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1
Introduction

The prototypical example of a tight frame is the three unit vectors of the Mercedes-Benz

frame in R2,

which provides the generalised orthogonal expansion x = 2
3

∑3
j=1 〈x, uj〉uj,∀x ∈ R2.

Since tight frames are generalisations of orthonormal bases (they may have redundancy)

they may have properties not possible for bases. For instance the Mercedes-Benz frame

above has more symmetry than an orthonormal basis. This thesis focuses on the construc-

tion of such ‘highly symmetric tight frames’ from groups such as the symmetry groups of

the regular polytopes, and even more generally, from abstract groups.
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2 Introduction

The formal definition of a tight frame is as follows:

Definition 1. A sequence of vectors Φ = (φi)i∈I in a finite dimensional Hilbert space H
is a frame if it spans H, and it is a tight frame if one has a generalised orthogonal

expansion

∃c∀u ∈ H u = c
∑
i∈I

〈u, φi〉φi.

Frame theory has recently been used in finite dimensional applications such as signal

analysis and quantum measurement theory. There is a well developed theory of wavelet

frames for infinite dimensional spaces where wavlets with properties such as smoothness

and small support can be constructed.

We will only be dealing with a finite dimensional context and will focus on the class of

tight frames known as group frames. These are frames produced as the orbit of a vector

under the action of a finite group of linear transformations. What is interesting about

group frames is they inherit a structure from the group. In the literature there is a lot

of interest in the use of abelian and Heisenberg groups. We will outline the properties

of those popular group frames before turning to the symmetry groups of regular polytopes.

If you think of mathematical objects which possess symmetry as beautiful then it is hard

to go past the preeminent objects of classical Greek mathematics - the platonic solids.

The sequence of vectors produced by centering the regular polytope at the origin and

taking vectors at the vertices is a tight frame. By virtue of its origins in a highly regular

shape the polytopal tight frame possesses a natural symmetry.

Motivated by the nice structure of regular real polytopes we began by looking at Cox-

eter’s regular complex polytopes to investigate whether these would produce interesting

tight frames in Cd. Given the rising interest of the quantum information community in
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frames with equal angles between distinct vectors in Cd the regularity of the polytopes

was attractive although this work has not turned up any new maximal equiangular tight

frames.

The symmetry groups of the regular complex polytopes are contained within the class

of irreducible complex reflection groups that have been fully classified. Investigating

frames that came from irreducible complex reflection groups has led to the definition of a

new class of frames - highly symmetric tight frames.

The highly symmetric tight frames can be computed from abstract groups and it will

be shown that they form a finite class up to unitary equivalence. This is striking as

we are not dealing with abelian groups and typically there are uncountably many group

frames that arise from non-abelian groups.

This report will lay out a path to arrive at highly symmetric tight frames and con-

sider numerous examples. The next chapter will introduce the language of frame theory

and group representations so that chapter 3 can outline two common examples of group

frames. In preparation for defining highly symmetric tight frames chapter 4 will define

regular complex polytopes and their symmetry groups and contextualise these within the

irreducible complex reflection groups. Chapter 5 will define the highly symmetric tight

frames and chapter 6 will draw on the highly symmetric tight frames computed from

the irreducible complex reflection groups to investigate the connection between these and

the well known harmonic and equiangular frames. Finally chapter 7 will define how to

construct a highly symmetric tight frame in general from an abstract group.
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2
Frame Theory and Group

Representation

One class of frames that have interesting structures are the group frames that act on Fd.
For a given finite group G these have the form

Φ = (gv)g∈G where v ∈ Fd.

This sequence may include repeated vectors if v is stabilised by numerous elements in the

group, in particular we define the stabiliser of v as

Stab(v) = {g ∈ G : gv = v}.

The G-frame has the following generalised orthogonal expansion,

∀u ∈ Fd u =
d

|G|
1

‖v‖2
∑
g∈G

〈u, gv〉 gv.

5



6 Frame Theory and Group Representation

These definitions assume that the group elements are linear transformations acting on

Fd. To fully define the notion of a group frame and the action gv will require the use of

representation theory.

2.1 Representation Theory

Representation theory allows us to move between abstract groups, defined in terms of the

relations on their generators, and a more concrete presentation, which specifies the actual

form of the generators. For instance we may want all the generators to be reflections

which satisfy the defining relations of the abstract group.

Definition 2. Given a group G a representation over Fd is a group homomorphism

ρ : G→ GL(d,F),

where GL(d,F) is the general linear group of invertible linear transformations that act on

Fd. In particular

ρ(g)ρ(h) = ρ(gh) ∀g, h ∈ G

ρ(g−1) = (ρ(g))−1

ρ(1G) = Id

Throughout this report the field F will be taken to be R or C. It is also possible to

consider representations over finite fields but some of the standard representation theory

results such as Maschke’s theorem will require extra conditions.

The group G is said to act on Fd. In particular the action of g ∈ G on v ∈ Fd is defined

by gv := ρ(g)v. If there is a subspace U ⊂ Fd such that

∀u ∈ U gu ∈ U

then U is called a G-submodule.

Definition 3. If {0} and Fd are the only G-submodules of G under the representation
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ρ : G→ GL(d,F) then G is irreducible, otherwise it is reducible.

In other words G is irreducible if the span of the orbit {gv}g∈G equals Fd for all non-zero

v in Fd.

For instance if G is the cyclic group of order 3 then G = 〈a〉 = {1, a, a2} has the following

reducible representation ρ : G→ GL(2,C) where ω = e
2πi
3 ,

ρ(1) =

[
1 0

0 1

]
, ρ(a) =

[
ω 0

0 1

]
, ρ(a2) =

[
ω2 0

0 1

]
.

In this case U = span{[1, 0]T} is a G-submodule.

So far ρ(g) has been described as a linear transformation but it would be more useful if

it was also unitary. Given that G will always be taken to be finite it is possible to define

an appropriate positive definite hermitian form 〈·, ·〉ρ which will make ρ(g) unitary. More

specifically, given any positive definite hermitian form 〈·, ·〉 then

〈u, v〉ρ =
1

|G|
∑
g∈G

〈gu, gv〉

is a hermitian form. This guarantees that 〈·, ·〉ρ has the following properties;

(i). 〈u, u〉ρ ≥ 0 for all u ∈ Fd;

(ii). 〈gu, gv〉ρ = 〈u, v〉ρ (G-invariant);

(iii). 〈hu, v〉ρ = 〈u, h−1v〉ρ hence h∗ = h−1 with respect to 〈·, ·〉ρ.

The phrase ‘G is a unitary group in Fd’ should be taken to mean that there is a represen-

tation ρ : G → GL(d,F) along with an appropriate G-invariant hermitian form 〈·, ·〉ρ on

Fd such that ρ(g) is unitary with respect to 〈·, ·〉ρ for all g ∈ G.

For the most part the representation theory is hidden in the background so it is important

to note that the concept of a reflection group includes the particular representation. For
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instance given the cyclic group G = 〈a〉 of order m, let ρ1, ρ2 : G → GL(3,C) be two

representations such that,

ρ1(a) =

ω 1

1

 , ρ2(a) =

ω ω

1

 , where ω = e
2πi
m .

Then ρ1(a) is a reflection but ρ2(a) is not. Hence whether something is a reflection group

depends on the particular representation.

2.2 Group Orbits and Frames

The properties of a group help us in understanding the collection of vectors in the orbit.

In general the orbit of a vector under the action of an arbitrary finite group will not be a

tight frame, although in some cases we can guarantee tight frames.

Theorem 1. The orbit of any non-zero vector under an irreducible group forms a tight

frame.

Having an irreducible group means any non-zero orbit will be a spanning set for the vector

space which satisfies the first condition of what it means to be a tight frame. It can also

be shown that such an orbit satisfies the condition for having a generalised orthogonal

expansion [VW04].

Theorem 1 allows us to generate a large number of tight frames - all you need is an ir-

reducible representation of a group. To be more specific about the sort of frames that

this method produces there are two approaches; first you can rely on the properties of the

groups and secondly you can look at the action of the group on a vector space. The first

approach is used for generating harmonic frames by requiring that the irreducible group

is an abelian group. We will use the second approach when it comes to defining a highly

symmetric tight frame.

