MATHS 730 FC Lecture Notes March 5, 2014

1 Introduction

Definition. If A, B are sets and there exists a bijection $A \to B$, they have the same **cardinality**, which we write as |A|, #A. If there exists one-to-one map $A \to B$, then $|A| \le |B|$

Remark 1.1. $\lim_{n\to\infty} x_n = 0$ means that (x_n) diverges to ∞ : i.e. $\forall c > 0, \exists N \text{ such that } x_n > c, \forall n > N.$

Definition. Defined the **extended real numbers** to be $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\}$.

Remark 1.2. We have that $-\infty < x < \infty, \forall x \in \mathbb{R}$.

Recall. Each non-empty set $A \subset \mathbb{R}$ is either (a) Bounded above, in which it has a supremum $\sup(A)$, (b) A is unbounded above. In case (b) we will say supremum (in the extended sense) of A is ∞ and write $\sup(A) = \infty$.

Remark 1.3. Every non-empty subset of $\overline{\mathbb{R}}$ has a supremum in $\overline{\mathbb{R}}$. Every increasing sequence (x_n) in $\overline{\mathbb{R}}$ has a limit in $\overline{\mathbb{R}}$.

Definition. If (x_n) is a sequence of extended real numbers, we define the **limit superior** and the **limit inferior** of this sequence by

$$\overline{\lim} x_n = \limsup x_n = \inf_m \left(\sup_{n \ge m} x_n \right) = \lim_{m \to \infty} \sup_{n \ge m} x_n \in [-\infty, \infty],$$
$$\underline{\lim} x_n = \liminf x_n = \sup_m \left(\inf_{n \ge m} x_n \right) = \lim_{m \to \infty} \inf_{n \ge m} x_n \in [-\infty, \infty].$$

It is easy to check that

$$\liminf x_n \le \limsup x_n,$$

$$\liminf (-x_n) = -\limsup (x_n).$$

If the limit inferior and the limit superior are equal, then their value if called the **limit** of the sequence.

Theorem 1.1. Let (x_n) be a sequence in $\overline{\mathbb{R}}$. Then exists subsequences of (x_n) converging to $m = \liminf x_n, M = \limsup x_n$ (in the extedned sense). Further, if (x_{n_k}) is a convergent subsequence,

$$m \le \lim_{k \to \infty} x_{n_k} \le M.$$

MATHS 730 FC

Corollary 1.1. x_n converges if and only if $\limsup x_n = \liminf x_n$, in which case $x_n \to \limsup x_n$.

2 Measurable Functions

Definition 2.1. Let X be a non-empty set, A collection \mathscr{S} of subsets of X is said to be a σ -algebra (or a σ -field) if:

(i) \emptyset, X belong to \mathscr{S} .

(ii) If E belongs to \mathscr{S} , then the complement $\mathscr{C}(A) = \overline{A} = X \setminus E \in \mathscr{S}$.

(iii) If $(E_j) \in \mathscr{S}, \forall j \in \mathbb{N}$, then

$$\bigcup_{j=1}^{\infty} E_j \in \mathscr{S}.$$

Remark 2.1. \mathscr{S} is closed under countable intersection, this is easy to check using De Morgan.

Example 2.1. 1. $\mathscr{S} = \{\emptyset, X\}$ is the trivial σ -algebra.

- 2. $\mathscr{S} = \mathscr{P}(X)$ power set := collection of all subsets of X.
- 3. Let X be uncountable, $\mathscr{S} \coloneqq \{Y \subset X : Y \text{ or } X \text{ is countable} \}$.
- 4. If $\{\mathscr{S}_j\}$ are σ -algebra of subsets of X. Then $\cap_j \mathscr{S}_j$ is σ -algebra .

Definition. Let A be a nonempty collection of subsets of X. We observe that there is a smallest σ -algebra of subsets of X containing A. To see this, observe that the family of all subsets of X is a σ -algebra containing A and the intersection of all the σ -algebra containing A is also a σ -algebra containing A. This smallest σ -algebra is called the σ -algebra generated by \mathbf{A} , we denote it $\sigma(A)$.

Definition. Let (X, ρ) be a metric space (or topological space). Let A be the collection of all open subsets of X. Then σ -algebra generated by A is called the **Borel** σ -algebra and is denoted $\mathscr{B}(X)$.

Remark 2.2. Clearly the Borel σ -algebra is generated by all closed sets

MATHS 730 FC

Example 2.2. Let $X = \mathbb{R}$. The Borel σ -algebra is generated by all open intervals (a, b) in \mathbb{R} .

