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Errors of Linear Interpolation on a Triangle

D.C. Handscomb

We attempt to determine best possible bounds for the errors in
function value and derivative when a function is approximated by
linear interpolation between values at the vertices of a triangle of
known shape and size. We consider both Ly and Lo bounds, in
terms of Ly and L., measures of smoothness of the function.
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1 Introduction

The questions addressed here are at first sight simple ones, and date back at
least to 1975 [8]: when a smooth function of two variables is approximated on a
triangle by linear interpolation between its values at the vertices (as it might be
in one element of a finite-element decomposition), how tight a bound can we find
for the resulting errors in (a) the value of the function and (b) its gradient, in
terms of the size of its second derivatives and the shape and size of the triangle?

It turns out that we can, if we define our terms carefully, write down a precise
bound for (a) in very simple form. We have had less success, however, with (b).
We are able to obtain a simple bound in this case, but it is far from the best
possible.

2 The one-dimensional analogue

The corresponding questions in one dimension are casily answered.
Consider a line segment, say the interval [0,a]. Let u denote the smooth
underlying function, U its linear interpolate

Uz) := au(a) + (a — z)u(0),

and e the interpolation error
e:=u—U,

so that ¢(0) = e(a) = 0.
We shall look here at L., and L, error bounds:

e |le|l., and ||¢'||,, in terms of ||u"|| ., and

o |le]|, and ||¢/||, in terms of |[u"|[,.

[Since U is linear, we have [[e”||, = ||v"||., and |||, = |[u"|l,.]

2.1 L. bounds

e We can start from the Green’s formula
e(z) = —/O g9(z,y)e"(y)dy, (2.1)

and its derivative “
e(z) = —/0 gz (2, y)e"(y)dy, (2.2)

where g(z,y) is the Green’s function
(a-2)y o, _
9(z,y) = “ with  go(z,9) ={ (4
M’yZ% ( ay),ny.
a




o It follows at once from (2.1) that

()] < Nl [ lote,)]dy
z(a — x)

= el 25

so that
2

a
8

(the bound on |e(z)| attaining its maximum where z = La).

lelle < 1"l

e It follows likewise from (2.2) that

()] < el [ ot )l dy
a* —2z(a — )
2a

= [[u"ll

so that a
€l < Il s

(the bound on |¢/(z)| attaining its maximum where z = 0 or = = a).

2.1.1 Related elementary inequalities

For possible future reference, we display here the corresponding bounds on func-

tions not vanishing at both ends of the interval.

o If f(0) =0 and f'(a) = 0 then we have the Green’s formula

. “ " N “ 7
flz) = /0 yf"(y)dy / zf"(y)dy.
It follows that

@) < 177, 222,

2

1o < 17

o If f(0) # 0, andfor f(a) # 0, then it follows from (2.3) that

|f(@)] <

and from (2.6) that

a

171, < HO=IOL 2

(a = 2) [JON+ 2 flal |y z(a - x)
o 2

(2.7)

(2.8)

(2.9)

(2.10)



2.2 L bounds
2.2.1 Using Schwarz’s inequality
e If we apply the Schwarz inequality to the Green’s formula (2.1), we get

le(z)] < |l€”]l, /Oag(%y)Qdy

= [|u"], o —2) ;ax) (2.11)

so that (squaring (2.11) and integrating)

2
a

< |lay" . 2.12

lelly < "l 57 (212

e Treating formula (2.2) in the same way, we get
(@) < "y | ale vy
2 —3z(a—x)
" a
= 2.1

so that a
ell, < |||, —=- 2.14
le'lly < | Hz\/g (2.14)
2.2.2 Using the calculus of variations
A more direct approach is to solve the variational problems
max! [l : e € Hipl0,al,le"ll, <1 (2.15)
and
ma ], < e € 12,0, al, el < 1, (2.16)

H{)[0, a] denoting those functions in H?[0, @] that vanish at 0 and a.

e Using the calculus of variations with a Lagrange multiplier (here taken as
(=A~*) merely to give a nice-looking result), we find that the solution e of
the first variational problem (2.15) must satisfy

3 / y)dy — A” / y)dy = 0, o € Hiy[0,a].  (2.17)

Integrating the second term of (2.17) twice by parts, we find that this
requires that

eD(y) = Xe(y), e(0) = e(a) = "(0) = "(a) = 0. (2.18)