The strength of considering both of these methods is that they can be combined for a

more specific tailoring of the tight frame. If you combine the method to produce highly
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symmetric tight frames (that will be outlined later) along with the condition that the

groups used are abelian then you get harmonic highly symmetric tight frame. This the-

sis will develop on these ideas to explore the variety of group frames that can be produced.
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3
Groups and Frames

To understand how the structure of the group can alter the frame this chapter will discuss

two examples: harmonic frames that come from abelian groups and equiangular frames

that comes from Heisenberg groups. Both of these examples come up a lot in the literature

and have many applications. Harmonic frames are used in electrical engineering and

maximal equiangular frames are useful for signal processing and quantum information

theory.

3.1 Abelian Groups and Harmonic Frames

The original conception of harmonic frames was in terms of cyclic groups. In the context

of cyclic groups if Φ = (φi)i∈I is a cyclic-harmonic tight frame of N vectors in Cd then

the frame matrix V =
[
φ1 φ2 · · · φN

]
is a d×N matrix made up of d rows from the

11



12 Groups and Frames

N ×N discrete Fourier transform matrix

F =
1√
d


1 ω1 ω2

1 · · · ωN−11

1 ω2 ω2
2 · · · ωN−12

...
. . .

...

1 ωN ω2
N · · · ωN−1N


where ωi are distinct N -th roots of unity.

To define Φ in terms of group orbits consider the unitary transformation

U : Cd → Cd, U(x) =
∑
i∈I

〈x, φi〉φi+1

where φN+1 is defined to be φ1. Then UN = I and Uk 6= I for 1 ≤ k ≤ N−1 and G = 〈U〉
is a unitary representation of the cyclic group of order N . Let v = [1, · · · , 1]T = φ1 and

Φ = {gv : g ∈ G} = {Ukφ1 : 1 ≤ k ≤ N}

then Φ is a G-frame where G is a cyclic group.

Alternatively we can say that the cyclic-harmonic frame of N vectors is obtained by

taking d rows of the character table of the cyclic group of order N . In particular the

Fourier transform matrix is the character table for a cyclic group of order N .

The concept of a character comes from representation theory. In particular if ρ : G →
GL(d,C) is a representation then χ : G → C is the character of the representation de-

fined by χ(g) := trace(ρ(g)). Each row in the character table corresponds to a different

character and hence different representation of the group G.

The role of cyclic groups in creating harmonic frames can be replaced with the more

general notion of an abelian group.

Definition 4. A harmonic tight frame of N vectors in Cd is a G-frame, where G is

abelian, obtained by taking d rows of the character table of G.
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To consider how many harmonic frames there are we need a notion of unitary equivalence.

Definition 5. Two frames {φi}i∈I and {ψi}i∈I are unitarily equivalent if there exists

a unitary transformation U such that

∀i ∈ I Uφi = ψi.

What is special about harmonic frames is that there are only finitely many harmonic

frames of N vectors in Cd up to unitary equivalence. This follows from the fact that there

are only finitely many abelian groups of order N and a finite number of ways of selecting

d rows from their character tables.

Generally there will be infinitely many G-frames of N vectors when G is not abelian.

Consider the smallest nonabelian group, the dihedral group D3, acting on R2 where the

generating elements of D3 are a reflection in the x-axis and a rotation of 2π
3

. In each of

Figure 3.1: Orbits under D3

the three frames pictured there are different angles between pairs of distinct vectors. As

unitary transformations preserve angles there is no unitary transformations between the

pictured frames and hence they are not unitarily equivalent. In fact, there are uncount-

ably many unitarily inequivalent tight frames, these correspond to D3-frames generated

from the uncountably many initial vectors v = (cos(θ), sin(θ)) where 0 ≤ θ ≤ π
6
.

One of the frames above looks like it only has 3 vectors while the others have 6; this

is because of the issue of repeated vectors turning up in the sequence of a frame. Some-

times we will exclude repetition of vectors and other times we will consider a frame as

a sequence of vectors which may include repetition. This is a small technical difference

between considering a frame as a set or as a sequence of vectors.
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3.2 Equiangular Frames and the Heisenberg Group

There is a lot of interest in tight frames where the angle between any distinct pair of

vectors is constant. In particular if Φ = {φi}i∈I is a tight frame of N unit vectors in Cd

then

maxi 6=j| 〈φi, φj〉 | ≥

√
N − d
d(N − 1

,

and this bound is only achieved if the vectors are equiangular.

Lemma 2. An equiangular tight frame of N vectors in Cd can only exist if N ≤ d2.

This means that if Φ is an equiangular tight frame that has the maximum number of

vectors then for all i 6= j, | 〈φi, φj〉 | =
√

1
d+1

.

In 1999, Gerhard Zauner conjectured that there exists d2 equiangular lines in Cd for

all values of d [Zau99]. There has been a lot of interest in whether it is possible to have a

frame of maximal size. For instance these maximal equiangular frames offer a robustness

to erasure that is useful for signals processing. Despite an increasing body of numerical

and analytical solutions in small dimensions it remains an open problem.

The most promising direction for a general analytic result involves the Heisenberg group

of d× d matrices with entries from C. In particular the eigenvectors of specific elements

in the normaliser of the Heisenberg group have so far been good candidates as an initial

vector for the orbit. So far this has been a case by case approach that has not been

generalised. The most recent computer survey verified that such maximal equiangular

frames exist in dimension d for d ≤ 67 and with some uncertainty around d = 66 [GS09].

Definition 6. The Heisenberg group in d-dimensions, Hd, is generated by a shift

matrix S and a diagonal matrix Ω,

S =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 0 0
...

. . .
...

0 0 1 0


, Ω =


1 0 · · · 0

0 ω 0
...

. . .

0 0 ωd−1

 ,
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where ω = e
2iπ
d is the primitive d-th root of unity.

In particular ΩS = ωSΩ and so the elements in Hd commute up to scalar multiplication.

If Φ = (hv)h∈H is a tight frame obtained from a Heisenberg group H in d-dimensions then

the d vectors ωrSiΩj are scalar multiples of each other for fixed i, j and 1 ≤ r ≤ d.

Example: The orbit of [1,−1, 0] under the Heisenberg group H3 produces an equiangular

tight frame of 9 vectors in C3 (ignoring scalar multiples of vectors).

Unlike the harmonic frames which had a clear link to abelian groups the connection

for equiangular frames is more questionable. So far the Heisenberg groups have been use-

ful but the results have resisted being generalised. There is no definitive statement that

can be made about how the structure of a group influences the structure of the resulting

frame but there are a lot of interesting relationships that can be developed in the future.
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4
Polytopes and Reflection Groups

There is a difference between a polytope in Rd and Cd. Similarly there is a contrast

between real and complex reflections, in part because of the existence of more roots of

unity in C. The definitions of polytopes and reflections are interrelated but which is first

will determine how this relationship is expressed. If you start with a structural definition

of a polytope as a combinatorial object and consider the symmetries of the polytope then

you can determine features of a complex reflection. By contrast if you develop the theory

of complex reflections and consider the possible arrangements of their mirrors then you

are narrowing down what sort of structure a complex polytope will be.

We will begin by presenting the definitions of regular complex polytopes and complex

reflections. From there we will give two alternative accounts of the symmetry groups

of regular complex polytopes; firstly beginning with the structure of a polytope we will

construct the reflections and secondly by considering the reflections and abstract groups

we will provide some restrictions for the possible structures of complex polytopes.

17



18 Polytopes and Reflection Groups

4.1 Defining a Complex Polytope

Euclid defined the terms ‘point’, ‘line’ and ‘straight’ but then proceeded to talk about

polyhera without ever saying what a polyhedron actually is. Geometers continue to

discuss polyhedral properties without defining polyhedra - the original sin of the theory

of polyhedra as Branko Grunbaum says.