Remark 2.3. Extended Borel σ -algebra is generated by all open intervals in $\overline{\mathbb{R}}$, i.e.

$$(a,b), (a,\infty), (a,\infty], (-\infty,b), [-\infty,b), [-\infty,\infty].$$

Definition. A function $f : X \to Y$ between measurable spaces (X, \mathscr{S}) and (Y, \mathscr{T}) is **measurable** $((\mathscr{S}, \mathscr{T})$ -**measurable**) if

$$f^{-1}(A) \in \mathscr{S}, \quad \forall A \in \mathscr{T}$$

Definition. (Working Definition)

Let (X, \mathscr{S}) be a measurable space. Then $f : X \to \mathbb{R}$ or $\overline{\mathbb{R}}$ is \mathscr{S} -measurable is $\{x \in X : f(x) > \alpha\} \in \mathscr{S}, \forall \alpha \in \mathbb{R}.$

MATHS 730 FC

Lemma 2.1. The following statements are equivalent for a function f on X to \mathbb{R} : (a) For every $\alpha \in \mathbb{R}$, the set $A_{\alpha} = \{x \in X : f(x) > \alpha\}$ belongs to \mathscr{S} . (b) For every $\alpha \in \mathbb{R}$, the set $B_{\alpha} = \{x \in X : f(x) \le \alpha\}$ belongs to \mathscr{S} . (c) For every $\alpha \in \mathbb{R}$, the set $C_{\alpha} = \{x \in X : f(x) \ge \alpha\}$ belongs to \mathscr{S} . (d) For every $\alpha \in \mathbb{R}$, the set $D_{\alpha} = \{x \in X : f(x) < \alpha\}$ belongs to \mathscr{S} .

(e) f is \mathscr{S} -measurable.

Remark 2.4. Sets such as

$$\{x : f(x) = a\} = f^{-1}(\{a\})$$

$$\{x : a \le f(x) \le b\}$$

$$\{x : f(x) = \infty\}$$

$$\{x : f(x) \text{ is finite } \}$$

are all \mathscr{S} -measurable if f is \mathscr{S} -measurable.

Example 2.3. the characteristic function $f : \chi_E$ is \mathscr{S} -measurable if and only if $E \in \mathscr{S}$.

Example 2.4. Continuous functions are Borel measurable, i.e. if (X, \mathscr{S}) combines $\mathscr{B}(X)$ and (Y, \mathscr{T}) is $\mathscr{B}(Y)$, then $f : X \to Y$ measurable is continuous.

Lemma 2.2. Let (X, \mathscr{S}) be a measurable space, $E \in \mathscr{S}$. Then $f \to \overline{\mathbb{R}}$ is \mathscr{S} -measurable on X if and only if it is \mathscr{S} -measurable on E and $X \setminus E$.

MATHS 730 FC 4 LECTURE NOTES

Theorem 2.1. Every reasonable combination of measurable functions is measurable.

Let (X, \mathscr{S}) be a measurable space, $E \in \mathscr{S}$ and f, g, f_n, g_n be \mathscr{S} -measurable and $X \to \overline{\mathbb{R}}$ (or \mathbb{R}) on E. Then the following are \mathscr{S} -measurable on F. 1. $\alpha f, \frac{1}{f}, |f|^{\beta}, \ \alpha \in \overline{\mathbb{R}}, \beta \in \mathbb{R}$. 2. f + g, fg. 3. $\sup f_n, \inf f_n, \limsup f_n, \limsup f_n, \liminf f_n$.

4. f^-, f^+ .

3 Measure

Definition 3.1. Let (X, \mathscr{S}) be a measurable space. A function $\mu: X \to \overline{\mathbb{R}}$ is called a **measure**:

(i) $\mu(\emptyset) = 0,$

(ii) $\mu(E) \ge 0$ for all $E \in \mathscr{S}$,

(iii) μ is **countably additive** in the sense that if (E_n) is any disjoint sequence of sets in XS, then

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu\left(E_n\right).$$

We call (X, \mathscr{S}, μ) a measure space.

Definition. Let $X = \mathbb{N} = \{1, 2, 3, ...\}$ and let \mathscr{S} be the σ -algebra of all subsets of \mathbb{N} . If $E \in \mathscr{S}$, defined

$$\mu(E) \coloneqq \begin{cases} |E|, & \text{if } E \text{ if finite} \\ \infty, & \text{if } E \text{ is infinite.} \end{cases}$$

Then μ is a measure and is called the **counting measure on** N. Note that μ is not finite, but it is σ -finite. Also, integrals for this measure are sums. **Definition.** Let (x_n) be a sequence in X. (p_n) be a sequence in $[0, \infty)$. Define μ on (X, \mathscr{S}) by

$$\mu(E) \coloneqq \sum_{\{n:x_n \in E\}} p_n,$$

then this is the **discrete measure**

Definition. Special case of discrete measure: Let X be any nonempty set, let \mathscr{S} be the σ -algebra of all subsets of X and let p be a fixed element of X. Let μ be defined for $E \in \mathscr{S}$ by

$$\mu(E) = 0, \qquad \text{if } p \notin E,$$

= 1, \qquad \text{if } p \in E.

then μ is a finite measure and is called the **unit measure con**centrated at **p** or **Durac-delta measure**.