The non-trivial solutions of (2.18) have the form e(y) = Csin Ay where A >
0 is a real integer multiple of 7 /a. For these solutions we have [le]|, / ||e"]|, =
a?/n*r?, so that the upper bound on the function error, found by taking

n = 1, is expressed by
2

a
lell, < ) % (219)
e The solution e of the second variational problem (2.16) similarly satisfies
I / y)dy — A~ / y)dy =0, Vo € H2y[0,a]. (2.20)
Integrating the first term of (2.20) once by parts and the second term twice,
we find that
(D (y) + N e(y), e(0) = efa) = €"(0) = () = 0. (2:21)
The non-trivial solutions of (2.21) again have the form e(y) = C sin Ay, for
the same values of A as before, and we have |||, / ||e"||, = |a/n~|, so that
the upper bound on the gradient error, again found by taking n = 1, is

expressed by
a
le']], < [Ju"l T (2.22)

The variational bounds (2.19) and (2.22) (which are the best possible) are
each slightly stronger than the corresponding Schwarz-inequality bounds (2.12)
and (2.13).

3 The problem in two dimensions

We now try to go as far as we can in extending these results to a general triangle
in two dimensions.

e Let A denote the triangle ABC, having sides BC = a, CA = band AB = c,
and angles o at A, 3 at B and y at C. Let |A| denote its area

|A] ::/A dz dy.

Let O denote the centre of the circumscribed circle and R its radius:

R = abe
- \/2(6202 + c2a? + a?b?) — (a* + bt + ¢*)
B abc
\/(a+b+c)(b+c—a)(cha-b)(aer—c)
abe a b c

- - = = 1
4JA[  2sina  2sinf - 2siny (3.1)

[> fmax{a,b,c}].



3.1 Ly bounds
3.1.1 Using the calculus of variations

The variational formulation extends directly to the triangle without much diffi-
culty, provided that we are satisfied with numerical bounds.

e Let u denote the underlying function, let U denote the linear interpolating
function (of the form U(z,y) = lz + my + n with coefficients [, m, n
chosen so that U(z,y) = u(x,y) at each vertex of A), and let e denote the
interpolation error e := u — U. Say that we measure the function error by

Jell, = V [ ety do dy (32)

and the gradient error by

Vel := \///A €2 + ¢ dz dy, (3.3)

while we measure the second derivative by

le], = |ul, := \///A ul, +2uk, +ul de dy. (3.4)

(Note that each of these measures (3.2), (3.3) and (3.4) is invariant under
rotation of the axes, (3.4) being similar to the seminorm that is minimised
in the definition of thin-plate splines.)

The error bounds are then

llelly, < My July,  [[Velly, £ My ful,, (3.5)
where -
M, = sup HeHQ, M= sup | 6H2, (3.6)
e€H? (A) l€|2 e€H (L) \652

Hiy(A) denoting the space of those functions in H*(A) that vanish at the

vertices of A.

¢ The extrema (3.6) may be computed by solving the partial differential

equations
Vie(z,y) = Me(z,9), (0,9) € A,
Cnn = 07 (sze)n = €nnn; (way) € 8A7
Vie(z,y) + N*Vie(z,y) =0, (z,y) € A,
enn =0, (2V7%e + MNe)n = Cnnn, (T,y) € DA,



with e = 0 at the vertices of A (e, denoting the normal derivative on the
boundary).

It is, however, more natural to attack the variational problem directly. Let
{¢;} denote a set of basis functions, all vanishing at the three vertices of
A. We assemble symmetric matrices ®g, &1 and P, with elements

(o)ij = //A bip; da dy,
(@0)is = [ [ Giaie+ 6165, do dy,
(@2)i5 = [ [ bioetion + 201y 6imy + b6 da dy,

so that |[e]2 = 27 ®oz, |Ve||3 = 27 @12 and |e]; = 27 P,z when e = ¥, 2;6;.
We then solve the generalised eigenvalue problems

(DQZO = )\gq)()Zo, @221 = )\%(13121. (37)
Then My and M} are derived from the smallest eigenvalues Ag and A; as

My =232 My=)\". (3.8)

Table 1: Computed L, bounds

b ¢ al®)| My M, |b ¢ of°)| My M,
1 1 30 (.103 31541 2 30 |.296 1.08
1 1 60 .117 318} 1 2 60 |.364 .684
1 1 90 |.167 48911 2 90 |.469 .762
1 1 120 |.223 846 (|1 2 120 |.576 1.28
1 1 150 | .262 185 |1 2 150 |.6h3 2.78