We will be looking at d-dimensional polyhedra, called polytopes, in complex space. A

polytope is made up of elements of increasing dimension which includes the 0-dimensional

vertices all the way up to the d-dimensional polytope itself. We will refer to an i-face

= fi as an i-dimensional element of the polytope. For instance a 0-face = f0 is a vertex,

a 1-face = f1 is an edge and the d-face = fd is the full polytope. For formal completeness

we also include an empty face which is called the (-1)-face.

An i-face fi is incident with a j-face fj if one of them is contained within the other. For

instance if v is a vertex on the edge e, then the 0-face v is incident with the 1-face e and we

will denote this by saying v ⊂ e. Furthermore fi and fj are successively incident if fi ⊂ fj

and j = i + 1. For all i-faces fi where 0 ≤ i ≤ d − 1 we have that f−1 ⊂ fi ⊂ fd. From

this is it follows that the incidence relation ⊂ is a partial ordering on the face elements.

In defining a polytope we want to capture the intuition that, like a polyhedron, a polytope

is a connected shape where at least two i-faces are required to carve out an (i+1)-face.

For instance we want to rule out a situation where one vertex with a loop attached defines

a face and so we say that a single 1-face is not enough to define a 2-face.

The definition of an abstract real polytope as used by Peter McMullen and Egon Schulte

[MS02] is as follows;

Definition 7. A real polytope in Rd is a collection of i-faces, for −1 ≤ i ≤ d, that

satisfy the following conditions;

I. If fi−1 and fi+1 are incident faces then there exists exactly two intermediary faces,

fi, f
′
i , such that fi−1 ⊂ fi, f

′
i ⊂ fi+1;

II. If fi, fj are two faces then they are connected by some sequence of successively

incident faces fa1 , fa2 , ..., fan such that fa1 = fi and fan = fj.
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Given a polytope such as the cube in R3 there are exactly two vertices incident with the

empty face and a given edge, this is an instance of the first property of a real polytope.

However in Cd we want to allow more than two vertices on an edge. Part of the motivation

for this is that the 1-dimensional complex space is isomorphic as a vector space to a 2-

dimensional real space and so the structure of a 1-dimensional complex edge is naturally

going to look different.

Definition 8. A complex polytope in Cd is a collection of i-faces, for −1 ≤ i ≤ d, that

satisfy the following conditions;

I. If fi−1 and fi+1 are incident faces then there exists at least two intermediary faces,

fi, f
′
i , such that fi−1 ⊂ fi, f

′
i ⊂ fi+1;

II. If fi, fj are two faces then they are connected by some sequence of successively

incident faces fa1 , fa2 , ..., fan such that fa1 = fi and fan = fj.

To continue the analogy of real and complex space it is worth considering the difference

between real and complex reflections.

4.2 Defining a Complex Reflection

In a real space a reflection is an involution but this is not the defining characteristic. To

develop a complex reflection as an analogy of a real reflection we need to be clear about

which properties we want to preserve.

A real reflection in Rd is a linear transformation that satisfies the following conditions;

(i). There is a hyperplane, H, which is fixed by the reflection;

(ii). The reflection exchanges the two pieces of the complement of H, namely it is of

order two.

The first condition is maintained for a complex reflection - a hyperplane is fixed. To see

why the second condition is different consider reflections acting on the one-dimensional

real and complex spaces. In both cases the reflection will fix a zero-dimensional space,
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namely the origin. The real reflection acts on 0⊥ = R/{0} by multiplying by -1 while the

complex reflection can multiply x by any root of unity and still satisfy the condition of

being a linear transformation that fixes a hyperplane.

Figure 4.1: Reflection in R1 and C1.

In R the complement of 0 is split into two pieces and so it makes sense to talk of a re-

flection as an operation which exchanges these two halves. However in C the complement

of 0 does not have the same structure to it. Instead of thinking of the reflection in R1

as something that switches two pieces we can think of it as an operation that multiplies

everything by -1. In R the only non-trivial root of unity is -1 however in C there are roots

of unity of order n, for all n ≥ 2.

The important feature of what makes something a reflection is best seen in terms of

a fixed mirror, or hyperplane.

Definition 9. A complex reflection in Cd is a linear transformation r : Cd → Cd that

leaves a hyperplane H pointwise invariant.

An appropriate change of basis or adoption of a different hermitian form will mean that

a reflection of finite order can be made into a unitary transformation and so we will refer

to such reflections as unitary transformations from now on.

4.2.1 Reflections and Roots

The modern treatment of reflections and complex reflections expresses unitary transfor-

mations in terms of root systems. In particular a root of the reflection r of order m is an

eigenvector α such that r(α) = ξα where ξ is an m-th root of unity.

In Rd a reflection r of order 2 fixes a hyperplane H with normal vector α which will
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be shown to be an eigenvector of the transformation. The reflection r then has the fol-

lowing representation, where ξ = −1 is the root of unity of order 2, the same order as the

reflection r. From this it follows that for all v ∈ H, projαv = 0 and hence r(v) = v so the

hyperplane is pointwise fixed. Furthermore r(α) = −α = ξα.

In Cd the notion of a reflection is more general but the matrix representation of the lin-

ear transformation is still diagonalizable. There is a more general concept of a reflection

where it is non diagonalizable but given that charC = 0 and that we will only be consider-

ing reflections of finite order, all of the reflections in this thesis are diagonalizable [Kan01].

Similar to the case in Rd a reflection r : Cd → Cd of order m has the following represen-

tation,

r(x) = x+ (ξ − 1)
〈x, α〉
〈α, α〉

α,

where ξm = 1 and α is the eigenvector corresponding to the eigenvalue ξ, namely r(α) =

ξα. Let H be the hyperplane that is pointwise fixed by r, then α /∈ H and by Maschke’s

theorem Cd = H ⊕ Cα. Moreover for all v ∈ H,

〈v, α〉 = 〈r(v), r(α)〉 = 〈v, ξα〉 = ξ 〈v, α〉 ,

hence 〈v, α〉 = 0 so the root vector is orthogonal to the hyperplane H.

If r is a reflection of order m and ξm = 1 is an eigenvalue for r then rk is a reflection for
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all 1 ≤ k ≤ m− 1 where

rk(x) = x+ (1 + ξ + · · · ξk−1)(ξ − 1)
〈x, α〉
〈α, α〉

α.

If r is a reflection with hyperplane H and g ∈ GL(d,F) then the conjugate transformation

grg−1 is also a reflection with hyperplane gH.

4.3 Going From Polytopes to Reflections

Beginning with the structure of a polytope we need to isolate a special subset of the i-faces

with which to investigate the symmetries.

Definition 10. A flag, F, of a polytope in Cd is a sequence of successively incident

i-faces, fi for −1 ≤ i ≤ d where f−1 is the empty face which is incident with all faces.

F = (f−1, f0, f1, ..., fd) where fi ⊂ fi+1 for − 1 ≤ i ≤ d− 1.

The symmetry group of a polytope consists of all the linear transformations that map

flags to flags.

Definition 11. A polytope P is regular if the symmetry group, Sym(P), is transitive on

the flags. In particular given two flags F = (f−1, f0, ..., fd) and F ′ = (f−1, f
′
0, ..., f

′
d) then

there exists some unitary transformation g ∈ Sym(P) such that g fi = f ′i for 0 ≤ i ≤ d.

To motivate the construction of reflections in the symmetry group of a complex polytope

we will begin by considering the symmetry group of the cube in R3.

4.3.1 Symmetries of the Real Cube

A flag for the cube in R3 will be made up of any mutually incident vertex, edge and face

(along with the cube itself and the empty face). The sequences F = (f−1, f0, f1, f2, f3)

and F ′ = (f−1, f0, f
′
1, f2, f3) are both flags for the cube.

The symmetry group of the cube has to be transitive on its flags. The most basic example

of two different flags is the one pictured above where they only differ in one place. Hence
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Figure 4.2: Two flags for the cube.

we will define the linear transformations in terms of how they act on a pair of flags such

as F and F ′.

In general, given the flag F = (f−1, f0, ..., f3) of the cube consider the sequence of points

C = (00, 01, 02, 03) such that 0i is the point at the centre of the face fi. Define the trans-

formation Rj such that it only change the j-th flag element and hence only fixes Oi for

all i 6= j.

For instance consider the flags F and F ′ pictured above that only differ in the f1 position.