Definition. There exists a measure space $(\mathbb{R}, \mathscr{L}, m)$ with $\mathscr{L} \supset \mathscr{B}(\mathbb{R})$ such that m is translation invariant and m(I) = b - a where I is the interval with endpoints a and b. This measure is unique and is usually called **Lebesgue** (or **Borel**) measure. It is not a finite measure, but it is σ -finite.

Lemma 3.1. \mathscr{L} cannot be all of $\mathscr{P}(\mathbb{R})$.

Definition. If $X = \mathbb{R}$, $\mathscr{S} = \mathscr{B}$, and f is a continuous monotone increasing function, then there exists a unique measure λ_f defined on \mathscr{B} such that if E = (a, b), then $\lambda_f(E) = f(b) - f(a)$. This measure λ_f is called the **Borel-Stieltjes measure generated by f**.

Remark 3.1. If $E \subseteq F, E, F, \in \mathscr{S}$, then (a) $\mu(E) \leq \mu(F)$, (b) If $\mu(F) < \infty$, then $\mu(E) = \mu(F) - \mu(F \setminus E)$.

MATHS 730 FC

Definition. Let (X, \mathscr{S}, μ) be a measure space. We say $E \subset X$ is a **null set** or a **set of measure zero** if $E \subset F \in \mathscr{S}, \mu(F) = 0$. These sets can be ignored for integration.

Definition. We say a certain proposition holds μ -almost everywhere, almost everywhere, or for almost all, etc, if there exists a subset $F \in \mathscr{S}$ with $\mu(F) = 0$ such that the proposition holds on the complement of F.

Example 3.1. For Lebesgue measure m on \mathbb{R} , $m(\{a\}) = m([a, b]) - m((a, b]) = 0$ so countable subsets of \mathbb{R} have Lebesgue measure zero.

Definition. We say that two functions f, g are equal μ -almost everywhere or that they are equal for μ -almost all x in case f(x) = f(x) when $x \notin N$, for some $N \in \mathscr{S}$ with $\mu(N) = 0$. In this case we will often write

$$f = g, \mu$$
-a.e.

Definition. We say that a sequence (f_n) of functions on X converges μ -almost everywhere (or converges for μ -almost all **x**) if there exists a set $N \in \mathscr{S}$ with $\mu(N) = 0$ such that $f(x) = \lim f_n(x)$ for $x \notin N$. In this case we often write

$$f = \lim f_n, \mu$$
-a.e.

Definition. If $\{E_n\}$ be a sequence of subsets of X we say $\{E_n\}$ is **expanding** (or **increasing**) if

$$E_{n+1} \supset E_n,$$

and is **contracting** (or **decreasing**) if

$$E_{n+1} \subset E_n$$

Lemma 3.2. Let (X, \mathscr{S}, μ) be a measure space, let (E_n) be a sequence in \mathscr{S} , then (a) If (E_n) is expanding, then

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n)$$

without restriction.

(b) If (E_n) is decreasing and $\mu(E_1) < \infty$ then

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n)$$

Example 3.2. The condition $\mu(E_1) < \infty$ is necessary. Take $E_n = [n, \infty) \in \mathbb{R}$ with Lebesgue measure, (E_n) contracting with $m(E_n) = \infty$.

4 The Integral

Definition 4.1. A real valued function is **simple** if it has only a finite number of values.

Remark 4.1. A simple measurable function u can be represented in the form

$$u = \sum_{k=1}^{n} a_k \chi_{A_k},$$

where $a_k \in \mathbb{R}$ and

$$\bigcup_{k=1}^{n} A_k = E, \quad A_k \subset E \ \forall k.$$

Definition. Among these representations for u there is a unique **standard representation** characterized by the fact that the a_k are distinct and the A_k are disjoint nonempty subsets of E and are such that $E = \bigcup_{k=1}^{n} A_k$.

