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1 Introduction

Definition. If A,B are sets and there exists a bijection A → B,
they have the same cardinality, which we write as |A| ,#A. If
there exists one-to-one map A→ B, then |A| ≤ |B|

Remark 1.1. limn→∞ xn = 0 means that (xn) diverges to ∞: i.e.
∀c > 0,∃N such that xn > c,∀n > N .

Definition. Defined the extended real numbers to be R :=
R ∪ {−∞,∞}.

Remark 1.2. We have that −∞ < x <∞,∀x ∈ R.

Recall. Each non-empty set A ⊂ R is either
(a) Bounded above, in which it has a supremum sup(A),
(b) A is unbounded above.
In case (b) we will say supremum (in the extended sense) of A is
∞ and write sup(A) =∞.

Remark 1.3. Every non-empty subset of R has a supremum in R.
Every increasing sequence (xn) in R has a limit in R.

Definition. If (xn) is a sequence of extended real numbers, we
define the limit superior and the limit inferior of this sequence
by

limxn = lim supxn = inf
m

(
sup
n≥m

xn

)
= lim

m→∞
sup
n≥m

xn ∈ [−∞,∞] ,

limxn = lim inf xn = sup
m

(
inf
n≥m

xn

)
= lim

m→∞
inf
n≥m

xn ∈ [−∞,∞] .

It is easy to check that

lim inf xn ≤ lim supxn,

lim inf(−xn) = − lim sup(xn).

If the limit inferior and the limit superior are equal, then their
value if called the limit of the sequence.

Theorem 1.1. Let (xn) be a sequence in R. Then exists subse-
quences of (xn) converging to m = lim inf xn,M = lim supxn (in
the extedned sense). Further, if (xnk

) is a convergent subsequence,

m ≤ lim
k→∞

xnk
≤M.

MATHS 730 FC 1 LECTURE NOTES



2 MEASURABLE FUNCTIONS

Corollary 1.1. xn converges if and only if lim supxn = lim inf xn,
in which case xn → lim supxn.

2 Measurable Functions

Definition 2.1. Let X be a non-empty set, A collection S of
subsets of X is said to be a σ-algebra (or a σ-field) if:
(i) ∅, X belong to S .
(ii) If E belongs to S , then the complement C (A) = A =
X\E ∈ S .
(iii) If (Ej) ∈ S , ∀j ∈ N, then

∞⋃
j=1

Ej ∈ S .

Remark 2.1. S is closed under countable intersection, this is easy
to check using De Morgan.

Example 2.1. 1. S = {∅, X} is the trivial σ-algebra .

2. S = P(X) power set := collection of all subsets of X.

3. LetX be uncountable, S := {Y ⊂ X : Y or X is countable } .

4. If {Sj} are σ-algebra of subsets of X. Then ∩jSj is σ-algebra
.

Definition. Let A be a nonempty collection of subsets of X. We
observe that there is a smallest σ-algebra of subsets of X containing
A. To see this, observe that the family of all subsets of X is a
σ-algebra containing A and the intersection of all the σ-algebra
containing A is also a σ-algebra containing A. This smallest σ-
algebra is called the σ-algebra generated by A, we denote it
σ(A).

Definition. Let (X, ρ) be a metric space (or topological space).
Let A be the collection of all open subsets of X. Then σ-algebra
generated by A is called the Borel σ-algebra and is denoted
B(X).

Remark 2.2. Clearly the Borel σ-algebra is generated by all closed
sets
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2 MEASURABLE FUNCTIONS

Example 2.2. Let X = R. The Borel σ-algebra is generated by
all open intervals (a, b) in R.

Remark 2.3. Extended Borel σ-algebra is generated by all open
intervals in R, i.e.

(a, b), (a,∞), (a,∞], (−∞, b), [−∞, b), [−∞,∞].

Definition. A function f : X → Y between measurable spaces
(X,S ) and (Y,T ) is measurable ((S ,T )-measurable) if

f−1(A) ∈ S , ∀A ∈ T

Definition. (Working Definition)
Let (X,S ) be a measurable space. Then f : X → R or R is
S -measurable is {x ∈ X : f(x) > α} ∈ S ,∀α ∈ R.
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Lemma 2.1. The following statements are equivalent for a func-
tion f on X to R:
(a) For every α ∈ R, the set Aα = {x ∈ X : f (x) > α} belongs to
S .
(b) For every α ∈ R, the set Bα = {x ∈ X : f (x) ≤ α} belongs to
S .
(c) For every α ∈ R, the set Cα = {x ∈ X : f (x) ≥ α} belongs to
S .
(d) For every α ∈ R, the set Dα = {x ∈ X : f (x) < α} belongs to
S .
(e) f is S -measurable.

Remark 2.4. Sets such as

{x : f(x) = a} = f−1({a})
{x : a ≤ f(x) ≤ b}
{x : f(x) =∞}
{x : f(x) is finite }

are all S -measurable if f is S -measurable.

Example 2.3. the characteristic function f : χE is S -measurable
if and only if E ∈ S .

Example 2.4. Continuous functions are Borel measurable, i.e. if
(X,S ) combines B(X) and (Y,T ) is B(Y ), then f : X → Y
measurable is continuous.

Lemma 2.2. Let (X,S ) be a measurable space, E ∈ S . Then
f → R is S -measurable on X if and only if it is S -measurable on
E and X\E.