For various triangles defined by the two sides b and ¢ and the included angle
«, we have computed the estimates shown in Table 1. This was done using
bivariate Bézier polynomial bases and also by using finite-element parti-
tions of A into Clough-Tocher C* cubic macro-elements [2] and Powell-
Sabin C' quadratic macro-elements [11]. The three methods gave indis-
tinguishable results, which converged well as the order of the polynomial
was raised or the finite-element partition was refined. The value of M} for
b=c=1, a=90° agrees with the value computed by Siganevich [13],
using a similar finite-element scheme.



3.1.2 Using thin-plate spline theory

The difference between (3.4) and the seminorm minimised by thin-plate splines
[6,9] lies solely in the region of integration. Suppose that we had instead mea-
sured the second derivative by the (larger) seminorm, defined by integration over
the whole plane,

lel, = |ul, = \///R2 ul, + 2ui, +ul, dz dy, (3.9)
associated with the semi-inner product
(u, v):= //R2 Uy Vs + LUy Vs + UyyVyy d dy. (3.10)
Then the linear functional Lp, defined by
Lp(u) = u(P) = Iu(A) = pu(B) —vu(C) (P = +pB+vC, Atp+v=1),

is bounded with respect to |-|,, and has a representing function

1p(Q) = -8—17; (PQ*log PQ — \AQ* log AQ — uBQ* log BQ — vCQ* log Q)

(3.11)
such that
Lp(u) = (u,lp) Yu
If e(A) = e(B) = e(C) =0, then, we have
le(P)] = |Lp(e)| = (e, Ip)] < el llply, (3.12)
and
liply = (Ip, lp) = Lp(lp)
= lp(P) — )\ZP(A) — ,UZP(B) - I/ZP(C)
1
= —ATMA, (3.13)
87
where
1 0 AP?*log AP BP*log BP CP*logCP
A —A M = AP%log AP 0 AB?log AB  AC?log AC
R VA I "~ | BP?logBP AB%logAB 0 BC*log BC
—v CP*logCP AC*log AC  BC*log BC 0

Thus, defining My = sup, ||e]|, / |el,, where |le]|, is defined by (3.2) but [e],
by (3.9), we have

i < [ ol e
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:—1——// ATMA dz dy
8rJJa

|
- / /A (AP?log AP + uBP?log BP + vCP*log C P) du dy +

A
+ é—G—l(cﬂ loga + b*log b4 c¢*log c). (3.14)
7r

The integral in (3.14) may be evaluated explicitly term by term. For instance,
we have

/ / MAP?log AP dz dy =
A

Tl
3600a*

{60(b> — 3b%ccos o + 3bc? — (3 — 2 cos® @) cos a )b’ log b
+60(c® — 3bc? cos a + 3b%c — b*(3 — 2 cos? a) cos o)’ log ¢
+ 1206%ca sin® o — 60a2b?c? sin® o

— 47(b° — 3b°ccos a + 4b3¢® cos® o — 3bc® cos v + ¢°

+ 3a?b?c?)}.

From (3.14) we have computed the bounds in Table 2. (We cannot use this
method to compute bounds for M}, since the linear functionals L, and L, such
that

Lo(u) i= ug(P) — Apu(A) — ppu(B) — vpu(C),
are not bounded with respect to |-|,.)

We notice that these bounds are well below those in Table 1. This is to be
expected, since the seminorm (3.9) is much stronger than the seminorm (3.4) of
Section 3.1.1. We might have been able to come closer by applying this theory in
the context of (3.4) — however, we are unable to write down the corresponding
representing function [p(Q) to replace (3.11).

Table 2: Thin-plate-spline estimates for L, bounds

b ¢ af®)| My | b ¢ of°)| M

11 30 |.0453 |1 2 30 |.1067
1 1 60 |.0681 |1 2 60 |.1579
11 90 |.0844 || 1 2 90 |.1902
1 1 120 {.0870 || 1 2 120 |.1926
1 1 150 | .0698 || 1 2 150 | .1535

3.2 L. bounds

e [, bounds have the practical disadvantage that they indicate only an av-
erage error, and can prove misleading if the error has small regions where
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it takes large values. This is particularly possible in regard to the error in
the gradient, which tends to be worst in the neighbourhood of the vertices
of A.