MATHS 730 FC

Theorem 4.1. (Approximation by simple functions)

Let (X, \mathscr{S}) be a measurable space. If f is non-negative \mathscr{S} -measurable. Then there is an increasing sequence of non-negative simple measurable function u_n with

$$\lim_{n \to \infty} u_n = f \quad \text{(pointwise)}$$

Definition. For a measurable space (X, \mathscr{S}, μ) , let $M^+(X, \mathscr{S})$ be the set of non-negative \mathscr{S} -measurable functions on X.

Definition. If $f \in M^+(X, \mathscr{S})$ is simple, then we define its **inte**gral to be

$$\int f, \int_X f \, \mathrm{d}\mu, \int_X f(x) \, \mathrm{d}\mu(x) \coloneqq \sum_{j=1}^n \alpha_j \mu(A_j)$$

where

$$f = \sum_{j=1}^{n} \alpha_j \chi_{A_j}$$

is the standard form of f.

With the convention $0 \times \infty \approx 0$, that is, if $\alpha_k = 0, \mu(A_k) = \infty$, then $\alpha_i \mu(A_k) = 0.$

Lemma 4.1. If $u, v \in M^+(X, \mathscr{S})$ are simple, $0 \le c < \infty$, then (a) $\int_X c u \, d\mu = c \int_X u \, d\mu$, $\int_X (u+v) \, d\mu = \int_X u \, d\mu + \int_X v \, d\mu$. (b) If define λ by

$$\lambda(E) \coloneqq \int u\chi_E \,\mathrm{d}\mu, \ E \in \mathscr{S},$$

then λ is a measure on \mathscr{S} .

Definition. Let $f \in M^+(X, \mathscr{S})$, define the integral of f over Xto be

$$\int_X f \, \mathrm{d}\mu \coloneqq \sup\left\{\int u \, \mathrm{d}\mu : u \in M^+(X,\mathscr{S}), 0 \le u \le f, u \text{ simple}\right\}$$

is well defined (may be ∞) and ≥ 0

is well defined (may be ∞) and ≥ 0 .

Definition. $E \in \mathscr{S}$, then for $f \in M^+(X, \mathscr{S})$

$$\int_E f \,\mathrm{d}\mu \coloneqq \int_X f\chi_E \,\mathrm{d}\mu$$

Lemma 4.2. (Monotonicity of the integral) If f and g belong to $M^+(X, \mathscr{S}), E, F \in \mathscr{S}$, then (a) If $f \leq g$ on E, then

$$\int_E f \,\mathrm{d}\mu \le \int_E g \,\mathrm{d}\mu.$$

(b) If $E \subseteq F$, then

$$\int_E f \,\mathrm{d}\mu \le \int_F f \,\mathrm{d}\mu.$$

Theorem 4.2. MONOTONE CONVERGENCE THEOREM) If (f_n) is a monotone increasing sequence of functions in $M^+(X, \mathscr{S})$, then

$$\int_X \left(\lim_{n \to \infty} f_n\right) \, \mathrm{d}\mu = \lim \int_X f_n \, \mathrm{d}\mu.$$

Corollary 4.1. If (f_n) is a monotone increasing sequence of functions in $M^+(X, \mathscr{S})$ which converges μ -almost everywhere on X to a function f in M^+ , then

$$\int f \,\mathrm{d}\mu = \lim \int f_n \,\mathrm{d}\mu.$$

Corollary 4.2. Let (g_n) be a sequence in M^+ , then

$$\int \left(\sum_{n=1}^{\infty} g_n\right) \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \left(\int g_n \, \mathrm{d}\mu\right).$$

Remark 4.2. It should be observed that it is not being assumed that either side of the equation is finite. Indeed, the sequence $(\int f_n d\mu)$ is a monotone increasing sequence of extended real numbers and so always has a limit in $\overline{\mathbb{R}}$, but perhaps not in \mathbb{R} .

Recall. For Riemann integrals the Monotone Convergence Theorem fails

$$f_n \coloneqq \chi_{\{q_1,\dots,q_n\}}, \ q_n \in \mathbb{Q}$$

is increasing with $\lim f_n = \chi_{\mathbb{Q}}$, $\lim_{n \to \infty} \int f_n(x) \, \mathrm{d}x = 0$, but $f = \chi_{\mathbb{Q}}$ is not Riemann integrable.

Theorem 4.3. (Linearity of Integral) Let $f, g \in M^+(X, \mathscr{S})$ and $\alpha, \beta \in [0, \infty)$. Then

$$\int_X (\alpha f + \beta g) \, \mathrm{d}\mu = \alpha \int_X f \, \mathrm{d}\mu + \beta \int_X g \, \mathrm{d}\mu.$$

Lemma 4.3. FATOU'S LEMMA

If (f_n) belongs to $M^+(X, \mathscr{S})$, then

$$\int_X (\liminf f_n) \, \mathrm{d}\mu \le \liminf \int_X f_n \, \mathrm{d}\mu$$

Remark 4.3. We do not need to worry about whether functions are increasing or not.

