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1 Introduction

Definition. If A, B are sets and there exists a bijection A — B,
they have the same cardinality, which we write as |A|,#A. If
there exists one-to-one map A — B, then |A| < |B|

Remark 1.1. lim,, o, 2, = 0 means that (z,) diverges to oco: i.e.
Ve > 0,dN such that z,, > ¢,Vn > N.

Definition. Defined the extended real numbers to be R =
R U {—00,00}.

Remark 1.2. We have that —oco < z < o0,V € R.

Recall. Each non-empty set A C R is either

(a) Bounded above, in which it has a supremum sup(A),

(b) A is unbounded above.

In case (b) we will say supremum (in the extended sense) of A is
oo and write sup(A) = oo.

Remark 1.3. Every non-empty subset of R has a supremum in R.
Every increasing sequence (z,,) in R has a limit in R.

Definition. If (z,) is a sequence of extended real numbers, we
define the limit superior and the limit inferior of this sequence
by

limz,, = limsup z,, = inf | sup z,, | = lim sup z,, € [—00, ],

limz,, = liminf x,, = sup (inf xn> = lim inf z, € [—00, 0] .
m n>m m—0o0 n>m

It is easy to check that

liminf z,, < limsup z,,

liminf(—x,) = — limsup(z,).

If the limit inferior and the limit superior are equal, then their
value if called the limit of the sequence.

Theorem 1.1. Let (x,) be a sequence in R. Then exists subse-
quences of (x,) converging to m = liminfx,, M = limsupz, (in
the extedned sense). Further, if (x,, ) is a convergent subsequence,

m < lim z,, <M.

k—o00
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2 MEASURABLE FUNCTIONS

Corollary 1.1. z, converges if and only if lim sup x,, = lim inf x,,,
in which case z,, — limsup z,,.

2 Measurable Functions

Definition 2.1. Let X be a non-empty set, A collection . of
subsets of X is said to be a g-algebra (or a o-field) if:

(i) 0, X belong to ..

(ii) If E belongs to .#, then the complement ¢ (A) = A =
X\E € 7.

(iii) If (F;) € #,Vj €N, then

s

=1

Remark 2.1. . is closed under countable intersection, this is easy
to check using De Morgan.

Example 2.1. 1. . = {0, X'} is the trivial o-algebra .
2. . = P(X) power set := collection of all subsets of X.
3. Let X be uncountable, . .= {Y C X : Y or X is countable }.
4. If {.#;} are o-algebra of subsets of X. Then N;.%; is o-algebra

Definition. Let A be a nonempty collection of subsets of X. We
observe that there is a smallest g-algebra of subsets of X containing
A. To see this, observe that the family of all subsets of X is a
o-algebra containing A and the intersection of all the o-algebra
containing A is also a o-algebra containing A. This smallest o-
algebra is called the o-algebra generated by A, we denote it
a(A).

Definition. Let (X, p) be a metric space (or topological space).
Let A be the collection of all open subsets of X. Then o-algebra
generated by A is called the Borel c-algebra and is denoted
B(X).

Remark 2.2. Clearly the Borel o-algebra is generated by all closed
sets
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Example 2.2. Let X = R. The Borel o-algebra is generated by
all open intervals (a,b) in R.

Remark 2.3. Extended Borel o-algebra is generated by all open
intervals in R, i.e.

(a,b), (a,0), (a, 0], (—00,b), [—00, b), [—00, 0.

Definition. A function f : X — Y between measurable spaces
(X,) and (Y, .7) is measurable ((., 7)-measurable) if

ffllAye s, VAe T

Definition. (Working Definition) B
Let (X,.”) be a measurable space. Then f : X — R or R is
&-measurable is {r € X : f(z) > a} € & Va € R.
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2 MEASURABLE FUNCTIONS

Lemma 2.1. The following statements are equivalent for a func-
tion f on X to R:

(a) For every a € R, the set A, = {z € X : f(z) > a} belongs to
.

(b) For every a € R, the set B, = {z € X : f (z) < a} belongs to
.

(c) For every a € R, the set C, = {z € X : f(2) > a} belongs to
.

(d) For every a € R, the set D, = {x € X : f(x) < a} belongs to
.

(e) f is ./-measurable.

Remark 2.4. Sets such as

{z:f(x) =a} =f"({a})
{z:a< f(x) <b}

{z: f(z) = oo}

{z: f(zx) is finite }

are all .-measurable if f is .-measurable.

Example 2.3. the characteristic function f : xyg is .¥-measurable
if and only if £ € .&.