Define the linear transformation R1 which acts as follows

f1 7→ f ′1 fi 7→ fi, i 6= 1, which is the same as F 7→ F ′.

As R1 fixes the three centers O0, O2 and O3 which are not collinear based on the structure

of the polytope then R1 fixes a plane in R3.

Figure 4.3: Mirror for R1.

By requiring that R1 maps the flag F to the flag F ′, it follows that R1 is a linear trans-
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formation that fixes a plane in R3, hence R1 is a reflection. So by beginning with the

structural definition of a polytope we single out the fact that the generating linear trans-

formations, which we call reflections, fix a hyperplane.

The symmetries of the cube are reflections and rotations. It is well known that a rotation

by θ can be achieved by the product of two reflections whose mirrors are at an angle of

θ/2. Hence the symmetry group of the cube can be generated by reflections.

As the cube is in 3-dimensions there are 3 generating reflections which are pictured below.

In each case Rj permutes two fj faces as seen in yellow.

Figure 4.4: Generating reflections for the symmetry group.

Using those three generating symmetries we can produce all the symmetries of the cube.

For instance given that the mirrors of R0 and R2 are at an angle of π
2

the composition

R0 ◦R2 produces a rotation of π about their intersection.

From the definition of a real polytope there is only one flag which will differ from F in

only one place. Hence a reflection can only interchange the two flags and will only have

order two.
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Let P be a complex polytope with three flags F1, F2, F3 which only differ in the i-th

place. This is possible because of the definition of a complex polytope that requires at

least two i-faces between any fixed incident pair of faces fi−1, fi+1. So there can be 3 flags

that only differ in the i-th place.

There will exist a linear transformation in the generators of the symmetry group of P
with order 3 as it will interchange the 3 flags. Hence we end up with complex reflections

that have order greater than 2.

4.3.2 Symmetries of a Regular Complex Polytope

A regular complex polytope in Cd requires d generators for the symmetry group. Consider

the flag

F = (f−1, f0, ..., fd)

and the corresponding sequence of centres

C = (00, ..., 0d).

The complex reflection Ri, for 0 ≤ i ≤ d − 1, will be the unitary transformation which

fixes the d points 0j for j 6= i and the hyperplane defined by them. The order of Ri is

determined by the structure of the polytope.

As fi−1 and fi+1 are in the flag F then they are incident. By definition of a complex

polytope there exists at least two intermediary i-faces. If there are n intermediary i-faces

then there are n flags, including F , which differ from each other in the i-th place, namely

Fk = (f−1, ..., fi−1, f
(k)
i , fi+1, ..., fd).

Let Fn = F and Rk
i (F ) = Fk for 1 ≤ k ≤ n then Ri has order n.

4.4 Going From Reflections to Polytopes

If we start with reflections we need to consider how the arrangements of multiple mirrors

can create structures in space by starting with one vector or point and reflecting it re-

peatedly. In the following picture two reflections spaced π
4

apart generate the vertices of
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a square as an orbit under one vertex that lies in the mirror of one of the reflections.

Figure 4.5: Generating a Square from Two Reflections and One Vertex

Given the two reflections that produced the square we can consider how the reflections act

on the structure of the square. The blue reflection permutes two edges around a vertex

while the yellow reflection permutes two vertices around an edge. It should be noted

that the edges were not created under the action, only the collection of vertices. For the

tight frames we are only interested in the collection of vertices but to see the relationship

between reflections and polytopes it is useful to include the edges for now.

Figure 4.6: Reflections acting on the Square

All of that information is captured in the Schläfli symbol 2{4}2 where the first 2 denotes

the number of vertices on an edge, the 4 refers to the angle between the two generating

reflections and the last two is the number of edges through each vertex. A real polygon

will always have the form 2{q}2 but a complex polygon may look like p1{q}p2.

Reflections in a real space can only permute 2 vertices around a given edge or 2 edges

around a given vertex. However a complex reflection can permute p1 vertices around a

given edge or p2 edges around a vertex. Hence the Schläfli symbol captures some of the

structure of the complex polygon.
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The complex square 3{2}2 has three vertices on each edge corresponding to the third

roots of unity ω = e
2πi
3 . There are two edges through each vertex and adjacent edges are

at an angle of π
2
. In the following pictures the vertical edges are shown in orange and the

horizontal edges in blue.

Figure 4.7: Complex Cube

As a complex polygon in C2 should be projected into R4 the following diagram is only

a loose schematic. The complex reflection x = 0 is of order 3 and will act like the real

reflection x = 0 in that it will both permute the vertices on a horizontal edge and permute

the vertical edges.

Figure 4.8: Reflection in the Complex Square

4.4.1 Schläfli Symbol

The Schläfli symbol for the complex polygon p1{q}p2 indicates the possible local structure

of the polytope. In particular by specifying the number and arrangement of i-faces. How-

ever not all combinations are possible. There are only three infinite families of complex

polygons and then a finite number of exceptions. These restrictions are derived from the

considerations of the placement of mirrors. Consider the abstract symmetry group for
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p1{q}p2 which has the following presentation [Cox91],

Rp1
1 = Rp2

2 = 1 R0R1R0...︸ ︷︷ ︸
q

= R1R0R1...︸ ︷︷ ︸
q

.

The relationships between these reflections are determined by considering the angles in a

spherical triangle. Hence we can derive the conditions

pi > 1, q > 2
1

p1
+

2

q
+

1

p2
> 1.

From these conditions we see that there are very few possible complex polygons p1{q}p2.
The three infinite families are the real polygons 2{q}2, the complex cube p{4}2 and its

dual the complex cross 2{4}p. Along with these there are 31 regular non-starry complex

polygons although some of them share the same symmetry group.

More generally the Schläfli symbol of a complex polytope P in Cd is p1{q1}p2{q2} · · · {qd−1}pd.
In the complex polygon p2 is the vertex figure - it represents the structure that takes place

around a given vertex, in the 2-dimensional case that is just a matter of how many edges

go through the vertex. In Cd the vertex figure is p2{q2} · · · {qd−1}pd and the cell figure is

p1{q1} · · · pd−2{qd−2}d−1}.

The symmetry group of the polytope P is generated by d reflections R1, · · · , Rd which

satisfy the following relationships,

Rpi
i = 1 RiRi+1Ri...︸ ︷︷ ︸

qi

= Ri+1RiRi+1...︸ ︷︷ ︸
qi

RiRj = RjRi, j > i+ 1.

For this to be a polytope the symmetry group has to be finite and the values in the Schläfli

symbol have to satisfy the condition of the polygons,

pi > 1, qi > 2
1

pi
+

2

qi
+

1

pi+1

> 1.

In dimension d > 4 there are only three polytopes; the simplex αd = 2{3}2...2{3}2, the

generalized cross βpd = 2{3}2...2{3}2{4}p and the generalized cube γpd = p{4}2{3}2...2{3}2.
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There are a finite number of regular complex polytopes that do not fall into those three

infinite families and these all occur in dimensions 2,3 and 4.

4.5 Irreducible Complex Reflection Groups

The symmetry groups of the regular complex polytopes are only one example of the class

of groups called the irreducible complex reflection groups. These groups were fully clas-

sified by Shephard and Todd in 1954 [ST54] and so we will now look at the irreducible

complex reflection groups.

There is a sub-categorisation of the irreducible complex reflection groups based on whether

they are imprimitive or primitive. The three infinite families of polytopes all fall under

the imprimitive groups which is an infinite family of groups. The primitive groups contain

34 exceptional cases in dimensions 2-8 and these include the symmetry groups of all the

regular complex polytopes that are not in the infinite families. The primitive groups do

not have a general description.

4.5.1 Imprimitive Complex Reflection Groups

Definition 12. A group G of unitary transformations on Cd is imprimitive if

Cd = E1 ⊕ E2 ⊕ ...⊕ Ek

where the family {E1, ..., Ek} of non-trivial proper subspaces, which is called the system

of imprimitivity, is invariant under G.

As the groups we are looking at are generated by reflections then this gives us some more

information about the system of imprimitivity {E1, ..., Ek} [LT09].