MATHS 730 FC 4 LECTURE NOTES



3 MEASURE

Theorem 2.1. Every reasonable combination of measurable func-
tions is measurable.
Let (X,S ) be a measurable space, E ∈ S and f, g, fn, gn be S -
measurable and X → R (or R) on E. Then the following are
S -measurable on F .
1. αf, 1

f
, |f |β , α ∈ R, β ∈ R.

2. f + g, fg.
3. sup fn, inf fn, lim sup fn, lim inf fn.
4. f−, f+.

3 Measure

Definition 3.1. Let (X,S ) be a measurable space. A function
µ : X → R is called a measure:
(i) µ (∅) = 0,
(ii) µ (E) ≥ 0 for all E ∈ S ,
(iii) µ is countably additive in the sense that if (En) is any
disjoint sequence of sets in XS, then

µ

(
∞⋃
n=1

En

)
=
∞∑
n=1

µ (En) .

We call (X,S , µ) a measure space.

Definition. Let X = N = {1, 2, 3, . . .} and let S be the σ-algebra
of all subsets of N. If E ∈ S , defined

µ(E) :=

{
|E| , if E if finite

∞, if E is infinite.

Then µ is a measure and is called the counting measure on N.
Note that µ is not finite, but it is σ-finite. Also, integrals for this
measure are sums.
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Definition. Let (xn) be a sequence in X. (pn) be a sequence in
[0,∞). Define µ on (X,S ) by

µ(E) :=
∑

{n:xn∈E}

pn,

then this is the discrete measure

Definition. Special case of discrete measure: LetX be any nonempty
set, let S be the σ-algebra of all subsets of X and let p be a fixed
element of X. Let µ be defined for E ∈ S by

µ (E) = 0, if p /∈ E,
= 1, if p ∈ E.

then µ is a finite measure and is called the unit measure con-
centrated at p or Durac-delta measure.

Definition. There exists a measure space (R,L ,m) with L ⊃
B(R) such that m is translation invariant and m(I) = b− a where
I is the interval with endpoints a and b. This measure is unique
and is usually called Lebesgue (or Borel) measure. It is not a
finite measure, but it is σ-finite.

Lemma 3.1. L cannot be all of P(R).

Definition. If X = R,S = B, and f is a continuous monotone
increasing function, then there exists a unique measure λf defined
on B such that if E = (a, b), then λf (E) = f (b) − f (a). This
measure λf is called the Borel-Stieltjes measure generated by
f .

Remark 3.1. If E ⊆ F,E, F,∈ S , then
(a) µ(E) ≤ µ(F ),
(b) If µ(F ) <∞, then µ(E) = µ(F )− µ(F\E).
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Definition. Let (X,S , µ) be a measure space. We say E ⊂ X is
a null set or a set of measure zero if E ⊂ F ∈ S , µ(F ) = 0.
These sets can be ignored for integration.

Definition. We say a certain proposition holds µ-almost every-
where, almost everywhere, or for almost all, etc, if there exists a
subset F ∈ S with µ (F ) = 0 such that the proposition holds on
the complement of F .

Example 3.1. For Lebesgue measurem onR, m({a}) = m([a, b])−
m ((a, b]) = 0 so countable subsets of R have Lebesgue measure
zero.

Definition. We say that two functions f, g are equal µ-almost
everywhere or that they are equal for µ-almost all x in case
f (x) = f (x) when x /∈ N , for some N ∈ S with µ (N) = 0. In
this case we will often write

f = g, µ-a.e.

Definition. We say that a sequence (fn) of functions on X con-
verges µ-almost everywhere (or converges for µ-almost all
x) if there exists a set N ∈ S with µ (N) = 0 such that f (x) =
lim fn (x) for x /∈ N . In this case we often write

f = lim fn, µ-a.e.

Definition. If {En} be a sequence of subsets of X we say {En} is
expanding (or increasing) if

En+1 ⊃ En,

and is contracting (or decreasing) if

En+1 ⊂ En.
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Lemma 3.2. Let (X,S , µ) be a measure space, let (En) be a
sequence in S , then
(a) If (En) is expanding, then

µ

(
∞⋃
n=1

En

)
= lim

n→∞
µ(En)

without restriction.
(b) If (En) is decreasing and µ(E1) <∞ then

µ

(
∞⋃
n=1

En

)
= lim

n→∞
µ(En)

Example 3.2. The condition µ(E1) <∞ is necessary.
Take En = [n,∞) ∈ R with Lebesgue measure, (En) contracting
with m(En) =∞.

4 The Integral

Definition 4.1. A real valued function is simple if it has only a
finite number of values.

Remark 4.1. A simple measurable function u can be represented
in the form

u =
n∑
k=1

akχAk
,

where ak ∈ R and

n⋃
k=1

Ak = E, Ak ⊂ E ∀k.

Definition. Among these representations for u there is a unique
standard representation characterized by the fact that the ak
are distinct and the Ak are disjoint nonempty subsets of E and are
such that E = ∪nk=1Ak.
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Theorem 4.1. (Approximation by simple functions)
Let (X,S ) be a measurable space. If f is non-negative S -measurable.
Then there is an increasing sequence of non-negative simple mea-
surable function un with

lim
n→∞

un = f (pointwise)

Definition. For a measurable space (X,S , µ), let M+ (X,S ) be
the set of non-negative S -measurable functions on X.