Example 2.4. Continuous functions are Borel measurable, i.e. if
(X,.) combines Z(X) and (Y,.7) is B(Y), then f : X - YV

measurable is continuous.

Lemma 2.2. Let (X,.”) be a measurable space, E' € .. Then
f — R is .-measurable on X if and only if it is ./-measurable on
E and X\E.
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Theorem 2.1. Every reasonable combination of measurable func-
tions is measurable.

Let (X,.#) be a measurable space, £ € .% and f,g, f., g, be /-
measurable and X — R (or R) on E. Then the following are
#-measurable on F'.

Loaf, 4 1fI°, aeR,BER.

2. f+9. 1y
3. sup fp,inf f,,limsup f,, liminf f,.

4. =, f*.

3 Measure

Definition 3.1. Let (X,.) be a measurable space. A function
1 X — R is called a measure:

(i) u(@ =0,

(i) w(E)>0forall EFe.,

(iii)  p is countably additive in the sense that if (F,) is any
disjoint sequence of sets in XS, then

(U ) - ue.
n=1 n=1
We call (X,.%, 1) a measure space.

Definition. Let X = IN = {1,2,3,...} and let .¥ be the o-algebra
of all subsets of N. If ¥ € ., defined

E|, if E if finite
w(E) = IEl e e o
0, if F is infinite.

Then g is a measure and is called the counting measure on IN.

Note that u is not finite, but it is o-finite. Also, integrals for this
measure are sums.
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Definition. Let (z,) be a sequence in X. (p,) be a sequence in
[0,00). Define u on (X,.) by

WE) =Y pu

{n:z,€E}

then this is the discrete measure

Definition. Special case of discrete measure: Let X be any nonempty
set, let . be the g-algebra of all subsets of X and let p be a fixed
element of X. Let p be defined for £ € .¥ by

n(E) =0, ifp ¢ E,
=1, ifpe FE.

then p is a finite measure and is called the unit measure con-
centrated at p or Durac-delta measure.

Definition. There exists a measure space (R,.Z,m) with .Z D
A(R) such that m is translation invariant and m(I) = b — a where
I is the interval with endpoints @ and 0. This measure is unique
and is usually called Lebesgue (or Borel) measure. It is not a
finite measure, but it is o-finite.

Lemma 3.1. .Z cannot be all of Z(R).

Definition. If X = R,.¥ = &, and f is a continuous monotone
increasing function, then there exists a unique measure Ay defined
on # such that if £ = (a,b), then A\f(E) = f(b) — f(a). This
measure Ay is called the Borel-Stieltjes measure generated by
f.

Remark 3.1. If E C F,E. F,e ., then

(a) u(E) < u(F),
(b) Tf u(F) < oo, then u(E) = u(F) — u(F\E).
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3 MEASURE

Definition. Let (X,.7, 1) be a measure space. We say £ C X is
a null set or a set of measure zero if E C F € ., u(F) = 0.
These sets can be ignored for integration.

Definition. We say a certain proposition holds py-almost every-
where, almost everywhere, or for almost all, etc, if there exists a
subset F' € . with p (F') = 0 such that the proposition holds on
the complement of F'.

Example 3.1. For Lebesgue measure m on R, m({a}) = m(|a, b])—
m ((a,b]) = 0 so countable subsets of R have Lebesgue measure
zero.

Definition. We say that two functions f, g are equal p-almost

everywhere or that they are equal for p-almost all = in case
f(z) = f(x) when z ¢ N, for some N € . with u(N) = 0. In
this case we will often write

f=9, wae

Definition. We say that a sequence (f,,) of functions on X con-
verges u-almost everywhere (or converges for p-almost all
x) if there exists a set N € . with pu(N) = 0 such that f (z) =
lim f,, (z) for x ¢ N. In this case we often write

f=1lmf,, upae.

Definition. If {E,} be a sequence of subsets of X we say {E,} is
expanding (or increasing) if

En+1 D Ena
and is contracting (or decreasing) if

Epi1 C E,.
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Lemma 3.2. Let (X,.%,u) be a measure space, let (E,) be a
sequence in .7, then
(a) If (E,) is expanding, then

" (U E) = lim p(E,)

n=1

without restriction.
(b) If (E,) is decreasing and pu(FE;) < oo then

p <U En) = lim p(E,)

n=1

Example 3.2. The condition u(E;) < oo is necessary.
Take E, = [n,00) € R with Lebesgue measure, (E,) contracting
with m(E,) = occ.

4 The Integral

Definition 4.1. A real valued function is simple if it has only a
finite number of values.