Lemma 3. If G is an imprimitive irreducible complex reflection group in Cd and {E1, ..., Ek}
is a system of imprimitivity for G, then k = d and for all i, dim(Ei) = 1.

Proof. As G is irreducible it has to act transitively on {E1, ..., Ek}. Given 1 ≤ i ≤ k there

exists a reflection r ∈ G such that rEi 6= Ei. As r is a reflection then it fixes a hyperplane
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whose intersection with Ei is equal to {0}. Hence dim(Ei) = 1 for all i which implies that

k = d.

The groups we are looking at are denoted G(m, p, d) where p|m and they act on the space

Cd . If m, d > 1 and (m, p, d) 6= (2, 2, 2) then G(m, p, d) is an imprimitive irreducible

complex reflection group. The group G(2, 2, 2) is more familiarly known as the klein four

group and it is not irreducible. While G(1, 1, d) is not irreducible it is interesting because

of its connection to the family of simplexes, similarly the cyclic groups G(m, 1, 1) are a

familiar group and so they are listed here for completeness.

One presentation of the groups is as follows;

G(1, 1, d) = 〈r1, · · · rd−1〉 ≈ Sd;

G(m, 1, 1) = 〈ω〉 where ω = e
2πi
m ,m > 1;

G(m, 1, d) = 〈t, r1, · · · rd−1〉 ;

G(m,m, d) = 〈s, r1, · · · rd−1〉 ;

G(m, p, d) = 〈s, tp, r1, · · · rd−1〉 , p 6= 1,m.

In the presentation above ri is a reflection of order 2 which interchanges the basis elements

ei and ei+1, t is a reflection of order m such that e1 7→ ωe1 where ω = e
2πi
m and s = t−1r1t.

In particular,

r1 =



0 1

1 0

1
. . .

1


, t =


ω

1
. . .

1

 , s =



0 ω

ω 0

1
. . .

1


.
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Highly Symmetric Tight Frames

5.1 Symmetry Groups of Tight Frames

In the context of a tight frame we are considering a sequence of vectors that are indexed

by a finite set I. A symmetry of the frame is a linear transformation mapping frame

elements to frame elements which acts like a permutation on the index set. The following

definition single out this permutation aspect and uses the permutation to index the linear

transformation [VW05].

Definition 13. Let Φ = {φi}i∈I be the set of N frame elements in Fd. The symmetry

group of Φ is

Sym(Φ) := {σ ∈ SN | ∃Lσ ∈ GL(F, d) Lσφi = φσi ∀i ∈ I}

As a frame spans Fd and linear maps are determined by their action on a spanning set

then the permutation σ of frame elements determines Lσ. As we are considering the set

31
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of frame elements without repetition then for each σ in Sym(Φ) there is a unique Lσ.

The action of the group Sym(Φ) is defined in terms of the unitary representation

ρ : Sym(Φ)→ GL(d,F)

such that ρ(σ) = Lσ and the action of Sym(Φ) on Fd is, like any representation, σv :=

ρ(σ)v = Lσv.

Due to the uniqueness of Lσ the representation ρ is injective and so the representation of

Sym(Φ) is faithfully. If Φ is the set of frame elements without repetition then |G| = |Φ|.
As G contains unitary transformations which exchange the frame elements then there is a

representation of Sym(Φ) which includes G, therefore |Sym(Φ)| ≥ |G| = |Φ|. In consid-

ering what it means for Φ to possess a high degree of symmetry we want |Sym(Φ)| > |Φ|.

5.2 Defining Highly Symmetric Tight Frames

A motivating example for the highly symmetric tight frames is the tight frame composed

of the vectors that go to the vertices of a platonic solid and more generally the vertices of

a regular complex polytope. We want to define a tight frame not in terms of a group but

in terms of how a group acts on the vector space. For instance any vector v going from

the center of the polytope P in Fd to a vertex will lie in the mirrors of d− 1 reflections.

This means the subgroup of the symmetry group of P generated by those d−1 reflections

fixes a 1-dimensional space spanned by v. More generally for any vector v in the tight

frame there is some subgroup of Sym(P) which fixes the 1-dimensional space spanned by

v. Furthermore, as the definition of Sym(P) requires that it is transitive on its flags then

it is transitive on the frame elements which represent the vertices of P .

Definition 14. A finite tight frame Φ of distinct vectors is highly symmetric if;

(i). The action of the symmetry group Sym(Φ) is irreducible, transitive and faithful;

(ii). The stabiliser of any vector in Φ is a non-trivial subgroup that fixes a space of

dimension exactly one.
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We required three things from the action of Sym(Φ). Firstly to say that the action is

irreducible means that for all v 6= 0 ∈ Fd, span{Lσv : σ ∈ Sym(Φ)} = Fd. Secondly

the transitivity condition requires that for all i, j ∈ I there exists σ ∈ Sym(Φ) such that

Lσφi = φj and Lσφj = φi. The transitivity condition does not specify how Lσ acts on the

rest of the frame. Lastly the faithfulness follows from the fact we are considering a frame

of distinct vectors so the representation is injective.

Example: The Mercedes-Benz frame of 3 vectors in R2 pictured in the introduction

is a highly symmetric tight frame. Its symmetry group is the dihedral group of order 6

which is irreducible, transitive and faithful. Also given any of the frame vectors v there

is a reflection which fixes the line spanned by v.

Example: The orthonormal basis Φ = {e1, e2, ..., ed} in Cd is not a highly symmetric

tight frame. Sym(Φ) fixes the vector e1 + e2 + · · ·+ ed and hence no subgroup can fix the

one dimensional space spanned by ei for any i.

The Mercedes-Benz frame, which is an example of a simplex, and an orthonormal basis

are both harmonic frames. This demonstrates that it is possible to choose whether a

highly symmetric tight frame is harmonic.

An important feature of the highly symmetric tight frames is that they have a finiteness

property like the harmonic frames.

Theorem 4. There are only finitely many normalised highly symmetric tight frames of

N vectors in Fd up to unitary equivalence.

Proof. As representations of Sym(Φ) and its subgroups are what determine Φ by defini-

tion then we only need to count the representations and subgroups. If Φ is a normalised

highly symmetric tight frame of N vectors then |Sym(Φ)| ≤ |SN | = N ! so there are only

finitely many choices for the symmetry group of Φ. By definition of being a highly sym-

metric tight frame every vector in Φ is fixed by a non-trivial subgroup of some irreducible

representation of Sym(Φ). There are only finitely many irreducible representations of
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Sym(Φ) and hence only finitely many subgroups that can fix a one-dimensional space.

Hence there can only be finitely many highly symmetric tight frames.



6
Computations of Highly Symmetric

Tight Frames

Having outlined what defines a highly symmetric tight frame we will consider some ex-

amples that arise from calculations done with the irreducible complex reflection groups.

The irreducible complex reflection groups provide an example of one sort of irreducible

representation where all the generators are represented as reflections.

The following examples highlight some of the possible relationships between highly sym-

metric tight frames and the classes of harmonic and equiangular frames.

6.1 24 Vectors in C2

Even within the highly symmetric tight frames obtained from irreducible complex reflec-

tion groups there is a notable difference in the frame depending on the different group
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structures. In particular whether we look at the primitive or the imprimitive groups. This

demonstrates the influence of the particular group representation.

In C2 there are 6 different highly symmetric tight frames of 24 vectors - one comes from

the imprimitive group G(12, 1, 2), the others come from the primitive Shephard Todd

groups numbers 5, 6, 8 and 12.

Of the five frames from the primitive groups four of them are complex polygons, pic-

tured below, although none of them are harmonic.

By contrast the generalised cross of 24 vectors that comes from the imprimitive group is

harmonic. This points to a contrast between the imprimitive and primitive groups which

can filter through to the frames themselves.

6.2 The Cross and the Cube

As was seen in the last example the generalized cross that comes from the symmetry

group G(12, 1, 2) gave a harmonic frame. We will show that the generalized cross and

cube are harmonic frames in all dimensions.
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6.2.1 Defining and Picturing the Cross and Cube

The cube and its dual, the octahedron or cross, are familiar polyhedra in R3 and their

symmetry group is G(2, 1, 3) where the cube has 23 vertices and the octahedron has 2× 3

vertices.