For the remainder of this work, we shall consider the estimation of M, and
M!_, defined in terms of L., norms by:

M, = sup He”"o, M, :=sup MQQ; (3.15)
€ 16100 € ;eloo
where
llello = sup le(z,y)l, [IVell,, = sup yea+ el (3.16)
and

elas = el = 502 ([tar  ttpl + /(s — )2 +40,) - (317)
zy

(so that we still have measures that are invariant under rotation of the axes
— note that (3.17) is the upper bound of the second derivative at any point
of A and in any direction, and is less than sup, y/u2, + 2u2, 4 uZ,).

3.2.1 Underestimates, using trial functions

We may get underestimates for the Lo, bounds by substituting any trial function
for e. As far as M., is concerned, this is close to the approach used by D’Azevedo
and Simpson [4] in seeking an optimal triangulation. They have gone on in like
vein, in [5], to seek an optimal triangulation for approximating the gradient.
A fundamental difference between their work and ours is that they regard the
function as fixed and the shape of triangle as variable — we fix the shape of the
triangle and allow the function to vary within certain smoothness constraints.

e The shape of the maximizing functions in Section 3.1.1 suggests that we
take as a first attempt the function

e(,y) = 1B = (2 — 20)* — (y — 0)?) (3.18)

where (z0,y0) are the coordinates of O. Then le| = 1.

The extreme modulus of € is attained at O if O € A (if A is acute-angled, in
other words), or otherwise at the midpoint of the longest side, the extreme
values being £ R? or s max{a® b, ¢*} respectively. The extreme magnitude
of [Vel is attained at each vertex, and is simply E.

This yields the lower bounds for M., and M/ shown in Table 3.
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Table 3: First underestimates for L., bounds

b ¢ af)| R | Mo M, ||b ¢ o) R M., M,
1 30 D18 | 134 518 || 1 20 30 | 1.239 D 1.239
1 1 60 | .b77 |.1667 577 ||1 2 60 1.0 D 1.0

11 90 707 .25 67 120 90 | 1118 ) 625 1.118
11 120 1.0 375 1.0 |1 2 120 | 1.528 | .875 1.528
1 1 150 |1.932 | 4665 1.932 |1 2 150 |2.909 | 1.058 2.909

e We shall show presently that the lower bounds for M., in Table 3 are in
fact exact values.

However, it is not difficult to obtain better bounds for M/ . By numerically
maximizing vertex gradients over the class of all quadratic trial functions
with |e|_ = 1, vanishing at the vertices, we have obtained for these triangles
the tighter lower bounds shown in Table 4.

Table 4: Improved underestimates for L., bounds

b ¢ af®)| ML |b ¢ of)| M,
1 1 30 | .96 |1 2 30 |1.852
1 1 60 | .866 (|1 2 60 | 1.823
11 90 |1.144 )1 2 90 |2.080
11 120 1.5 |1 2 120 }2.520
1 1 150 | 23321 2 150 | 3.687

3.2.2 Overestimates, using the one-dimensional results of Section 2.1

Suppose from now on (for the sake of simplicity) that

le], = |ul, =1 (3.19)
Then we can prove not only that
Dje| <1, 8 (3.20)
but also, more generally, that
|Dg(Dge)| <1, V0, 0, (3.21)

where Dy denotes differentiation with respect to distance along any straight line
segment making an angle of § with the z-axis.
Best possible bounds on the function error are quite easily found.
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O

Figure 1:

e If a point P at which |e(P)| = |l¢||,, is an interior point of A, as in Fig. 1,
then Ve(P) = 0. Since |¢”| < 1 along the line segment AP, from (3.20),
with €/(P) = 0 and e(A) = 0, it follows from (2.7) that |e(P)| < AP
Hence, considering all three lines AP, BP and C'P, we deduce that
1p2
lelloo = 183213\ %mm{APZ’BPQ’CP2} = { éilz;x{a?,lﬁ,cﬂ; (?tlfer%w;se.

(3.22)
[The last inequality in (3.22) could be strengthened, but is strong enough
for our purposes.]

If P is on the boundary of A, on the other hand, then we can show by
applying (2.4) to the edge on which P lies that

lell., < Lmax{a®,1, ¢’} < R (3.23)
Hence .
s A acute-angled
<) 2t ,
Mee = { %max{azvbz,cz}, otherwise. (3.24)

These bounds (3.24) coincide precisely with the extreme values that were
attained in Section 3.2.1 and shown in Table 3, and are therefore best
possible.