Remark 4.1. A simple measurable function u can be represented

in the form
n
U = E akaAk7
k=1

where a; € R and
JA=E A.cE vk
k=1

Definition. Among these representations for u there is a unique
standard representation characterized by the fact that the ay
are distinct and the A are disjoint nonempty subsets of E and are
such that E' = U}_, Aj.

MATHS 730 FC 8 LECTURE NOTES



4 THE INTEGRAL

Theorem 4.1. (Approximation by simple functions)

Let (X, .) be a measurable space. If f is non-negative .#’-measurable.
Then there is an increasing sequence of non-negative simple mea-
surable function wu, with

lim u, = f (pointwise)
n— o0

Definition. For a measurable space (X,.7, u), let M (X,.7) be
the set of non-negative .#-measurable functions on X.

Definition. If f € M* (X,.”) is simple, then we define its inte-
gral to be

/ /. /X fdp, /X £(2) dp(z) :=;am<A]~>
where .
f= ZanAj
j=1

is the standard form of f.
With the convention 0 X oo := 0, that is, if ay, = 0, u(Ay) = oo,
then o;pu(A;) = 0.

Lemma 4.1. If u,v € M* (X,.¥) are simple, 0 < ¢ < 0o, then

(a) [ycudp=c [yudp, [((u+v)dp= [yudp+ [Lovdp.
(b) If define A\ by

\E) = [wedn, B

then A is a measure on ..

Definition. Let f € M™ (X,.7), define the integral of f over X
to be

/fd,u ::sup{/udu:ueM+(X,§”),O§u§f,u simple}
X

is well defined (may be co) and > 0.
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Definition. F € ., then for f € MT (X,.¥)

/Efdu :=/XfxEdu

Lemma 4.2. (Monotonicity of the integral)
If f and g belong to M* (X,.),E, F € ., then
(a) If f < gon E, then

/Efdug/Egdu-
[Efdus/Ffdu.

(b) If E C F, then

Theorem 4.2. MONOTONE CONVERGENCE THEOREM)

If (f,,) is a monotone increasing sequence of functions in M* (X, .%),

then
/ (hm fn> dp = lim/ fodp,
X n—oo X

Corollary 4.1. If (f,,) is a monotone increasing sequence of func-
tions in M (X,.) which converges p-almost everywhere on X to
a function f in M™, then

/fd,u:lim/fnd,u.

Corollary 4.2. Let (g,) be a sequence in M, then

[(So) = ()
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Remark 4.2. It should be observed that it is not being assumed
that either side of the equation is finite. Indeed, the sequence
(J fndp) is a monotone increasing sequence of extended real num-

bers and so always has a limit in R, but perhaps not in R.

Recall. For Riemann integrals the Monotone Convergence Theo-
rem fails

fn = X{q1,gn}s Adn € Q

is increasing with lim f,, = xq, lim, e [ fu(z)dz =0, but f = xq
is not Riemann integrable.

Theorem 4.3. (Linearity of Integral)
Let f,g € M*(X,.) and o, 8 € [0,00). Then

[ @tssg) n=a [ sauss [ gan

Lemma 4.3. FATOU’S LEMMA
If (f,) belongs to M (X,.#) , then

/ (liminf f,) dp < lim inf/ fn dp.
X X

Remark 4.3. We do not need to worry about whether functions
are increasing or not.

Remark 4.4. Discrete version:

Then we have
liminf a,, + liminf b, < liminf (a, + b,) .

Remark 4.5. The inequality can be strict in Fatou’s Lemma
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Example 4.1. Suppose [, € MT(X,.), fn = f,fo < f then
J fudp— [ fdp.

Theorem 4.4. Let f € M* (X,.¥) and

/fdu

/ fxedu,
).

then v is the measure on (X,

Theorem 4.5. Suppose that f belongs to M (X,.). Then
f () =0 p-almost everywhere on X if and only if

/deﬂzo.

Theorem 4.6. Let f,g € MT (X,.¥), then
(i) If f < g pa.e. on X then

/deMS/ngu-

(ii) If f =g p-a.e. on X then

/deuz/ngu-
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5 Integrable Functions

Definition 5.1. The collection L = L; (X, ., u) of integrable (or
summable) functions consists of all (extended) real-valued .-
measurable functions f defined on X, such that both the positive
and negative parts fT, f~, of f have finite integrals with respect to
(. In this case, we define the integral of f over X with respect

to 1 to be
/deuz/xﬁdu—/xfdu-

If E belongs to ., we define

[rau= [ rran= [ rau
Recall.