Definition. If f ∈ M+ (X,S ) is simple, then we define its inte-
gral to be ∫

f,

∫
X

f dµ,

∫
X

f(x) dµ(x) :=
n∑
j=1

αjµ(Aj)

where

f =
n∑
j=1

αjχAj

is the standard form of f .
With the convention 0 ×∞ := 0, that is, if αk = 0, µ(Ak) = ∞,
then αjµ(Ak) = 0.

Lemma 4.1. If u, v ∈M+ (X,S ) are simple, 0 ≤ c <∞, then
(a)
∫
X
cu dµ = c

∫
X
u dµ,

∫
X

(u+ v) dµ =
∫
X
u dµ+

∫
X
v dµ.

(b) If define λ by

λ(E) :=

∫
uχE dµ, E ∈ S ,

then λ is a measure on S .

Definition. Let f ∈ M+ (X,S ), define the integral of f over X
to be∫
X

f dµ := sup

{∫
u dµ : u ∈M+ (X,S ) , 0 ≤ u ≤ f, u simple

}
is well defined (may be ∞) and ≥ 0.
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Definition. E ∈ S , then for f ∈M+ (X,S )∫
E

f dµ :=

∫
X

fχE dµ

Lemma 4.2. (Monotonicity of the integral)
If f and g belong to M+ (X,S ) , E, F ∈ S , then
(a) If f ≤ g on E, then ∫

E

f dµ ≤
∫
E

g dµ.

(b) If E ⊆ F , then ∫
E

f dµ ≤
∫
F

f dµ.

Theorem 4.2. MONOTONE CONVERGENCE THEOREM)
If (fn) is a monotone increasing sequence of functions inM+ (X,S ),
then ∫

X

(
lim
n→∞

fn

)
dµ = lim

∫
X

fn dµ.

Corollary 4.1. If (fn) is a monotone increasing sequence of func-
tions in M+ (X,S ) which converges µ-almost everywhere on X to
a function f in M+, then∫

f dµ = lim

∫
fn dµ.

Corollary 4.2. Let (gn) be a sequence in M+, then∫ ( ∞∑
n=1

gn

)
dµ =

∞∑
n=1

(∫
gn dµ

)
.
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Remark 4.2. It should be observed that it is not being assumed
that either side of the equation is finite. Indeed, the sequence
(
∫
fn dµ) is a monotone increasing sequence of extended real num-

bers and so always has a limit in R, but perhaps not in R.

Recall. For Riemann integrals the Monotone Convergence Theo-
rem fails

fn := χ{q1,...,qn}, qn ∈ Q
is increasing with lim fn = χQ, limn→∞

∫
fn(x) dx = 0, but f = χQ

is not Riemann integrable.

Theorem 4.3. (Linearity of Integral)
Let f, g ∈M+ (X,S ) and α, β ∈ [0,∞). Then∫

X

(αf + βg) dµ = α

∫
X

f dµ+ β

∫
X

g dµ.

Lemma 4.3. FATOU’S LEMMA
If (fn) belongs to M+ (X,S ) , then∫

X

(lim inf fn) dµ ≤ lim inf

∫
X

fn dµ.

Remark 4.3. We do not need to worry about whether functions
are increasing or not.

Remark 4.4. Discrete version:

fn =

(
an
bn

)
.

Then we have

lim inf an + lim inf bn ≤ lim inf (an + bn) .

Remark 4.5. The inequality can be strict in Fatou’s Lemma
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Example 4.1. Suppose fn ∈ M+ (X,S ) , fn → f, fn ≤ f then∫
fn dµ→

∫
f dµ.

Theorem 4.4. Let f ∈M+ (X,S ) and

ν(E) :=

∫
E

f dµ

=

∫
X

fχE dµ,

then ν is the measure on (X,S ).

Theorem 4.5. Suppose that f belongs to M+ (X,S ). Then
f (x) = 0 µ-almost everywhere on X if and only if∫

X

f dµ = 0.

Theorem 4.6. Let f, g ∈M+ (X,S ), then
(i) If f ≤ g µ-a.e. on X then∫

X

f dµ ≤
∫
X

g dµ.

(ii) If f = g µ-a.e. on X then∫
X

f dµ =

∫
X

g dµ.
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5 Integrable Functions

Definition 5.1. The collection L = L1 (X,S , µ) of integrable (or
summable) functions consists of all (extended) real-valued S -
measurable functions f defined on X, such that both the positive
and negative parts f+, f−, of f have finite integrals with respect to
µ. In this case, we define the integral of f over X with respect
to µ to be ∫

X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ.

If E belongs to S , we define∫
E

f dµ =

∫
E

f+ dµ−
∫
E

f− dµ.

Recall.

f+ = max {f(x), 0} , f− = max {−f(x), 0} , f = f+−f−, |f | = f++f−

Theorem 5.1. Let f be measurable, then f ∈ L1 (X,S , µ) if and
only if |f | ∈ L1 (X,S , µ). i.e. |f | has finite integral. Moreover,∣∣∣∣∫

X

f dµ

∣∣∣∣ ≤ ∫
X

|f | dµ.