In a similar pattern G(m, 1, d) is the symmetry group for the generalized cube γmd and its

dual, the generalized cross βmd in d dimensions with m-th roots of unity. These different

frames arise from the same symmetry group by using different initial vectors. Given that

G(m, 1, d) acts on Cd consider the following vectors,

vk := e1 + · · ·+ ek, 1 ≤ k ≤ d.

Given vk it is fixed by the k! permutations of the elements e1 to ek that are present in its

expression and the (d− k)! permutations of the absent elements. Also multiplying any of

the absent (d − k) elements by any of the m-th roots of unity leaves vk unchanged and

hence |Stab(vk)| = k!(d− k)!md−k.

The order of the symmetry group G(m, 1, d) is mdd! and so the orbit of vk has size(
d
k

)
mk. In particular the orbit of v1 gives the m× d vertices of the generalized cross and

the orbit of vd gives the md vertices of the cube.

Figure 6.1: The Cube γ42 and Cross β4
2
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6.2.2 Relationship to Harmonic Frames

What is interesting about the generalized cross and cube is that they are both harmonic

frames. This means the vertices of the cube, or cross, can be obtained as an orbit under

some abelian group. The cube is generated by the group Gγ = 〈q1, · · · , qd〉 where qj is

the reflection defined by,

ej 7→ ωej qj := (rj−1rj−2 · · · r1)t(r1 · · · rj−2rj−1),

where rj and t come from the generators of the imprimitive group that were defined earlier

and the elements qi and qj commute for all i, j.

An arbitrary vector in γmd looks like u = [ωa1 , ωa2 , · · · , ωad ] where ω is an m-th root

of unity. Under the action of Gγ

u = qa11 q
a2
2 · · · q

ad
d vd,

hence all vertices of the generalized cube can be obtained through the action of the abelian

group Gγ on vd.

The cross is generated by the cyclic group Gβ = 〈a〉 where the generator is defined

in terms of the generating relations of the imprimitive group as

a := r1r2 · · · rd−1t e1 7→ ωe2, ei 7→ ei+1 for i 6= 1.

As an arbitrary vertex u in the cross has one non-zero entry ωi in the j-th position and

ad(i−1)v1 = [ωi−1, 0, · · · , 0], ad(i−1)+1v1 = [0, ωi, · · · , 0] then

u =

ad(i−1)+j−1v1, j 6= 1

adi, j = 1
.

For d = 2 the only highly symmetric tight frames under G(m, 1, 2) are the generalized

cross and cube. That is because the only initial vectors of interest are v1, whose orbit

gives the cross, and v2 whose orbit is the cube. If we consider d = 3 there will be three

orbits of interest, but only the cross and the cube have been shown to be harmonic.
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In the following table � is used to denote the generalized cube and × denotes the gener-

alized cross. The calculations find whether there is any subgroup, H, of G(m, 1, 3) such

that the order of H is exactly equal to the number of vectors in the tight frame and that

tight frame can be found as an orbit of the same initial vector under the group action

of H. If such a subgroup exists the abstract group is listed and it is further classified

depending on whether that group is abelian or not.

G(m,p,d) Abstract

Group

Orbit

Size

G-Frame Harmonic G-

Frame

(2,1,3) 〈48, 48〉 6 × 〈6, 1〉 〈6, 2〉
8 � 〈8, 3〉 〈8, 2〉, 〈8, 5〉
12 〈12, 3〉 -

(3,1,3) 〈162, 10〉 9 × - 〈9, 1〉, 〈9, 2〉
27 〈27, 4〉, 〈27, 3〉 -

27 � 〈27, 4〉 〈27, 5〉
(4,1,3) 〈384, 5557〉 12 × 〈12, 1〉 〈12, 2〉

48 〈48, 3〉 -

64 � 〈64, 20〉, 〈64, 85〉 〈64, 55〉
(5,1,3) 〈750, 26〉 15 × - 〈15, 1〉

75 〈75, 2〉 -

125 � - 〈125, 5〉
(6,1,3) 〈1296, 1827〉 18 × 〈18, 3〉 〈18, 2〉, 〈18, 5〉

108 〈108, 21〉, 〈108, 22〉 -

216 � 〈216, 106〉, 〈216, 138〉, 〈216, 139〉 〈216, 177〉

These calculations are not sufficient to conclude that the tight frame of 12 vectors, Φ12,

obtained from G(2, 1, 3) is not harmonic. All this shows is that there are no abelian sub-

groups of G(2, 1, 3) which can generate Φ12. However the symmetry group of Φ12 may be

larger than G(2, 1, 3) and so we can compare G(2, 1, 3) = 〈48, 48〉 with the known list of

symmetry groups for harmonic tight frames of 12 vectors in dimension 3 [HW06].
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The only symmetry groups with order greater than 48 on the list in [HW06] are 〈72, 30〉,
〈72, 42〉 and 〈384, 5557〉. As 48 - 72 the only potential candidate is 〈384, 5557〉 = G(4, 1, 3)

which is on the list in reference to the generalized cross β4
3 which contains different vectors

to Φ12. Based on that comparison we can conclude that Φ12 is not a harmonic frame.

The comparative analysis above soon runs into problems as Magma is not able to iden-

tify groups of order greater than 2000. Let Φ27 be the frame of size 27 obtained from

G(3, 1, 3) = 〈162, 10〉 which is not the cube γ33 . In the list of symmetry groups for har-

monic frames of size 27 there is an unidentified group of order 4374. Given 162|4374 we

can not definitively conclude that Φ27 is not harmonic.

Similarly for the frame of size 48 obtained from G(4, 1, 3) = 〈384, 5557〉 we need to con-

sider an unidentified group of order 42576 which is a multiple of 384. This is currently

well beyond the bounds of group calculation tools.

The groups G(m, p, 3) for p 6= 1 have been left off the table above because G(m, p, d) /

G(m, 1, d). Hence any highly symmetric tight frame from G(m, p, d) either already occurs

in G(m, 1, d) or it is a subframe of one that does.

Conjecture: If m, d > 1 the only highly symmetric tight frames obtained from G(m, 1, d)

that are also harmonic frames are the generalized cube and cross.

6.3 Heisenberg and the Imprimitive Groups

There is also a connection between the imprimitive group G(d, 1, d) and the Heisenberg

group Hd in Cd. In particular Hd ≤ G(d, 1, d) where Hd is generated by S and Ω,

S =


0 1

1 0
. . .

1

 · · ·


1
. . .

0 1

1 0

 = r1 · · · rd,
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Ω =



1

ω

1
. . .

1


· · ·


1

. . .

1

ωd−1

 = (rd−1 · · · r1td−1)(rd−2 · · · r1td−2) · · · (r1t),

where ri and t are the generators of G(d, 1, d) where ω = e
2πi
d .

In dimensions d ≥ 4 Hd does not contain any pseudoreflections but it is a subgroup of a

group generated by pseudoreflections.

In 3-dimensions the symmetry group of the Hessian polytope 3{3}3{3}3 (Shephard Todd

number 25) is the normaliser of H3. That is important because a lot of the work on

equiangular tight frames has focused on matrices in the normaliser of the Heisenberg

group.

Despite this connection between the imprimitive groups, the Hessian and the Heisenberg

groups there are not any highly symmetric tight frames which are also maximal equian-

gular frames. Although almost all the highly symmetric tight frames are not equiangular

we can still compare the frame size with the upper bound that is calculated in terms of

the number of angles.

6.4 Angles and Frame Size

Consider the set of moduli of angles in the frame, A := {| 〈φi, φj〉 | : i 6= j ∈ I}. By

counting |A| we can find an upper bound for a frame with that many angles in a given

dimension.

Theorem 5. Let Φ = {φi}i∈I be a normalised tight frame in Cd with scalar multiples of

frame elements removed. If A := {| 〈φi, φj〉 | : i 6= j ∈ I} is the set of moduli of angles in

the frame and s := |A| then

|Φ| ≤
(
d+ s− 1

s

)2
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If Φ is equiangular then |A| = 1 so |Φ| ≤ d2. When more angles are involved we can have

larger frames, in fact increasing the dimension while keeping s fixed rapidly increases the

upper bound.