Remark 4.4. Discrete version:

$$f_n = \left(\begin{array}{c} a_n \\ b_n \end{array}\right).$$

Then we have

 $\liminf a_n + \liminf b_n \le \liminf (a_n + b_n).$

Remark 4.5. The inequality can be strict in Fatou's Lemma

MATHS 730 FC

Example 4.1. Suppose $f_n \in M^+(X, \mathscr{S}), f_n \to f, f_n \leq f$ then $\int f_n d\mu \to \int f d\mu$.

Theorem 4.4. Let $f \in M^+(X, \mathscr{S})$ and

$$\nu(E) \coloneqq \int_E f \, \mathrm{d}\mu$$
$$= \int_X f \chi_E \, \mathrm{d}\mu,$$

then ν is the measure on (X, \mathscr{S}) .

Theorem 4.5. Suppose that f belongs to $M^+(X, \mathscr{S})$. Then f(x) = 0 μ -almost everywhere on X if and only if

$$\int_X f \,\mathrm{d}\mu = 0.$$

Theorem 4.6. Let $f, g \in M^+(X, \mathscr{S})$, then (i) If $f \leq g \mu$ -a.e. on X then

$$\int_X f \,\mathrm{d}\mu \le \int_X g \,\mathrm{d}\mu.$$

(ii) If $f = g \mu$ -a.e. on X then

$$\int_X f \,\mathrm{d}\mu = \int_X g \,\mathrm{d}\mu.$$

5 Integrable Functions

Definition 5.1. The collection $L = L_1(X, \mathscr{S}, \mu)$ of **integrable** (or **summable**) **functions** consists of all (extended) real-valued \mathscr{S} -measurable functions f defined on X, such that both the positive and negative parts f^+, f^- , of f have finite integrals with respect to μ . In this case, we define the **integral of f over X with respect to** μ to be

$$\int_X f \,\mathrm{d}\mu = \int_X f^+ \,\mathrm{d}\mu - \int_X f^- \,\mathrm{d}\mu.$$

If E belongs to \mathscr{S} , we define

$$\int_E f \,\mathrm{d}\mu = \int_E f^+ \,\mathrm{d}\mu - \int_E f^- \,\mathrm{d}\mu.$$

Recall.

$$f^+ = \max \{f(x), 0\}, \quad f^- = \max \{-f(x), 0\}, \quad f = f^+ - f^-, \quad |f| = f^+ + f^-$$

Theorem 5.1. Let f be measurable, then $f \in L_1(X, \mathscr{S}, \mu)$ if and only if $|f| \in L_1(X, \mathscr{S}, \mu)$. i.e. |f| has finite integral. Moreover,

$$\left| \int_X f \, \mathrm{d}\mu \right| \le \int_X |f| \, \mathrm{d}\mu.$$

Lemma 5.1. If $f \in L(X, \mathscr{S}, \mu)$, then (i) f is finite-valued a.e. (ii) If

$$\tilde{f}(x) \coloneqq \begin{cases} f(x), & f(x) \in \mathbb{R} \\ 0, & \text{otherwise.} \end{cases}$$

Then $\tilde{f} \in L(X, \mathscr{S}, \mu)$ and

$$\int_X \tilde{f} \,\mathrm{d}\mu = \int_X f \,\mathrm{d}\mu.$$

MATHS 730 FC

Theorem 5.2. Linearity of integral

If $f, g \in L(X, \mathscr{S}, \mu)$ 1 and $\alpha \in \mathbb{R}$, then $\alpha f, f + g \in L_1(X, \mathscr{S}, \mu)$ and

$$\int_X \alpha f \, \mathrm{d}\mu = a \int_X f \, \mathrm{d}\mu, \quad \int_X (f+g) \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu + \int_X g \, \mathrm{d}\mu.$$

Theorem 5.3. (i) If g is measurable, $f \in L(X, \mathscr{S}, \mu)$ and $g = f \mu$ -a.e. then $g \in L(X, \mathscr{S}, \mu)$ and

$$\int_X g \,\mathrm{d}\mu = \int_X f \,\mathrm{d}\mu.$$

(ii) If $f, g \in L(X, \mathscr{S}, \mu), f \leq g \mu$ -a.e. on X then

$$\int_X f \,\mathrm{d}\mu \le \int_X g \,\mathrm{d}\mu.$$

Theorem 5.4. LEBESGUE DOMINATED CONVERGENCE THEOREM Suppose $f_n \in L(X, \mathscr{S}, \mu)$, $\forall n$ and $f_n \to f \mu$ -a.e. on X. If there exists a $g \in L(X, \mathscr{S}, \mu)$ (dominating function) such that $|f_n| \leq g$ for all n, then $f \in L(X, \mathscr{S}, \mu)$ and

$$\int_X f \,\mathrm{d}\mu = \int_X \lim_{n \to \infty} f_n \,\mathrm{d}\mu = \lim_{n \to \infty} \int_X f_n \,\mathrm{d}\mu.$$