Lemma 5.1. If f ∈ L (X,S , µ), then
(i) f is finite-valued a.e.
(ii) If

f̃(x) :=

{
f(x), f(x) ∈ R
0, otherwise.

Then f̃ ∈ L (X,S , µ) and∫
X

f̃ dµ =

∫
X

f dµ.
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Theorem 5.2. Linearity of integral
If f, g ∈ L (X,S , µ) 1 and α ∈ R, then αf, f + g ∈ L1 (X,S , µ)
and∫

X

αf dµ = a

∫
X

f dµ,

∫
X

(f + g) dµ =

∫
X

f dµ+

∫
X

g dµ.

Theorem 5.3. (i) If g is measurable, f ∈ L (X,S , µ) and g = f
µ-a.e. then g ∈ L (X,S , µ) and∫

X

g dµ =

∫
X

f dµ.

(ii) If f, g ∈ L (X,S , µ) , f ≤ g µ-a.e. on X then∫
X

f dµ ≤
∫
X

g dµ.

Theorem 5.4. LEBESGUE DOMINATED CONVERGENCE THEOREM
Suppose fn ∈ L (X,S , µ) , ∀n and fn → f µ-a.e. on X.
If there exists a g ∈ L (X,S , µ) (dominating function) such that
|fn| ≤ g for all n, then f ∈ L (X,S , µ) and∫

X

f dµ =

∫
X

lim
n→∞

fn dµ = lim
n→∞

∫
X

fn dµ.
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6 The Lebesgue Spaces Lp

Definition 6.1. If V is a real linear (= vector) space, then a real-
valued function ‖·‖ on V is said to be a norm for V in case it
satisfies
(i) ‖v‖ ≥ 0 for all v ∈ V ;
(ii) ‖v‖ = 0 if and only if v = 0;
(iii) ‖αv‖ = |α| ‖v‖ for all v ∈ V and real α;
(iv) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V .
If condition (ii) is dropped, the function ‖·‖ is said to be a semi-
norm or a pseudo-norm for V . A normed linear space is a
linear space V together with a norm for V .

Definition. We say S -measurable functions f and g are µ-equivalent
if f = g µ-a.e. on X.

Remark 6.1. This is an equivalence relation

Definition. We denote the equivalence classes for this relation by

[f ] := {g : f = g µ-a.e. }
= {f + g : g = 0 µ-a.e. }

Remark 6.2. On these equivalence classes we can define +, ·.

[f ] + [g] = [f + g] , α [f ] = [αf ] .

Ultimately, this gives a vector space with zero [0] = [f + (−f)].

Definition. On the µ-equivalence classes we can define a norm
for 1 ≤ p <∞ by

‖[f ]‖p :=

(∫
X

|f |p dµ

)1/p

,

this normed is well-defined with values in [0,∞].

Definition. Key for Lp spaces
We define Lp(µ) to be the set of all µ-equivalence classes of S -
measurable functions for which

‖[f ]‖p :=

(∫
X

|f |p dµ

)1/p

<∞
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Claim. Lp (X,S , µ) is a vector space. Check Lp(µ) is a vector
space:

Recall. If A,B ≥ 0, q ≤ p <∞ then

AB ≤ Ap

p
+
Bq

q
,

where q is the conjugate exponent to p. i.e. 1
p

+ 1
q

= 1.

Theorem 6.1. HÖLDER’S INEQUALITY
Fix (X,S , µ). Let p and q be conjugate exponents (1 ≤ p < ∞).
If f, g are measurable, then fg ∈ L1 and∫

X

|fg| dµ ≤
(∫

X

|f |p dµ

)1/p(∫
X

|g|q dµ

)1/q

i.e. ‖fg‖1 ≤ ‖f‖p ‖g‖q.

Remark 6.3. We may have ‖fg‖1 , ‖f‖p , ‖g‖q be ∞.

Corollary 6.1. f ∈ Lp, g ∈ Lq then fg ∈ L1.

Theorem 6.2. CAUCHY-BUNYAKOVSKǏI-SCHWARZ INEQUALITY
f, g ∈ L2 then fg ∈ L1 and

〈f, g〉 =

∣∣∣∣∫
X

fg dµ

∣∣∣∣ ≤ ∫
X

|fg| dµ ≤ ‖f‖2 ‖g‖2 .

Definition. Lp(µ) := µ-equivalences of S -measurable functions f
with

‖f‖p =

(∫
X

|f |p dµ

)1/p

<∞.

Theorem 6.3. MINKOWSKI’S INEQUALITY
If f and g belong to Lp, p ≥ 1, then f + g belongs to Lp and

‖f + g‖p ≤ ‖f‖p + ‖g‖p .
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Claim. Lp(µ) is a Banach space.

7 Modes of Convergence

Definition. The sequence (fn) converges uniformly to f if ∀ε >
0,∃N ∈ N such that if n ≥ N and x ∈ X, then |fn (x)− f (x)| < ε.
i.e. ‖fn − f‖∞ < ε,∀n > N .

Definition. The sequence (fn) converges pointwise to f if ∀x ∈
X, ε > 0,∃N := Nε(x) ∈ N, such that if n ≥ Nε (x), then |fn (x)− f (x)| <
ε.
That is, we need different N for different x, clearly uniform con-
vergence implies pointwise convergece. The two are equivalent if
we have continuous functions on compact set.