In the equiangular case the current work indicates that it would be possible to achieve

this upper bound. However in the real case the upper bounds for frame sizes based on

angles are scarcely reached. It is not known what the accuracy of the upper bound is

from Theorem 1.

The information about s := |A| and the corresponding upper bound on the frame size is

recorded in the tables. For instance in Shephard Todd group 13 there are two distinct

orbits of size 48 which are referred to as a and b. There are 9 different angles in a and

11 in b which is recorded in the column ‘Orbit x: #Moduli’. From that calculation the

corresponding upper bounds of 100 for orbit a and 144 for orbit b are obtained and pre-

sented in ‘Max #Orb’.

None of the frames achieve their upper bound and so they are not maximal. In fact as

the dimension increases the upper bound increases much quicker than the frame size.

In the table the symbol 6' indicates that two frames are not unitarily equivalent as they

have different angle sets. It is important to note that ' merely indicates that the two

frames have the same angle set which is a necessary but not sufficient condition for unitary

equivalence.

6.5 G-frames of Reflection Type

The information in the tables about G-frames is checking whether the frame can be ex-

pressed as a G-frame without repetition of vectors. In particular whether there exists

a subgroup H with the same size as the orbit such that the set of frame elements can

be obtained as an orbit under H. This is only checking for subgroups of the irreducible

complex reflection group and so we will refer to these as G-frames of reflection type.
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In dimension 2 all of the highly symmetric tight frames are G-frames of reflection type

but this becomes increasingly rare in higher dimensions for the primitive frames.

(When calculation limits of Magma are encountered the missing results are marked *).
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Table 6.1: Primitive Groups in Dimension 2
ST Dim Abstract

Group
#Orb Max

#Orb
Orb: #Mod-
uli

G-Frame

4 (P) 2 〈24, 3〉 8 9 a: 2 〈8, 4〉
5 (P) 〈72, 25〉 24 49 a: 6 ' b: 6 〈24, 3〉, 〈24, 11〉
6 (P) 〈48, 33〉 16 25 a: 4 〈16, 13〉

24 56 a: 7 〈24, 3〉
7 〈144, 157〉 48 169 a: 12 ' b: 12 〈48, 47〉, 〈48, 33〉

72 196 a: 13 〈72, 25〉
8 (P) 〈96, 67〉 24 36 a: 5 〈24, 3〉, 〈24, 1〉
9 (P) 〈192, 963〉 48 100 a: 9 〈48, 4〉, 〈48, 28〉,

〈48, 29〉
96 441 a: 20 〈96, 67〉, 〈96, 74〉

10 (P) 〈288, 400〉 72 196 a: 13 〈72, 12〉, 〈72, 25〉
96 400 a: 19 〈96, 54〉, 〈96, 67〉

11 〈576, 5472〉 144 529 a: 22 〈144, 69〉, 〈144, 121〉,
〈144, 122〉

192 1156 a: 33 〈192, 876〉, 〈192, 963〉
288 2704 a: 51 〈288, 400〉, 〈288, 638〉

12 〈48, 29〉 24 49 a: 6 〈24, 3〉
13 〈96, 192〉 48 a:100

b:144
a: 9 6' b: 11 a:〈48, 28〉, a:〈48, 29〉,

b:〈48, 28〉, b:〈48, 33〉
14 (P) 〈144, 122〉 48 121 a: 10 〈48, 26〉, 〈48, 29〉

72 289 a: 16 〈72, 25〉
15 〈288, 903〉 96 400 a: 19 〈96, 182〉, 〈96, 192〉

144 a:529
b:1024

a: 22 6' b: 31 a:〈144, 121〉,
a:〈144, 122〉,
b:〈144, 121〉,
b:〈144, 157〉

16 (P) 〈600, 54〉 120 169 a: 12 〈120, 5〉, 〈120, 15〉
17 (P) 〈1200, 483〉 240 289 a: 16 〈240, 93〉, 〈240, 154〉

600 3136 a: 55 〈600, 54〉
18 (P) 〈1800, 328〉 360 441 a: 20 〈360, 51〉, 〈360, 89〉

600 1600 a: 39 〈600, 54〉
19 〈3600, ∗〉 720 1296 a: 35 〈720, 420〉, 〈720, 708〉

1200 2401 a: 48 〈1200, 483〉
1800 5929 a: 76 〈1800, 328〉

20 (P) 〈360, 51〉 120 256 a: 15 〈120, 5〉
21 (P) 〈720, 420〉 240 729 a: 26 〈240, 93〉

360 1521 a: 38 〈360, 51〉
22 〈240, 93〉 120 529 a: 22 〈120, 5〉
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Table 6.2: Primitive Groups in Dimension 3 to 8
ST Dim Order* #Orb Max

#Orb
Orb: #Mod-
uli

G-Frame

23 (P) 3 120 12 36 a: 2 〈12, 3〉
20 100 a: 3 -
30 441 a: 5 -

24 336 42 225 a: 4 〈42, 2〉
56 441 a: 5 -

25 (P) 648 27 225 a: 4 〈27, 3〉, 〈27, 4〉
72 441 a: 5 -

26 (P) 1296 54 100 a: 3 〈54, 8〉, 〈54, 10〉,
〈54, 11〉

72 100 a: 3 -
216 784 a: 6 〈216, 88〉

27 2160 216 1296 a: 7 -
270 4356 a: 10 -
360 8281 a: 12 ' b: 12 -

28 (P) 4 1152 24 400 a: 3 ' b: 3 〈24, 1〉, 〈24, 3〉,
〈24, 11〉

96 14400 a: 7 ' b: 7 〈96, 67〉, 〈96, 201〉,
〈96, 204〉

29 7680 80 400 a: 3 〈80, 30〉
160 1225 a: 4 -
320 7056 a: 6 ' b: 6 〈320, 1581〉,

〈320, 1586〉
640 132496 a: 11 -

30 (P) 14400 120 3136 a: 5 〈120, 5〉, 〈120, 15〉
600 938961 a: 16 〈600, 54〉
720 2371600 a: 19 -
1200 50979600 a: 33 -

31 46080 240 1225 a: 4 -
1920 81796 a: 10 〈1920, ∗〉
3840 1768900 a: 18 -

32 (P) 155520 240 3136 a: 5 -
2160 313600 a: 13 -

33 5 51840 80 1225 a: 3 -
270 15876 a: 5 -
432 44100 a: 6 -
1080 3312400 a: 12 -

34 6 39191040 * * * *
35 51840 27 3136 a: 3 〈27, 3〉,〈27, 4〉

72 3136 a: 3 -
216 627264 a: 7 〈216, 86〉, 〈216, 88〉
720 627264 a: 7 -

36 7 2903040 * * * *
37 8 696729600 * * * *
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Table 6.3: Small Imprimitive Groups in Dimension 2
G(m,p,d) Abstract

Group
#Orb Max

#Orb
Orb x:
#Moduli

G-Frame Harmonic
G-Frame

(2,1,2) 〈8, 3〉 4 9 a: 2 ' b: 2 - 〈4, 1〉, 〈4, 2〉
(3,1,2) 〈18, 3〉 6 16 a: 3 〈6, 1〉 〈6, 2〉

9 25 a: 4 - 〈9, 2〉
(3,3,2) 〈6, 1〉 3 9 a: 2 - 〈3, 1〉
(4,1,2) 〈32, 11〉 8 9 a: 2 〈8, 3〉, 〈8, 4〉 〈8, 1〉, 〈8, 2〉

16 16 a: 3 〈16, 6〉 〈16, 2〉
(4,2,2) 〈16, 13〉 8 9 a: 2 ' b: 2 '

c: 2
〈8, 3〉, 〈8, 4〉 〈8, 2〉

(4,4,2) 〈8, 3〉 4 9 a: 2 ' b: 2 - 〈4, 1〉, 〈4, 2〉
(5,1,2) 〈50, 3〉 10 49 a: 6 〈10, 1〉 〈10, 2〉