[T =max{f(z),0}, f~=max{—f(x),0}, f=f"—f", [fl=f"+f

Theorem 5.1. Let f be measurable, then f € Ly (X, .7, u) if and
only if | f| € Ly (X,., ). i.e. |f| has finite integral. Moreover,

/deu'S/XIfl dp.

Lemma 5.1. If f € L(X,.%, 1), then
(i) f is finite-valued a.e.
(i) If

. %@%f@GR

Jw) = 0, otherwise.

Then f € L (X,., ;) and

Aﬁmzéﬂm
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Theorem 5.2. Linearity of integral

If f,g e L(X,,pn)1 and o € R, then af, f +g € L, (X, pn)
and

/onfduza/xfdu, /}((f+g)du=/)(fdu+/)(gdu-

Theorem 5.3. (i) If g is measurable, f € L(X,.¥,u) and g = f
p-a.e. then g € L (X,.%, u) and

/ngu—/xfdu.

(i) If f,ge L(X, S, u), [ <gpae onX then

/deuﬁ/ngu-

Theorem 5.4. LEBESGUE DOMINATED CONVERGENCE THEOREM
Suppose f, € L (X, u),Vn and f, — f p-a.e. on X.

If there exists a g € L (X,.7, 1) (dominating function) such that
|fn] < g for all n, then f € L (X, 1) and

/fd,u:/ lim f,dy = lim/fndu.
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6 The Lebesgue Spaces L,

Definition 6.1. If V is a real linear (= vector) space, then a real-
valued function ||-|| on V' is said to be a norm for V' in case it
satisfies

i)  lv]l >0 forall v e V;

(i)  |lv|| = 0 if and only if v = 0;

(iii)  ||av| = |a|||v] for all v € V" and real «;
(iv)  Ju+v| < |l + |lv] for all u,v € V.
If condition (ii) is dropped, the function ||-|| is said to be a semi-

norm or a pseudo-norm for V. A normed linear space is a
linear space V' together with a norm for V.

Definition. We say .-measurable functions f and g are y-equivalent
if f=g¢ p-a.e on X.

Remark 6.1. This is an equivalence relation

Definition. We denote the equivalence classes for this relation by

fl={g: f=gpae }
={f+9:9=0 p-ae }

Remark 6.2. On these equivalence classes we can define +, -.

1+ 19l =1f +9], alfl=Ilof].
Ultimately, this gives a vector space with zero [0] = [f + (—f)].

Definition. On the p-equivalence classes we can define a norm

for 1 < p < oo by
1/p
nmm:(éuww),

this normed is well-defined with values in [0, co].

Definition. Key for L, spaces
We define L,(1) to be the set of all p-equivalence classes of .7-
measurable functions for which

Hmm:(éuwwf”<m
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6 THE LEBESGUE SPACES Lp

Claim. L, (X,.”,u) is a vector space. Check L,(u) is a vector
space:

Recall. If A, B > 0,q < p < oo then

AP BY

AB S - + R

p q
where ¢ is the conjugate exponent to p. i.e. 119 + % = 1.
Theorem 6.1. HOLDER’S INEQUALITY
Fix (X,.7, ). Let p and ¢ be conjugate exponents (1 < p < 00).
If f, g are measurable, then fg € L, and

/X!fg| dp < (/X fIP du) " (/X g/ du) "

e [[fglly < IF0, Ngll,-

Remark 6.3. We may have || fgl|,, [ f]l,, llgll, be co.
Corollary 6.1. f € L,,g € L, then fg € L;.

Theorem 6.2. CAUCHY-BUNYAKOVSKI-SCHWARZ INEQUALITY
f.g9 € Ly then fg € L; and

o= [ fgdu‘é [ 156l @< 171 gl

Definition. L,(;) == p-equivalences of .-measurable functions f

with Up
= P q )
1, (/Xm u) < o0

Theorem 6.3. MINKOWSKI'S INEQUALITY
If f and ¢ belong to L,,p > 1, then f + g belongs to L, and

I1F+gll, < A1, + gl -
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Claim. L,(x) is a Banach space.

7 Modes of Convergence

Definition. The sequence ( f,) converges uniformly to f if Ve >
0,dN € N such that if n > N and z € X, then |f, (z) — f (2)| <e.
ie || fn— fllo <&, Vn>N.

Definition. The sequence (f,,) converges pointwise to f if Vz €

X,e > 0,3IN := N.(z) € N, such that if n > N. (z), then | f,, (z) — f (2)| <
€.

That is, we need different N for different z, clearly uniform con-
vergence implies pointwise convergece. The two are equivalent if

we have continuous functions on compact set.

