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ABSTRACT

Over the last decade, there has been intensive work on the
construction of G–covariant SIC-POVMs, i.e., d2 equiangular
lines in Cd, for the abelian group G = ZZd×ZZd. These equian-
gular tight frames for Cd with the maximal number of vectors
have applications to quantum measurement theory and signal
analysis. Here we present the first example of a SIC-POVM
which is G–covariant for a nonabelian group G. It is in six di-
mensions, and is constructed from a nice error basis with index
group

G = ZZ3 ×A4 = SmallGroup(36, 11),

and canonical abstract error group SmallGroup(216, 42).
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This interdisciplinary area is heavy with terminology, so
we begin with some motivating examples:

Three equiangular lines in IR2

It is easy to construct three (but not four) equiangular
lines in the plane.

Four equiangular lines in C2

Let σ1, σ2, σ3 be the Pauli matrices

σ1 :=

(

0 1
1 0

)

, σ2 :=

(

0 −i

i 0

)

, σ3 :=

(

1 0
0 −1

)

which are used to study spin in quantum mechanics.
The four vectors

v :=
1√
6

(

√

3 +
√
3

e
π

4
i
√

3−
√
3

)

, σ1v, σ2v, σ3v

give a set of four equiangular lines in C2.
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Equiangular lines/vectors

Let IF = IR,C (it makes a big difference).

We say that unit vectors (fj) in IFd (or the lines they represent)
are equiangular if

|〈fj , fk〉| = C < 1, j 6= k.

Theorem. Let (fj) be n equiangular unit vectors in IFd. Then
the orthogonal projections

Pj : f 7→ 〈f, fj〉fj , j = 1, . . . , n

are linearly independent, and hence

n ≤
{

1
2
d(d+ 1), IF=IR;

d2, IF=C

with equality iff {Pj}nj=1 is a basis for the Hermitian matrices.

Proof: Recall C < 1. Observe

trace(PjP
∗
k ) = |〈fj , fk〉|2 = C2, j 6= k,

so the Frobeneous norm of the linear combination
∑

j cjPj is

‖
∑

j

cjPj‖2F = trace(
∑

j

cjPj

∑

k

ckP
∗
k )

=
∑

j

∑

k

cjck trace(PjP
∗
k )

=
∑

j

∑

k

cjckC
2 +

∑

j

cjcj(1− C2)

= C2|
∑

j

cj |2 + (1− C2)
∑

j

|cj |2,

which is zero only for the trivial linear combination.
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Lines in IRd

For d = 2, the maximal number of lines possible is

1

2
d(d+ 1) = 3,

our set of three equiangular lines. This bound is known to be
reached only for

d = 2, 3, 7, 23

which is a pretty small list (which hasn’t changed for ages).

This is the motivating problem for algebraic graph theory.

Lines in Cd

For d = 2, the maximal number of lines possible is

d2 = 4,

the Pauli matrix example. This bound is known to be reached
only for

d = 2, 3, . . . , 15, 19, 24, 35, 48,

which is changing often (d = 16, 28 were just announced).

The existence of d2 equiangular lines in Cd is called Zauner’s
conjecture.
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A question

Let u1, u2, u3 be three equally spaced unit vectors in IR2.

u1

u2 u3

For a given nonzero vector f ∈ IR2, what is the sum of its
orthogonal projections onto these vectors?

(a)
3

∑

j=1

〈f, uj〉uj = 0 (since u1 + u2 = u3 = 0).

(b)

3
∑

j=1

〈f, uj〉uj =
3

2
f, ∀f ∈ IR2.
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Finite tight frames

The following sets of vectors {vj}3j=1 form tight frames for IR2

i.e., give decompositions of the form

f =

3
∑

j=1

〈f, vj〉vj , ∀f ∈ IR2.

This is technically similar to an orthogonal expansion, except
it has more terms (redundancy).
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Tight frames and SIC-POVMs

A sequence of n vectors Φ = (fj)
n
j=1 in the Hilbert space

H = IFd is a tight frame for H if ∃C > 0:

f = C

n
∑

j=1

〈f, fj〉fj , ∀f ∈ H.

If a sequence of d2 unit vectors (fj) in Cd is equiangular, then
they are tight frame. The orthogonal projections

Pj = fjf
∗
j : f 7→ 〈f, fj〉fj

given by a equiangular tight frame are called a SIC-POVM
(symmetric informationally complete positive operator valued
measure).
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Constructing SIC-POVMs

The key feature of the SIC-POVMs (equiangular lines)
presented so far, is that they are the (projective) orbit of a
group of unitary matrices.