25 256 a: 15 - 〈25, 2〉
(5,5,2) 〈10, 1〉 5 16 a: 3 - 〈5, 1〉
(6,1,2) 〈72, 30〉 12 16 a: 3 〈12, 1〉, 〈12, 4〉 〈12, 2〉, 〈12, 5〉

36 56 a: 7 - 〈36, 6〉, 〈36, 14〉
(6,2,2) 〈36, 12〉 12 16 a: 3 〈12, 4〉 〈12, 5〉

18 25 a: 4 ' b: 4 〈18, 3〉 〈18, 5〉
(6,3,2) 〈24, 8〉 12 25 a: 4 6' b: 3 〈12, 1〉, b:〈12, 4〉 a:〈12, 5〉
(6,6,2) 〈12, 4〉 6 9 a: 2 ' b: 2 〈6, 1〉 〈6, 2〉
(7,1,2) 〈98, 3〉 14 81 a: 8 〈14, 1〉 〈14, 2〉

49 841 a: 28 - 〈49, 2〉
(7,7,2) 〈14, 1〉 7 25 a: 4 - 〈7, 1〉
(8,1,2) 〈128, 67〉 16 36 a: 5 〈16, 6〉, 〈16, 7〉,

〈16, 8〉, 〈16, 9〉
〈16, 1〉, 〈16, 5〉

64 324 a: 17 〈64, 45〉 〈64, 2〉
(8,2,2) 〈64, 124〉 16 36 a: 5 〈16, 6〉, 〈16, 7〉,

〈16, 8〉, 〈16, 9〉
〈16, 5〉

32 100 a: 9 ' b: 9 〈32, 11〉,
〈32, 15〉, 〈32, 38〉

〈32, 3〉

(8,4,2) 〈32, 42〉 16 36 a: 5 ' b: 5, 6'
c: 5

〈16, 8〉, 〈16, 9〉,
a,b:〈16, 13〉,
c:〈16, 7〉

a,b:〈16, 5〉

(8,8,2) 〈16, 7〉 8 16 a: 3 ' b: 3 〈8, 3〉 〈8, 1〉
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Table 6.4: Small Imprimitive Groups in Dimension 3
G(m,p,d) Abstract

Group
#Orb Max

#Orb
Orb x:
#Moduli

G-Frame Harmonic G-
Frame

(2,1,3) 〈48, 48〉 6 36 a: 2 〈6, 1〉 〈6, 2〉
8 36 a: 2 〈8, 3〉 〈8, 2〉, 〈8, 5〉
12 100 a: 3 〈12, 3〉 -

(2,2,3) 〈24, 12〉 4 9 a: 1 - 〈4, 1〉, 〈4, 2〉
6 36 a: 2 - -

(3,1,3) 〈162, 10〉 9 36 a: 2 - 〈9, 1〉, 〈9, 2〉
27 a:225,

b:100
a: 4 6' b: 3 〈27, 4〉, b:〈27, 3〉 a:〈27, 5〉

(3,3,3) 〈54, 8〉 9 36 a: 2 ' b: 2
' c: 2 ' d:
2

- 〈9, 2〉

32 3025 a: 9 ' b: 9 〈32, 11〉,
〈32, 15〉, 〈32, 38〉

〈32, 3〉

(4,1,3) 〈384, 5557〉 12 36 a: 2 〈12, 1〉 〈12, 2〉
48 225 a: 4 〈48, 3〉 -
64 100 a: 3 〈64, 20〉, 〈64, 85〉 〈64, 55〉

(4,2,3) 〈192, 944〉 12 36 a: 2 - -
32 100 a: 3 〈32, 11〉, 〈32, 37〉 〈32, 21〉
48 225 a: 4 〈48, 3〉 -

(4,4,3) 〈96, 64〉 12 36 a: 2 - -
16 36 a: 2 〈16, 6〉 〈16, 2〉

(5,1,3) 〈750, 26〉 15 441 a: 5 - 〈15, 1〉
75 44100 a: 19 〈75, 2〉 -
125 314721 a: 32 - 〈125, 5〉

(5,5,3) 〈150, 5〉 15 441 a: 5 - -
25 784 a: 6 - 〈25, 2〉

(6,1,3) 〈1296, 1827〉 18 100 a: 3 〈18, 3〉 〈18, 2〉, 〈18, 5〉
108 1296 a: 7 〈108, 21〉,

〈108, 22〉
-

216 8281 a: 12 〈216, 106〉,
〈216, 138〉,
〈216, 139〉

〈216, 177〉

(6,2,3) 〈648, 266〉 18 100 a: 3 - -
108 a:6084,

b:1296
a: 11 6' b: 7 〈108, 22〉 -

(6,3,3) 〈432, 538〉 18 100 a: 3 〈18, 3〉 〈18, 5〉
72 1296 a: 7 ' b: 7

' c: 7
〈72, 29〉,
〈72, 30〉,
〈72, 42〉, 〈72, 47〉

〈72, 50〉

108 1296 a: 7 6' b: 7 〈108, 21〉,
a:〈108, 32〉,
b:〈108, 22〉

a:〈108, 45〉

(6,6,3) 〈216, 95〉 18 100 a: 3 - -
36 784 a: 6 ' b: 6

' c: 6
〈36, 6〉, 〈36, 11〉 〈36, 14〉
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7
Constructing Highly Symmetric Tight

Frames

To find out whether there are any highly symmetric tight frames of N vectors in dimen-

sion d it is possible to use a group calculation program such as Magma where there is a

database of abstract groups. The current limitations in Magma mean you cannot work

with groups of order greater than 2000.

The following description outlines the algorithm we developed for finding highly symmet-

ric tight frames of N vectors in d dimensions.

Consider all the abstract groups G of order N × k where 2 ≤ k ≤ (N − 1)(N − 2) as

candidates for the symmetry group of the frame or as subgroups of the symmetry group.

From these groups compute all the faithful irreducible representations ρ : G→ GL(d,F).

Some groups will not have any irreducible representations of the desired dimension and
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it is possible that there are no highly symmetric tight frames of the desired size. For

instance there are no highly symmetric tight frames of 5 vectors in 3 dimensions.

Given the various representations ρ(G) which are groups of unitary transformations in

a d dimensional space find all the subgroups of ρ(G) that fix a one-dimensional sub-

space span{v} for some v 6= 0. Then Φ = {gv}g∈G is a highly symmetric tight frame of

|G|/|Stab(v)| vectors.

Example Let G = 〈18, 3〉 from the small group list in Magma. G has the following

presentation,

G =
〈
a, b, c|a2 = b3 = c3 = 1, a−1ca = c2

〉
.

Calculations in Magma reveal that there are six representations of dimension 1 and three

of dimension 2. Of the representations of dimension 2 one of them is not faithful and

the other two contain the same group elements but merely specifiy different matrices as

the generators. Hence we will only consider one representation of interest and let it be

ρ : G→ GL(2,C) where,

ρ(a) =

[
0 1

1 0

]
, ρ(b) =

[
ω2 0

0 ω2

]
, ρ(c) =

[
ω2 0

0 ω

]
, ω = e

2πi
3 .

Given a nontrivial subgroup H of ρ(G) we can solve for any v which are fixed by all the

generators of H. From this we find two vectors which generate ,

v1 = (1, 0) |{gv1}g∈G| = 6,

v2 = (1, 1) |{gv2}g∈G| = 9,

where the frame with 6 vectors is a generalized cross and the frame with 9 vectors a

generalized cube that were discussed earlier because 〈18, 3〉 = G(3, 1, 2). In this example

the only highly symmetric tight frames were the ones that came from a representation of

the group as a reflection group.



8
Conclusion

The original aim of this research was to clarify the relationship between regular complex

polytopes and tight frames. We have shown that the regular complex polytopes are a

special case of the finite class of highly symmetric tight frames which can be computed

from abstract groups. Many questions arise from this with regards to the relationship

between reflection groups and highly symmetric tight frames. In particular whether there

is a highly symmetric tight frame that does not come from a reflection group and can

every highly symmetric tight frame be interpreted as a semi-regular polytope?

Further, our construction works over any field, even when there is not an inner product.

In such a setting one must appeal to the theory of classical groups to interpret the frames

as being tight.
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