MATHS 730 FC

6 The Lebesgue Spaces L_p

Definition 6.1. If V is a real linear (= vector) space, then a realvalued function $\|\cdot\|$ on V is said to be a **norm** for V in case it satisfies

(i) $||v|| \ge 0$ for all $v \in V$;

(ii) ||v|| = 0 if and only if v = 0;

(iii) $\|\alpha v\| = |\alpha| \|v\|$ for all $v \in V$ and real α ;

(iv) $||u+v|| \le ||u|| + ||v||$ for all $u, v \in V$.

If condition (ii) is dropped, the function $\|\cdot\|$ is said to be a **semi-norm** or a **pseudo-norm** for V. A **normed linear space** is a linear space V together with a norm for V.

Definition. We say \mathscr{S} -measurable functions f and g are μ -equivalent if $f = g \mu$ -a.e. on X.

Remark 6.1. This is an equivalence relation

Definition. We denote the equivalence classes for this relation by

$$[f] := \{g : f = g \ \mu\text{-a.e.} \} \\= \{f + g : g = 0 \ \mu\text{-a.e.} \}$$

Remark 6.2. On these equivalence classes we can define $+, \cdot$.

$$[f] + [g] = [f + g], \quad \alpha [f] = [\alpha f].$$

Ultimately, this gives a vector space with zero [0] = [f + (-f)].

Definition. On the μ -equivalence classes we can define a **norm** for $1 \le p < \infty$ by

$$\left\| [f] \right\|_p \coloneqq \left(\int_X \left| f \right|^p \, \mathrm{d}\mu \right)^{1/p},$$

this normed is well-defined with values in $[0, \infty]$.

Definition. Key for L_p spaces

We define $L_p(\mu)$ to be the set of all μ -equivalence classes of \mathscr{S} -measurable functions for which

$$\left\| [f] \right\|_p \coloneqq \left(\int_X \left| f \right|^p \, \mathrm{d}\mu \right)^{1/p} < \infty$$

Claim. $L_p(X, \mathscr{S}, \mu)$ is a vector space. Check $L_p(\mu)$ is a vector space:

Recall. If $A, B \ge 0, q \le p < \infty$ then

$$AB \leq \frac{A^p}{p} + \frac{B^q}{q},$$

where q is the **conjugate exponent** to p. i.e. $\frac{1}{p} + \frac{1}{q} = 1$.

Theorem 6.1. HÖLDER'S INEQUALITY Fix (X, \mathscr{S}, μ) . Let p and q be conjugate exponents $(1 \le p < \infty)$. If f, g are measurable, then $fg \in L_1$ and

$$\int_X |fg| \, \mathrm{d}\mu \le \left(\int_X |f|^p \, \mathrm{d}\mu\right)^{1/p} \left(\int_X |g|^q \, \mathrm{d}\mu\right)^{1/q}$$

i.e. $\|fg\|_1 \le \|f\|_p \|g\|_q$.

Remark 6.3. We may have $||fg||_1$, $||f||_p$, $||g||_q$ be ∞ .

Corollary 6.1. $f \in L_p, g \in L_q$ then $fg \in L_1$.

Theorem 6.2. CAUCHY-BUNYAKOVSKIĬ-SCHWARZ INEQUALITY $f, g \in L_2$ then $fg \in L_1$ and

$$\langle f,g \rangle = \left| \int_X fg \,\mathrm{d}\mu \right| \le \int_X |fg| \,\mathrm{d}\mu \le \|f\|_2 \,\|g\|_2 \,.$$

Definition. $L_p(\mu) \coloneqq \mu$ -equivalences of \mathscr{S} -measurable functions f with

$$\|f\|_p = \left(\int_X |f|^p \, \mathrm{d}\mu\right)^{1/p} < \infty$$

Theorem 6.3. MINKOWSKI'S INEQUALITY If f and g belong to $L_p, p \ge 1$, then f + g belongs to L_p and

$$||f+g||_p \le ||f||_p + ||g||_p.$$

MATHS 730 FC

Claim. $L_p(\mu)$ is a Banach space.