Example 7.1. Let fn = χ[n,n+1], then f is continuous pointwise
but not uniformly.

Remark 7.1. The usual interpretation of convergence is pointwise.

Definition. The sequence (fn) converges (pointwise) µ almost
everywhere to f if there exists a set E ∈ S with µ (X\E) = 0
such that (fn|E) converges pointwise to f |E.

Example 7.2. Let fn = nχQ = 0, µ-a.e. but converging at the
point of rationals.

7.1 Convergence in Lp

Definition. A sequence (fn) in Lp = Lp (X,S , µ) converges in
Lp to f ∈ Lp, if ∀ε > 0,∃N ∈ N such that if n ≥ N , then

‖fn − f‖p =

{∫
|fn − f |p dµ

}1/p

< ε.

In this case, we sometimes say that the sequence (fn) converges
to f in mean (of order p).
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Example 7.3. Define with Lebesgue measure

fn =
1

n1/p
χ[0,n],

then fn → f = 0 uniformly, but not in Lp since

‖fn − f‖p =

(∫ n

0

(
1

n1/p

)p
dx

)1/p

= 1 9 0.

Remark 7.2. Uniform convergence does not imply convergence in
Lp unless measure is finite. e.g. µ(X) <∞.

Definition. A sequence (fn) in Lp is said to be Cauchy in Lp, if
∀ε > 0,∃N ∈ N such that if m,n ≥ N , then

‖fm − fn‖p =

{∫
|fm − fn|p dµ

}1/p

< ε.

Theorem 7.1. Suppose that µ (X) < +∞ and that (fn) is a se-
quence in Lp which converges uniformly on X to f . Then f belongs
to Lp and the sequence (fn) converges in Lp to f .

Example 7.4. Let fn = n1/pχ[ 1
n
, 2
n ], fn : [0, 2] → R, then fn → 0

pointwise but not in Lp.

7.2 Convergence in Measure

Definition 7.1. A sequence (fn) of measurable real-valued func-
tions is said to converge in measure to a measurable real-valued
function f in case

lim
n→∞

µ ({x ∈ X : |fn (x)− f (x)| ≥ ε}) = 0

for each ε > 0. The sequence (fn) is said to be Cauchy in mea-
sure in case

lim
m,n→∞

µ ({x ∈ X : |fn (x)− fn (x)| ≥ ε}) = 0

for each ε > 0.
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Remark 7.3. Clearly, uniform convergence implies convergence in
measure.

Example 7.5. Let fn = χ[n,n+1]. Then fn → 0 pointwise but it
does not converge in measure.

8 Decomposition of Measures

Definition. If µ is a measure, f ∈M+ (X,S ) then

λ(E) :=

∫
E

f dµ,

defines a measure with µ(E) = 0 implies λ(E) = 0, and we say λ
is absolutely continuous with respect to µ, and write λ� µ.

Definition 8.1. Let (X,S ) be a measurable space, then a real-
valued function λ : S → R is said to be a charge in case
(i) λ (∅) = 0,
(ii) λ is countably additive in the sense that if (En) is a disjoint
sequence of sets in S , then

λ

(
∞⋃
n=1

En

)
=
∞∑
n=1

λ (En) .

Example 8.1. • A finite measure is a charge

• If f ∈ L1 (X,S , µ) , λ(E) :=
∫
E
f dµ is a charge.

Definition. • We say P ∈ S is positive if λ(P∩E) ≥ 0,∀E ∈
S .

• We say N ∈ S is negative if λ(N ∩ E) ≤ 0,∀E ∈ S .

• We say K ∈ S is null if λ(K ∩ E) = 0,∀E ∈ S .

Theorem 8.1. HAHN DECOMPOITION THEOREM
If λ is a charge on S , then there exist set P and N in S with
X = P ∪ N,P ∩ N = ∅, and such that P is positive and N is
negative with respect to λ.
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8 DECOMPOSITION OF MEASURES

Example 8.2. If f ∈ L1 (X,S , µ) , λ(E) :=
∫
E
f dµ, then

P =
{
x : f+(x) > 0

}
N =

{
x : f−(x) < 0

}
K = {x : f(x) = 0}

Definition. A pair P,N of measurable sets satisfying the conclu-
sion of the preceding theorem is said to form a Hahn decompo-
sition of X with respect to λ.

Lemma 8.1. If P1, N1 and P2, N2 are Hahn decomposition for λ,
and E belongs to S , then

λ (E ∩ P1) = λ (E ∩ P2) , λ (E ∩N1) = λ (E ∩N2) .

Definition 8.2. Let λ be a charge on S and let P,N be a Hahn
decomposition for λ. The positive and the negative variations
of λ are the finite measures λ+, λ− defined on E in S by

λ+ (E) := λ (E ∩ P ) , λ− (E) := −λ (E ∩N) .

The total variation of λ is the measure |λ| defined for E in S by

|λ| (E) := λ+ (E) + λ− (E) .

Remark 8.1.
λ(E) = λ+(E)− λ−(E),

and |λ| , λ+, λ− are finite measures.

Theorem 8.2. If f belongs to L1 (X,S , µ) and λ is defined by

λ (E) =

∫
E

f dµ,

then λ+, λ−, and |λ| are given for E in S by

λ+ (E) =

∫
E

f+ dµ, λ− (E) =

∫
E

f− dµ, |λ| (E) =

∫
E

|f | dµ.