Definition. Let G be a group of order d2. Then d×d unitary
matrices (Eg)g∈G are a nice (unitary) error basis for Md(C)
if

• E1 is a scalar multiple of the identity I.
• trace(Eg) = 0, g 6= 1, g ∈ G, (i.e., they are an error

operator basis.)
• EgEh = w(g, h)Egh, ∀g, h ∈ G, where w(g, h) ∈ C. and G

is referred to as the index group.

In the language of group theory, this is equivalent to

ρ : g 7→ Eg being a unitary irreducible faithful projective

representation of G of degree d = |G| 12 .
Proposition (Variational characterisation). If (Eg)g∈G is
a nice error basis for Md(C), then the “orbit” (Egv)g∈G of

v ∈ Cd is a SIC-POVM in Cd if and only if

∑

g∈G

|〈Egv, v〉|4 = 1 +
d2 − 1

(d+ 1)2
=

2d

d+ 1
, ‖v‖ = 1.

For a nice error basis, a vector v ∈ Cd giving a SIC-POVM
(Egv)g∈G is called a generating or fiducial vector.
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Heisenberg frames

Let S and Ω be the shift and modulation operators on Cd

S =















0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
· · ·
· · ·
0 0 0 1 0















, Ω =















1 0 0 · · 0
0 ω 0 · · 0
0 0 ω2 0
· · ·
· · ·
0 0 0 ωd−1















where ω := e
2πi

d is a d–th roof of unity. Then

ZZd × ZZd : (j, k) 7→ SjΩk

is a nice error basis (which generalises the Pauli matrices).
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A nonabelian index group

Define matrices (with 2× 2 blocks) by

B :=





iσ1

iσ2

iσ3



 , S2 =





0 0 I

I 0 0
0 I 0



 ,

A =





I

ωI

ω2I



 , ω := e
2πi

3 .

Proposition (Nice error basis). The unitary 6×6 matrices
B, S2, A generate a group

H := 〈B,S2, A〉 ⊂ SL6(C), |H| = 216 = 63

which gives a unitary faithful irreducible representation of

SmallGroup(216,42),

and has centre

Z(H) = 〈−ωI〉, |Z(H)| = 6.

In particular, taking a matrix Eg from each coset of

G :=
H

Z(H)
= SmallGroup(36, 11)

gives a nice error basis (Eg) for M6(C) with index group G.
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A SIC-POVM with nonabelian index group

Theorem (Chien, Waldron 2012). Let (Eg)g∈G be the pre-
vious nice error basis with the nonabelian index group G :=
SmallGroup(36, 11). Then the unit vector

v :=

















αr0
r0

1−i√
2

r1ξ1
αr1ξ1

1−i√
2

r2ξ2
αr2ξ2

−1−i√
2

















,

where

α :=

√
2

1 +
√
3
=

√

3−
√
3

√

3 +
√
3
, r1 :=

1√
14

√

7−
√
21

√

3−
√
3
,

r0 := r+, r2 := r−, r± :=

√

7 +
√
21±

√
14
√√

21− 3

2
√
7
√

3−
√
3

,

ξ1 = τ50
3

√

β − i
√

1− β2, ξ2 =
τ31

4

(√
7−

√
3−i

√

6 + 2
√
21

)

,

β := −1

8

√

46− 6
√
21 + 6

√

6
√
21− 18, τ := e

2πi

72 .

gives a G–covariant SIC-POVM (Egv)g∈G for C6.
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Brief comments on the result

• SIC-POVMs can easily be constructed numerically using
the variational characterisation.

• In all cases, except d = 3, there are only finitely many
fiducial vectors.

• It seems that d = 6 is the first dimension which has a
SIC-POVM with a nonabelian index group.

• Finding analytic solutions is very difficult. Usually, the
structure of a fiducial vector is guessed. In the Heisenberg
case they are eigenvectors of an element of the normaliser
of the group generated by (Eg)g∈G (Clifford group).

• Typical tricks include simplifying the equiangularity equa-
tions (both in number of variables, and algebraic degree).

• In our example, most of the work involved showing that
an analytic solution (obtained using a computer algebra
package) was indeed a solution.

• There appear to be many SIC-POVMs with nonabelian
index groups for d = 8.

• It is hoped that our result might extend to an infinite class
of SIC-POVMs.

• The orbit of a fiducial vector under the Heisenberg group
gives a tight frame for finite signals which is localised in
both space and time, and hence is discrete analogue of a
wavelet.
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