gp dµ(g), ∀f ∈ Pn.
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