Definition 8.3. A measure λ on S is said to be absolutely con-
tinuous with respect to a measure µ on S if E ∈ S and µ (E) = 0
imply that λ (E) = 0. In this case we write λ � µ. A charge λ
is absolutely continuous with respect to a charge µ in case the
toal variation |λ| of λ is absolutely continuous with respect to |µ|.

Lemma 8.2. Let λ and µ be finite measure on S . The λ � µ if
and only if ∀ε > 0,∃δ > 0 such that E ∈ S and µ (E) < δ imply
that λ (E) > ε.
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Theorem 8.3. RADON-NIKODÝM THEOREM
Let λ and µ be σ-finite measures defined on S and suppose that
λ is absolutely continuous with respect to µ. Then there exists a
function f in M+ (X,S ) such that

λ (E) =

∫
E

f dµ, E ∈ S .

Moreover, the function f is uniquely determined µ-almost every-
where.
Sometimes f is denoted

f =
dλ

dµ
,

which is called the Radon-Nikodým derivative.

Remark 8.2. f need not be integrable.

Definition 8.4. Two measures λ,mu on S are said to be mu-
tually singular if there are disjoint sets A,B in S such that
X = A ∪B and λ (A) = µ (B) = 0. In this case we write λ ⊥ µ.
Although the relation of singularity is symmetric in λ and µ, we
shall sometimes say that λ is singular with respect to µ.

Theorem 8.4. LEBESGUE DCOMPOSITION THEOREM
Let λ, µ be σ-finite measures, then λ can be uniquely decomposed

λ = λ1 + λ2,

with λ1 ⊥ µ, λ2 � µ.

9 Generation of Measures

Definition. It is natural to define the length of the half-open in-
terval (a, b] to be the real number b− a and the length of the sets
(−∞, b] = {x ∈ R : x ≤ b}, and (a,+∞) = {x ∈ R : a < x}, and
(−∞,+∞) to be the extended real number +∞. We define the
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length of the union of a finite number of disjoint sets of these forms
to be the sum of the corresponding length. Thus the length of

n⋃
j=1

(aj, bj] is
n∑
j=1

(bj − aj)

provided the intervals do not intersect.

Remark 9.1. It is intuitive to give Lebesgue measure by

m∗(E) := inf

{
∞∑
j=1

m(Ij) : Ij is an interval E ⊂
∞⋃
j=1

Ij

}
.

Then m∗ is well defined for all E ⊂ R, however, this is not a
measure, namely, it does not necessarily have countable additiv-
ity. However, by Carathéodory Extension Theorem we can restrict
m∗ to a (large) σ-algebra of m∗-measurable sets, then it will be a
measure.

Definition 9.1. A family S of subsets of a set X is said to be an
algebra or a field in case:
(A1) ∅, X ∈ S .
(A2) E ∈ S implies X\E ∈ S .
(A3) If E1, . . . , En ∈ S implies

⋃n
j=1Ej ∈ S .

Remark 9.2. Clearly, by De Morgan, algebra is closed under finite
unions and finite intersections.

Example 9.1. Let J consists of all finite unions of intervals in R,
then this is an algebra.

Example 9.2. Let S be finite disjoint unions of intervals open on
the left and closed on the right. This is also an algebra.

Definition 9.2. If A is an algebra of subsets of a set X, then a
measure on A is µ0 : A → R such that
(MA1) µ0 (∅) = 0,
(MA2) µ0 (E) ≥ 0 for all E ∈ A , and
(MA3) If (En) ∈ A disjoint and

⋃∞
n=1En ∈ A , then

µ0

(
∞⋃
n=1

En

)
=
∞∑
n=1

µ0 (En) .
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Example 9.3. On J for A =
⋃∞
j=1 Ij (disjoint union of intervals

Ij),

µ0(A) :=
n∑
j=1

m(Ij),

where m(Ij) is the length of the interval, then this is a measure on
the algebra J .

9.1 The Extension of Measures

Definition 9.3. An outer measure on X is µ∗ : P(X) → R

such that
(OM1) µ∗(∅) = 0,
(OM2) E1 ⊂ E2 ⊂ X implies that µ∗(E1) ≤ µ∗(E2),
(OM3) If (En) is an arbitrary sequence of subsets of X, then it
satisfy countably subadditivity,

µ∗

(
∞⋃
n=1

En

)
≤

∞∑
n=1

µ∗(En).

Lemma 9.1. The function µ∗ defined by

µ∗ (B) = inf
∞∑
j=1

µ (Ej)

satisfies the following:
(a) µ∗ (∅) = 0.
(b) µ∗ (B) ≥ 0, for B ⊆ X.
(c) If A ⊆ B, then µ∗ (A) ≤ µ∗ (B).
(d) If B ∈ A , then µ∗ (B) = µ (B).
(e) If (Bn) is a sequence of subsets of X, then

µ∗

(
∞⋃
n=1

Bn

)
≤

∞∑
n=1

µ∗ (Bn) .

This final property is referred to by saying that µ∗ is countably
subadditive.
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Lemma 9.2. If µ0 is a measure on an A of subsets of X. Then

µ∗(E) := inf

{
∞∑
j=1

µ0(Aj) : Aj ∈ A , E ⊂
∞⋃
j=1

Aj

}

is an outer measure on X.