Example 7.1. Let f, = X[nnt1), then f is continuous pointwise
but not uniformly.

Remark 7.1. The usual interpretation of convergence is pointwise.

Definition. The sequence (f,) converges (pointwise) y almost
everywhere to f if there exists a set £ € . with p(X\FE) =0
such that (f,|g) converges pointwise to f|g.

Example 7.2. Let f, = nxq = 0, u-a.e. but converging at the
point of rationals.

7.1 Convergence in L,

Definition. A sequence (f,) in L, = L, (X,.”, 1) converges in
Ly to f € L,, if Ve > 0,dN € IN such that if n > N, then

1/p
1 £l = {/m—f\p du} -

In this case, we sometimes say that the sequence (f,,) converges
to f in mean (of order p).

MATHS 730 FC 17 LECTURE NOTES



7.2 Convergence in Measure 7 MODES OF CONVERGENCE

Example 7.3. Define with Lebesgue measure

1

o= WX[O,n}a

then f, — f = 0 uniformly, but not in L, since

n P 1/p
Hn—fmz(A &%ﬁ m) 1o

Remark 7.2. Uniform convergence does not imply convergence in
L, unless measure is finite. e.g. u(X) < oo.

Definition. A sequence (f,,) in L, is said to be Cauchy in Ly, if
Ve > 0,dN € N such that if m,n > N, then

1/p
Hm—mm={ﬂmfnww} -

Theorem 7.1. Suppose that p(X) < +oo and that (f,,) is a se-
quence in L, which converges uniformly on X to f. Then f belongs
to L, and the sequence (f,,) converges in L, to f.

Example 7.4. Let f, = nl/px[l g],fn :[0,2] = R, then f, — 0
pointwise but not in L,,.

7.2 Convergence in Measure

Definition 7.1. A sequence (f,,) of measurable real-valued func-
tions is said to converge in measure to a measurable real-valued
function f in case

lim e ({o € X ¢ 1, (@) =/ ()] 2 €}) = 0

for each ¢ > 0. The sequence (f,) is said to be Cauchy in mea-
sure in case

lim_ju({x € X : |f, (@) = fu (@0)] 2 2}) =0

m

for each € > 0.
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8 DECOMPOSITION OF MEASURES

Remark 7.3. Clearly, uniform convergence implies convergence in
measure.

Example 7.5. Let f, = Xmnn+1y- Then f, — 0 pointwise but it
does not converge in measure.

8 Decomposition of Measures

Definition. If x4 is a measure, f € M T (X,.) then

A(E) = /E fdu,

defines a measure with u(E) = 0 implies A(E) = 0, and we say A
is absolutely continuous with respect to u, and write A < p.

Definition 8.1. Let (X,.7#) be a measurable space, then a real-
valued function A : . — R is said to be a charge in case

(i) A(0) =0,

(ii) A is countably additive in the sense that if (£,) is a disjoint
sequence of sets in ., then

(05)- S

n=1 n=1

Example 8.1. e A finite measure is a charge

o If feLi (X, ), \E) = [, fduis a charge.

Definition. e Wesay P € . is positive if \(PNE) > 0,VE €
.

e We say N € .7 is negative if \(NNFE) <0,VE € .¥.
e Wesay K € . isnullif \(KNE)=0,VE € .¥.

Theorem 8.1. HAHN DECOMPOITION THEOREM

If X is a charge on ., then there exist set P and N in . with
X = PUN,PN N = (), and such that P is positive and N is
negative with respect to A.
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8 DECOMPOSITION OF MEASURES

Example 8.2. If f € Ly (X,.%, i) ,\(E) := [, f dp, then
P={x: f+ ) >0}
N = {x ) < 0}
K={z:f(x ) 0}

Definition. A pair P, N of measurable sets satisfying the conclu-
sion of the preceding theorem is said to form a Hahn decompo-
sition of X with respect to \.

Lemma 8.1. If P, N; and P,, N, are Hahn decomposition for A,
and F belongs to ., then

Definition 8.2. Let A be a charge on .% and let P, N be a Hahn
decomposition for A\. The positive and the negative variations
of \ are the finite measures A*, A\~ defined on E in . by

AM(E)=XENP), \(E)=-A(ENN).
The total variation of \ is the measure |A| defined for F in . by
IA[(E) =T (E) + )\ (E).

Remark 8.1.
AE) = AT (E) = A\ (B),

and |[A|, AT, A™ are finite measures.