7 Modes of Convergence

Definition. The sequence (f_n) converges uniformly to f if $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that if $n \geq N$ and $x \in X$, then $|f_n(x) - f(x)| < \varepsilon$. i.e. $||f_n - f||_{\infty} < \varepsilon, \forall n > N$.

Definition. The sequence (f_n) converges pointwise to f if $\forall x \in X, \varepsilon > 0, \exists N \coloneqq N_{\varepsilon}(x) \in \mathbb{N}$, such that if $n \ge N_{\varepsilon}(x)$, then $|f_n(x) - f(x)| < \varepsilon$.

That is, we need different N for different x, clearly uniform convergence implies pointwise convergece. The two are equivalent if we have continuous functions on compact set.

Example 7.1. Let $f_n = \chi_{[n,n+1]}$, then f is continuous pointwise but not uniformly.

Remark 7.1. The usual interpretation of convergence is pointwise.

Definition. The sequence (f_n) converges (pointwise) μ almost everywhere to f if there exists a set $E \in \mathscr{S}$ with $\mu(X \setminus E) = 0$ such that $(f_n|_E)$ converges pointwise to $f|_E$.

Example 7.2. Let $f_n = n\chi_{\mathbb{Q}} = 0$, μ -a.e. but converging at the point of rationals.

7.1 Convergence in L_p

Definition. A sequence (f_n) in $L_p = L_p(X, \mathscr{S}, \mu)$ converges in \mathbf{L}_p to $f \in L_p$, if $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that if $n \ge N$, then

$$||f_n - f||_p = \left\{ \int |f_n - f|^p \, \mathrm{d}\mu \right\}^{1/p} < \varepsilon$$

In this case, we sometimes say that the sequence (f_n) converges to f in mean (of order p).

MATHS 730 FC 17 LECTURE NOTES

Example 7.3. Define with Lebesgue measure

$$f_n = \frac{1}{n^{1/p}} \chi_{[0,n]},$$

then $f_n \to f = 0$ uniformly, but not in L_p since

$$||f_n - f||_p = \left(\int_0^n \left(\frac{1}{n^{1/p}}\right)^p dx\right)^{1/p} = 1 \nrightarrow 0.$$

Remark 7.2. Uniform convergence does not imply convergence in L_p unless measure is finite. e.g. $\mu(X) < \infty$.

Definition. A sequence (f_n) in L_p is said to be **Cauchy in L_p**, if $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that if $m, n \geq N$, then

$$\left\|f_m - f_n\right\|_p = \left\{\int \left|f_m - f_n\right|^p \,\mathrm{d}\mu\right\}^{1/p} < \varepsilon$$

Theorem 7.1. Suppose that $\mu(X) < +\infty$ and that (f_n) is a sequence in L_p which converges uniformly on X to f. Then f belongs to L_p and the sequence (f_n) converges in L_p to f.

Example 7.4. Let $f_n = n^{1/p} \chi_{\left[\frac{1}{n}, \frac{2}{n}\right]}, f_n : [0, 2] \to \mathbb{R}$, then $f_n \to 0$ pointwise but not in L_p .

7.2 Convergence in Measure

Definition 7.1. A sequence (f_n) of measurable real-valued functions is said to **converge in measure** to a measurable real-valued function f in case

$$\lim_{n \to \infty} \mu\left(\left\{x \in X : \left|f_n\left(x\right) - f\left(x\right)\right| \ge \varepsilon\right\}\right) = 0$$

for each $\varepsilon > 0$. The sequence (f_n) is said to be **Cauchy in measure** in case

$$\lim_{m,n\to\infty}\mu\left(\left\{x\in X:\left|f_{n}\left(x\right)-f_{n}\left(x\right)\right|\geq\varepsilon\right\}\right)=0$$

for each $\varepsilon > 0$.

MATHS 730 FC

Remark 7.3. Clearly, uniform convergence implies convergence in measure.

Example 7.5. Let $f_n = \chi_{[n,n+1]}$. Then $f_n \to 0$ pointwise but it does not converge in measure.

8 Decomposition of Measures

Definition. If μ is a measure, $f \in M^+(X, \mathscr{S})$ then

$$\lambda(E) \coloneqq \int_E f \,\mathrm{d}\mu,$$

defines a measure with $\mu(E) = 0$ implies $\lambda(E) = 0$, and we say λ is absolutely continuous with respect to μ , and write $\lambda \ll \mu$.