Definition 9.4. Let µ∗ be an outer measure. Then E ⊂ X is
µ∗-measurable if

µ∗ (Q) = µ∗ (Q ∩ E) + µ∗ (Q\E) , ∀Q ⊂ X.

Theorem 9.1. CARATHÉODORY EXTENSION THEOREM
IF µ∗ is an outer measure on X, S := all µ∗-measurable sets then
(X,S ) is a measurable space, and the restriction of µ∗ to S is a
complete measure. Moreover, if (En) is a disjoint sequence in S ,
then

µ∗

(
∞⋃
n=1

En

)
=
∞∑
n=1

µ∗ (En) .

Remark 9.3. Complete in this case means all null sets are mea-
surable, that is, if E ∈ S , µ(E) = 0, then F ⊂ E implies F ∈ S .

9.2 Lebesgue Measure

Definition. Let set A be all subsets of R of the form of a finite
union of sets of the form

(a, b] , (−∞, b] , (a,+∞) , (−∞,+∞) ,

then A is an algebra of subsets of R and the length function µ0 = l
gives a measure on this algebra A . We call m0 the Lebesgue
measure on A .
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Definition. The restriction of Lebesgue measure to the Borel sets
is called either Borel or Lebesgue measure.

Theorem 9.2. There exists a complete measure space (R,L ,m)
with B ⊂ L

1. m({x}) = 0, x ∈ R,

2. for a < b,m((a, b)) = m((a, b]) = m([a, b)) = m([a, b]) = b−a,

3. for a ∈ R,m((a,∞)) = m([a,∞)) = m((−∞, a)) = m((−∞, a]) =
m(R) =∞,

4. If f is integrable over interval I with endpoints a and b in
R, then f is integrable over all intervals with these endpoints
and we denoted it by∫ b

a

f(x) dx or

∫ b

a

f.

Theorem 9.3. Translation invariance
If E ∈ L , x ∈ R then E + x ∈ L and m(E + x) = m(E).

Theorem 9.4. If E ∈ L , then

1. m(E) = inf {m(U) : U is open, E ⊂ U} (outer regular),

2. m(E) = sup {m(K) : K is compact, K ⊂ E} (inner regular).
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Theorem 9.5. LUSIN
Let f : R→ R be Lebesgue measurable which is zero outside a set
of finite measure. Then ∀ε > 0, exists g continuous with compact
support such that

m({: f(x) 6= g(x)}) < ε, sup |g| ≤ sup |f | .

Theorem 9.6. If f is Lebesgue measurable, exists g Borel mea-
surable with f = g m-a.e.

Example 9.4. Lebesgue-Stieltjes measure
Let g be increasing, right continuous, so

g(c) = lim
h→0+

g(c+ h),

and define mg((a, b]) = g(b)− g(a), we have

mg({c} = jump at c = g(c)− lim
x→c−

g(x).

Theorem 9.7. RIESZ REPRESENTATION THEOREM
If λ : [a, b] → R is a bounded positive functional, then exists a
(Lebesgue-Stieltjes) measure µg (defined on the Borel σ-algebra )
with

λ(f) =

∫ b

a

f dµg, ∀f ∈ C [a, b] , and

‖λ‖ = sup
‖f‖∞=1

∣∣∣∣∫ b

a

f dµg

∣∣∣∣ = µg ([a, b]) .
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Remark 9.4. λ ∈ (C[a, b])∗, λ is positive if f ≥ 0, hence λf ≥ 0.
λ looks like

λ(f) =
∞∑
j=1

ajf(cj) +

∫ b

a

fω,

where f(cj) is the jump of f at point cj, ω is the weight function,
absolutely continuous with respect to Lebesgue measure m.

10 Product Measure

Definition. Let X and Y be two sets; then the Cartesian prod-
uct Z = X × Y is the set of all ordered pairs (x, y) with x ∈ X
and y ∈ Y .

Definition 10.1. If (X,S ) and (Y,T ) are measurable spaces,
thena set of the form E × F with E ∈ S and F ∈ T is called a
measurable rectangle, or simple a rectangle. We shall denote
the collection of all finite union of rectangles by R.

R = S ×T = {E × F : E ∈ S , F ∈ T } .

Remark 10.1. We wish to define a measure π such that π(E ×
F ) = µ(E)ν(F ).

Claim. Let A0 be all finite union of rectangles, we claim that all
finite unions of rectangles can be written as a disjoint union of
rectangles (proof by picture). So A0 is closed under finite union.
We claim that A0 is an algebra.

Lemma 10.1. Let {Dj × Ej} be a sequence of disjoint rectangles,
and F1 ×G1, . . . , Fn ×Gn be disjoint rectangles with

∞⋃
j=1

Dj × Ej =
n⋃
k=1

Fk ×Gk, then

∞∑
j=1

µ(Dj)ν(Ej) =
n∑
k=1

µ(Fk)ν(Gk).
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Definition. On A0 define π0 by

π0(A) =
n∑
j=1

µ(Dj)ν(Ej),

where A is a disjoint union of rectangles D1×E1, . . . , Dn×En, by
lemma, this is well defined.

Theorem 10.1. π0 defines a measure on the algebra A0.