Theorem 8.2. If f belongs to Ly (X,.#, u) and A is defined by

/fdu,

then AT, A7, and |\| are given for F in . by

“E) = [ ran @)= [ 1dn W@ = [ 1

Definition 8.3. A measure ) on .7 is said to be absolutely con-
tinuous with respect to a measure pon . if £ € % and u(F) =0
imply that A (E) = 0. In this case we write A < p. A charge A
is absolutely continuous with respect to a charge i in case the
toal variation |A| of A is absolutely continuous with respect to |u|.

Lemma 8.2. Let A and p be finite measure on .. The A < p if
and only if Ve > 0,36 > 0 such that F € .¢ and p(E) < § imply
that A (E) > e.
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Theorem 8.3. RADON-NIKODYM THEOREM

Let A and p be o-finite measures defined on . and suppose that
A is absolutely continuous with respect to . Then there exists a
function f in M* (X,.) such that

)\(E):/Efdu, Eec..

Moreover, the function f is uniquely determined p-almost every-
where.
Sometimes f is denoted

which is called the Radon-Nikodym derivative.

Remark 8.2. f need not be integrable.

Definition 8.4. Two measures A\, mu on .¥ are said to be mu-
tually singular if there are disjoint sets A, B in . such that
X =AUB and A(A) = p(B) = 0. In this case we write A L p.
Although the relation of singularity is symmetric in A and u, we
shall sometimes say that A is singular with respect to pu.

Theorem 8.4. LEBESGUE DCOMPOSITION THEOREM
Let A, i be o-finite measures, then A can be uniquely decomposed

)\:)\1+)\27

with A\; L p, Ay < p.

9 Generation of Measures

Definition. It is natural to define the length of the half-open in-
terval (a, b] to be the real number b — a and the length of the sets
(—00,b] = {z € R:2z<b}, and (a,+0) = {r € R:a <z}, and
(—00, +00) to be the extended real number +o0o. We define the
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length of the union of a finite number of disjoint sets of these forms
to be the sum of the corresponding length. Thus the length of

n

U(aj,bj] is ) (b — ay)

j=1
provided the intervals do not intersect.

Remark 9.1. It is intuitive to give Lebesgue measure by

m*(E) = inf {Zm(lj) : I; is an interval E C U I]} :
j=1

j=1

Then m* is well defined for all £ C R, however, this is not a
measure, namely, it does not necessarily have countable additiv-
ity. However, by Carathéodory Extension Theorem we can restrict
m* to a (large) o-algebra of m*-measurable sets, then it will be a
measure.

Definition 9.1. A family .% of subsets of a set X is said to be an
algebra or a field in case:

(A1) 0, X € .&7.

(A2) £ € . implies X\F € .¥.

(A3) If B, ..., B, € 7 implies | J,_, E; € 7.

Remark 9.2. Clearly, by De Morgan, algebra is closed under finite
unions and finite intersections.

Example 9.1. Let J consists of all finite unions of intervals in R,
then this is an algebra.

Example 9.2. Let .¥ be finite disjoint unions of intervals open on
the left and closed on the right. This is also an algebra.

Definition 9.2. If ./ is an algebra of subsets of a set X, then a
measure on &7 is o : &/ — R such that

(MA1) 1o (0) = 0,

(MA2) pp(E) > 0 for all E € &7, and

(MA3) If (E,) € o disjoint and |, , E,, € &/, then

o (U En) = > o (Ey).
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9.1 The Extension of Measures 9 GENERATION OF MEASURES

Example 9.3. On J for A = U I; (disjoint union of intervals

1
= Z m(1;)

j)>
where m(1;) is the length of the mterval then this is a measure on
the algebra J.

9.1 The Extension of Measures

Definition 9.3. An outer measure on X is u* : Z(X) — R
such that

(OM1) p(0) = 0,

(OM2) E; C Ey C X implies that p*(Ey) < p*(Es),

(OM3) If (E,) is an arbitrary sequence of subsets of X, then it
satisfy countably subadditivity,

W (U En) <> w(By)

n=1

Lemma 9.1. The function p* defined by

= inf Z 1 (Ej)
j=1

atisfies the following:

2) i (0) = 0.

b) u ()>0forBCX.

c) If AC B, then p* (A) < p* (B).

d)If Be 42/ then p* (B) = u(B).

e) If (B,) is a sequence of subsets of X, then

s (U Bn> <> (B

This final property is referred to by saying that p* is countably
subadditive.

(
(
(
(
(
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Lemma 9.2. If g is a measure on an o7 of subsets of X. Then
(*(E) = inf {Z po(Aj): Aje o, EC | AJ}
j=1 j=1

is an outer measure on X.