Finding best possible bounds on the gradient error is quite another matter.

Here we describe two attempts.

e [irst we examine the derivative at A in a direction lying within the angle
CAB. In Fig. 2, let D be the point

D=upB+vC

(in an obvious geometric notation) where y 4+ v = 1. Then, using (2.3) on

the side BC we find that
le(D)| < tuva®. (3.25
5t
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Figure 2:

Applying (2.6) now to the line segment AD, with €/, denoting differenti-
ation in the direction of AD, we get

le(D)]

le'(A)ap| < —p T 1AD
- l;waQ + AD*
-2 AD

vb® + pc?

=1 . 3.26
2 JUb? 4 puc? — pva? ( )

Maximizing (3.26) over (y,v), subject to g > 0, v > 0 and p+v =1 gives,
after a little manipulation,

R, B,7 both acute,

l€'(A)an| < { %max{b7 c} otherwise.

(3.27)

In the case where # and v are both acute, the maximum is attained when
the angle BAD = i — v and DAC = %r — B — otherwise it is of course
attained when D coincides with B or C.

Now, if ¢/(B)gg is a derivative at B in a direction lying within the angle
ABC then, using (3.21), the parallel derivative at A must have a bound

[e'(A)BE{ < ’6’(3)35‘ + AB. (328&)

Likewise, the derivative at A in a direction parallel to a line through C in
a direction lying within the angle BC'A must have a bound

IBI(A)CFl < |€/(O)OF| + AC. (3.28b)

Taking the previous result (3.27) into account, then, we have the following
bounds on |e’(A)] in all possible directions, and so on [Ve(A)|, for triangles
of various possible shapes:
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shape of triangle bound on |Ve(A)|
o> i max{R, £a + max{b, c}}
B>in max{2b, R + c}
v > max{3c, R + b}
other R + max{b, ¢}

These bounds have the common upper bound |Ve(A)| < R + max{b, ¢}.

Therefore, under the reasonable assumption that the upper bound of the
gradient is highest at one of the vertices, we conclude that

|Vell., < R+ max{a,b,c}. (3.29)

Table 5: First overestimates for Lo, bounds M.,

b ¢ al®)| ML ||b ¢ of°)| M,
1 1 30 [ 15181 2 30 |3.239
I 1 60 | 15771 2 60 3.0

1 1 90 212111 2 90 |3.354
11 120 (27321 2 120 |4.173
1 1 150 |3.864 |1 2 150 |5.819

The upper bounds for M!_ resulting from (3.29) are shown in Table 5.

e We can improve on these bounds.

In Fig. 3, if B and v are acute, let G be the foot of the perpendicular from
A on to BC. Then we can show from (3.26) that

l€'(A)ag| < Rcos(f —7). (3.30)

C
G

Figure 3:
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Now ) 5
a? — 2becos B cos
€'(G)pel < » < 34,
using (2.5), so that
2 2b
le'(A)pe| < - CQCZS[}COSV + bsin~, (3.31)

using (3.21).

Hence

a? — 2bc cos B cosy

[Ve(A)] < \]R2 cos(ff—~)? + { + bsinfy} (3.32)

2a
If ~ is obtuse, then we have
le'(A)ac| < 3b,
€'(C)sel < 30,
|6/(A)Bgl < %CL + b

and hence

IVe(A)| < \/|6 Jacl” + 1 (A)pel” +21e/(A) ac| le'(A) o) cos v

sin 7y
\/62 (a + 2b)2 + 2b(a + 2b) cos
281n 7y .

(3.33)

Table 6: Better overestimates for L., bounds M/,

b oc al®)| ML ||[b ¢ o) | M
1 1 30 | 12101 2 30 |2.063
1 1 60 |1.256 |1 2 60 |2.394
1 1 90 [1.581 1 2 90 |2.692
1 1 120 | 1.683 |1 2 120 | 2.828
1 1 150 [ 2721 |1 2 150 | 4.510

Using (3.32) or (3.33) as appropriate at each vertex, and then taking the
largest of the three resulting bounds, gives the improved results in Table 6.

There still remains a considerable gap between Table 6 and Table 4, how-
ever, showing that we have not yet found the best possible bounds.
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