Remark 10.2. There is a naturally associated outer measure (de-
fined on P(X × Y ))

π∗(E) := inf

{
∞∑
j=1

π0(Rj) : Rj is a rectangle (∈ A0), E ⊂
∞⋃
j=1

Rj

}
.

Bt Carathéodory, there exists σ-algebra U consisting of the π∗-
measurable subsets, for which π∗|U is a complete measure with the
properties that A0 ⊂ U , π∗(A) = π0(A),∀A ∈ A .

Definition. Let S × T be the σ-algebra generated by A0 (all
rectangles), so S ×T ⊂ U .

Definition. The product measure π = µ× ν is π∗ restricted to
S ×T (σ-algebra generated by rectangles.)

Definition 10.2. Let Q ⊂ S ×T , x ∈ X, then the x-section of
Q is the set

Qx := {y ∈ Y : (x, y) ∈ Q} .
Similarly, if y ∈ Y , then the y-section of Q is the set

Qy = {x ∈ X : (x, y) ∈ Q} .

If f is a function defined on R to R, and x ∈ X, then the x-section
of f if the function fx defined on Y by

fx (y) = f (x, y) , y ∈ Y.

Similarly, if y ∈ Y , then the y-section of f is the function f y

defined on X by

f y (x) = f (x, y) , x ∈ X.
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Lemma 10.2. If Q ⊂ S ×T , then

1. Qx ∈ T , Qy ∈ S ,

2. f : X × Y → R is S ×T -measurable, then

• f(·, y) : X → R is S -measurable,

• f(x, ·) : Y → R is T -measurable.

Definition. Let M be a collection of subsets of a set Z, M is a
monotone class if

• {En} is expanding in M implies that
⋃∞
n=1En ∈M ;

• {En} is contracting in M implies that
⋂∞
n=1En ∈M .

Example 10.1. The collection of all intervals in R is a monotone
class, but not a σ-algebra .

Theorem 10.2. TONELLI’S THEOREM
Let (X,S , µ) and (Y,T , ν) be σ-finite measure spaces with prod-
uct measure (X × Y,S × T , π). If f : X × Y → R, f ≥ 0, f is
S ×T -measurable, then

1. the function x 7→
∫
Y
f(x, y) dν(y) is S -measurable, and∫

X

(∫
Y

f(x, y) dν(y)

)
dµ(x) =

∫
X×Y

f dπ(x, y),

2. the function y 7→
∫
X
f(x, y) dµ(x) is T -measurable, and∫

Y

(∫
X

f(x, y) dµ(x)

)
dν(y) =

∫
X×Y

f dπ(x, y).

That is∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x) =

∫
X×Y

f dπ(x, y)

=

∫
Y

(∫
X

f(x, y) dµ(x)

)
dν(y).
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Theorem 10.3. MONOTONE CLASS THEOREM
If A is an algebra of sets, then the σ-algebra S generated by A
coincides with the monotone class M generated by A .

Lemma 10.3. Tounelli for f = χQ
If f = χQ, Q ∈ S ×T , then Tonelli holds for f .

Remark 10.3. If (fn) is an increasing sequence of non-negative,
measurable functions for which 1 and 2 of Tonelli holds, then 1 and
2 of Tonelli holds for f = lim fn.

Claim. Let M := {Q ⊂ X × Y : Tonelli holds for χQ}, note A0 ⊂
M . Then M is a monotone class.

Remark 10.4. Recall each f non-negative, measurable function
can be approximated by an increasing sequence of non-negative,
simple, measurable functions. By linearity, Tonelli holds for these
approximations, hence Tonelli holds for f .
In the general case, X =

⋃
Xi, Y =

⋃
Yi, where Xi, Yi are expand-

ing sets of finite measures, then f |Xi×Yi satisfies Tonelli, hence so
does the limit f = f |X×Y .
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Theorem 10.4. FUBINI’S THEOREM
Let (X,S , µ) and (Y,T , ν) be σ-finite measures with product mea-
sure (X × Y,S × T , π) and f : X × Y → R be π-integrable, i.e.∫
f+ dπ,

∫
f− dπ <∞ implies

∫
|f | dπ <∞.

1. There is a set Y0 with ν(Y0) = 0, such that f(·, y) is µ-
integrable over X, ∀y ∈ Y \Y0.
Further, if f(·, y) := 0 on Y0 (or some other choice)

y 7→
∫
X

f(x, y) dµ(x)

is ν-integrable over Y , and∫
Y

(∫
X

f(x, y) dµ(x)

)
dν(y) =

∫
X×Y

f dπ(x, y)

2. If either of the iterated integrals∫
Y

(∫
X

|f | dµ

)
dν,

∫
X

(∫
Y

|f | dν

)
dµ

is finite, then ∫
Y

∫
X

f dµ dν =

∫
X

∫
Y

f dν dµ.

Example 10.2. It is not always possible to change the order of
integration
Let

f(x, y) :=
y2 − x2

(x2 + y2)2
,

∂

∂x

(
x

x2 + y2

)
= f(x, y).
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Example 10.3. σ-finite is necessary:
Let µ be Lebesgue measure on [0, 1], ν be counting measure on
[0, 1], let

f(x, y) :=

{
1, x = y

0, x 6= y

ν is not σ-finite and the iterated integrals are not the same.
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