Definition 9.4. Let p* be an outer measure. Then E C X is
1*-measurable if

1w(Q) = 1 (QNE) + 1 (Q\E), ¥QC X.

Theorem 9.1. CARATHEODORY EXTENSION THEOREM

IF p* is an outer measure on X, . = all p*-measurable sets then
(X,.7) is a measurable space, and the restriction of p* to . is a
complete measure. Moreover, if (E,) is a disjoint sequence in .7,

then . .
< (Um) - .

n=1 n=1

Remark 9.3. Complete in this case means all null sets are mea-
surable, that is, if £ € ., u(F) = 0, then F' C E implies F' € .¥.
9.2 Lebesgue Measure

Definition. Let set o7 be all subsets of R of the form of a finite
union of sets of the form

(a,b], (—o00,b], (a,+00), (—o0,+00),

then o7 is an algebra of subsets of R and the length function pg =1
gives a measure on this algebra /. We call my the Lebesgue
measure on .7 .
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Definition. The restriction of Lebesgue measure to the Borel sets
is called either Borel or Lebesgue measure.

Theorem 9.2. There exists a complete measure space (R,.Z, m)
with B C ¥

1. m({z}) =0, x€R,
2. for a < b,m((a,b)) = m((a,b]) = m([a,b)) = m([a,b]) = b—a,

3. fora € R,m((a,0)) = m([a,c0)) = m((—o0,a)) = m((—o0,al) =
m(R) = oo,

4. If f is integrable over interval I with endpoints a and b in
R, then f is integrable over all intervals with these endpoints
and we denoted it by

/abf(x)dxor /abf.

Theorem 9.3. Translation invariance
If Ee Z 2eRthen E+42 € Z and m(E + x) = m(E).

Theorem 9.4. If £ € &, then
1. m(E) = inf {m(U) : U is open, E C U} (outer regular),
2. m(E) =sup{m(K) : K is compact, K C E} (inner regular).
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Theorem 9.5. LUSIN

Let f : R — R be Lebesgue measurable which is zero outside a set
of finite measure. Then Ve > 0, exists g continuous with compact
support such that

m({: f(z) # g(z)}) < e, suplg| <sup|f|

Theorem 9.6. If f is Lebesgue measurable, exists g Borel mea-
surable with f = g m-a.e.

Example 9.4. Lebesgue-Stieltjes measure
Let g be increasing, right continuous, so

g(c) = lim g(c+h),

h—0t

and define my((a, b)) = g(b) — g(a), we have

mg({c} = jump at ¢ = g(c) — lim g(x).
r—c—
Theorem 9.7. RIESZ REPRESENTATION THEOREM
If X: Ja,b] — R is a bounded positive functional, then exists a
(Lebesgue-Stieltjes) measure y, (defined on the Borel o-algebra )
with

b
)\(f):/ fdpg, VfeCla,bl, and

/abfdug

Al = sup = g ([a,0]) -

[flloe=1
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Remark 9.4. \ € (Cla,b])", X is positive if f > 0, hence Af > 0.
A looks like

Af) = Z%’f(cj) +/ fuw,

where f(c;) is the jump of f at point ¢;, w is the weight function,
absolutely continuous with respect to Lebesgue measure m.

10 Product Measure

Definition. Let X and Y be two sets; then the Cartesian prod-
uct Z = X x Y is the set of all ordered pairs (z,y) with z € X
and y €Y.

Definition 10.1. If (X,.”) and (Y,.7) are measurable spaces,
thena set of the form £ x F with F € . and F € .7 is called a
measurable rectangle, or simple a rectangle. We shall denote
the collection of all finite union of rectangles by Z.

R=SxT={ExF:Ecs FeJT}.

Remark 10.1. We wish to define a measure 7 such that m(E x
F) = p(E)v(F).

Claim. Let 4% be all finite union of rectangles, we claim that all
finite unions of rectangles can be written as a disjoint union of
rectangles (proof by picture). So 7 is closed under finite union.
We claim that o7 is an algebra.

Lemma 10.1. Let {D; x E;} be a sequence of disjoint rectangles,
and F| X Gy, ..., F, x G, be disjoint rectangles with

GDjXEj_OFkXGka then

j=1 k=1

> Dy v(Ey) = w(F)v(Gy).
=1 k=1
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Definition. On .7 define my by
mo(A) = > u(Dy)v(E)),
j=1

where A is a disjoint union of rectangles Dy x Fy,..., D, X E,, by
lemma, this is well defined.

Theorem 10.1. 7, defines a measure on the algebra .o%.

Remark 10.2. There is a naturally associated outer measure (de-
fined on Z(X xY))

7" (E) = inf {Z mo(R;) : R; is a rectangle (€ %), E C U Rj} :
j=1

Jj=1

Bt Carathéodory, there exists o-algebra % consisting of the 7*-
measurable subsets, for which 7*|4 is a complete measure with the

properties that @4 C % ,71*(A) = my(A),VA € .

Definition. Let . x 7 be the o-algebra generated by <% (all
rectangles), so . X T C % .

Definition. The product measure m = p x v is 7* restricted to
& x T (o-algebra generated by rectangles.)

Definition 10.2. Let Q C . x .7, x € X, then the x-section of
Q is the set

Qe ={y €Y :(r,y) €Q}.
Similarly, if y € Y, then the y-section of Q is the set

QV={re X :(z,y) €Q}.

If f is a function defined on R to R, and 2 € X, then the x-section
of f if the function f, defined on Y by

fe(y) = f(zy), yey.

Similarly, if y € Y, then the y-section of f is the function fY
defined on X by

fre)=f(zy), reX
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Lemma 10.2. If Q) C .% x 7, then
1. Q, € 7,QY e .Y,
2. f: X xY = Ris.¥ x J-measurable, then

e f(-,y): X — R is .-measurable,
o f(r,-):Y — R is J-measurable.

Definition. Let .#Z be a collection of subsets of a set Z, .# is a
monotone class if

e {E,} is expanding in .# implies that | J,~, E, € 4
e {E,} is contracting in .# implies that () -, E, € .

Example 10.1. The collection of all intervals in R is a monotone
class, but not a o-algebra .

Theorem 10.2. TONELLI'S THEOREM

Let (X, ., n) and (Y, .7, v) be o-finite measure spaces with prod-
uct measure (X xY,.¥ x Z,7). f f: X xY = R, f >0, fis
. x J-measurable, then

1. the function = — [, f(x,y)dr(y) is &/-measurable, and

/X(/Y flz,y) dy(y)) dp(z) = /Xxyfdﬂ(x’y)’

2. the function y — [ f(z,y) du(x) is F-measurable, and

/Y(/X f(z,y) du(x)) dv(y) = Xxyfdﬂx’y)'
That is

/X</Yf($=y) dl/(y)) dp(x) :/Xxyfdﬂ(x,y)
- [ ([ v anw) a.
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Theorem 10.3. MONOTONE CLASS THEOREM
If o7 is an algebra of sets, then the o-algebra . generated by </
coincides with the monotone class .# generated by 7.

Lemma 10.3. Tounelli for f = xq
If f=x0,Q €. x .7, then Tonelli holds for f.

Remark 10.3. If (f,) is an increasing sequence of non-negative,
measurable functions for which 1 and 2 of Tonelli holds, then 1 and
2 of Tonelli holds for f = lim f,.

Claim. Let #Z = {Q C X x Y : Tonelli holds for xq}, note @ C
A . Then .# is a monotone class.

Remark 10.4. Recall each f non-negative, measurable function
can be approximated by an increasing sequence of non-negative,
simple, measurable functions. By linearity, Tonelli holds for these
approximations, hence Tonelli holds for f.

In the general case, X = |J X;,Y = JY;, where X;,Y; are expand-
ing sets of finite measures, then f|x,«y, satisfies Tonelli, hence so
does the limit f = f|xxy.
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Theorem 10.4. FUBINI'S THEOREM

Let (X,.7, p) and (Y, 7, v) be o-finite measures with product mea-
sure (X xY,. x Z,7) and f: X x Y — R be 7-integrable, i.e.
[ frdm, [ f~dr < oo implies [|f| dm < co.

1. There is a set Yy with v(Yy) = 0, such that f(-,y) is u-
integrable over X, Vy € Y'\Yj.
Further, if f(-,y) := 0 on Yj (or some other choice)

Yo /X f(x,y) du(z)

is v-integrable over Y, and

/Y</X f(z,y) du(x)) dv(y) = Xxyfdﬂ-(w’y)

2. If either of the iterated integrals

/Y(/Xm du) av, /X(/Ym du) dy
is finite, then
/Y/deudz/:/x/yfdudu.

Example 10.2. It is not always possible to change the order of
integration
Let

y? — x? s, x
(22 +42)2" Oz (xQ + y?

flz,y) = ) = f(z,y).
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Example 10.3. o-finite is necessary:

Let p be Lebesgue measure on [0,1], v be counting measure on
0, 1], let

e

v is not o-finite and the iterated integrals are not the same.
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