Definition 8.1. Let (X, \mathscr{S}) be a measurable space, then a realvalued function $\lambda : \mathscr{S} \to \mathbb{R}$ is said to be a **charge** in case (i) $\lambda(\emptyset) = 0$,

(ii) λ is countably additive in the sense that if (E_n) is a disjoint sequence of sets in \mathscr{S} , then

$$\lambda\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \lambda\left(E_n\right).$$

Example 8.1. • A finite measure is a charge

• If $f \in L_1(X, \mathscr{S}, \mu)$, $\lambda(E) \coloneqq \int_E f \, d\mu$ is a charge.

Definition. • We say $P \in \mathscr{S}$ is **positive** if $\lambda(P \cap E) \ge 0, \forall E \in \mathscr{S}$.

- We say $N \in \mathscr{S}$ is **negative** if $\lambda(N \cap E) \leq 0, \forall E \in \mathscr{S}$.
- We say $K \in \mathscr{S}$ is **null** if $\lambda(K \cap E) = 0, \forall E \in \mathscr{S}$.

Theorem 8.1. HAHN DECOMPOITION THEOREM

If λ is a charge on \mathscr{S} , then there exist set P and N in \mathscr{S} with $X = P \cup N, P \cap N = \emptyset$, and such that P is positive and N is negative with respect to λ .

Example 8.2. If $f \in L_1(X, \mathscr{S}, \mu), \lambda(E) \coloneqq \int_E f \, d\mu$, then

$$P = \{x : f^+(x) > 0\}$$
$$N = \{x : f^-(x) < 0\}$$
$$K = \{x : f(x) = 0\}$$

Definition. A pair P, N of measurable sets satisfying the conclusion of the preceding theorem is said to form a **Hahn decomposition** of X with respect to λ .

Lemma 8.1. If P_1, N_1 and P_2, N_2 are Hahn decomposition for λ , and E belongs to \mathscr{S} , then

$$\lambda (E \cap P_1) = \lambda (E \cap P_2), \quad \lambda (E \cap N_1) = \lambda (E \cap N_2).$$

Definition 8.2. Let λ be a charge on \mathscr{S} and let P, N be a Hahn decomposition for λ . The **positive** and the **negative variations** of λ are the finite measures λ^+, λ^- defined on E in \mathscr{S} by

$$\lambda^{+}(E) \coloneqq \lambda(E \cap P), \quad \lambda^{-}(E) \coloneqq -\lambda(E \cap N).$$

The **total variation** of λ is the measure $|\lambda|$ defined for E in \mathscr{S} by

$$\left|\lambda\right|(E) \coloneqq \lambda^{+}(E) + \lambda^{-}(E)$$

Remark 8.1.

$$\lambda(E) = \lambda^+(E) - \lambda^-(E),$$

and $|\lambda|, \lambda^+, \lambda^-$ are finite measures.

Theorem 8.2. If f belongs to $L_1(X, \mathscr{S}, \mu)$ and λ is defined by

$$\lambda\left(E\right) = \int_{E} f \,\mathrm{d}\mu,$$

then λ^+, λ^- , and $|\lambda|$ are given for E in \mathscr{S} by

$$\lambda^{+}(E) = \int_{E} f^{+} d\mu, \quad \lambda^{-}(E) = \int_{E} f^{-} d\mu, \quad |\lambda|(E) = \int_{E} |f| d\mu.$$

Definition 8.3. A measure λ on \mathscr{S} is said to be **absolutely continuous** with respect to a measure μ on \mathscr{S} if $E \in \mathscr{S}$ and $\mu(E) = 0$ imply that $\lambda(E) = 0$. In this case we write $\lambda \ll \mu$. A charge λ is **absolutely continuous** with respect to a charge μ in case the toal variation $|\lambda|$ of λ is absolutely continuous with respect to $|\mu|$.

Lemma 8.2. Let λ and μ be finite measure on \mathscr{S} . The $\lambda \ll \mu$ if and only if $\forall \epsilon > 0, \exists \delta > 0$ such that $E \in \mathscr{S}$ and $\mu(E) < \delta$ imply that $\lambda(E) > \varepsilon$.

MATHS 730 FC

Theorem 8.3. RADON-NIKODÝM THEOREM

Let λ and μ be σ -finite measures defined on \mathscr{S} and suppose that λ is absolutely continuous with respect to μ . Then there exists a function f in $M^+(X, \mathscr{S})$ such that

$$\lambda(E) = \int_E f \,\mathrm{d}\mu, \quad E \in \mathscr{S}.$$

Moreover, the function f is uniquely determined $\mu\text{-almost}$ everywhere.

Sometimes f is denoted

$$f = \frac{\mathrm{d}\lambda}{\mathrm{d}\mu}$$

which is called the **Radon-Nikodým derivative**.

Remark 8.2. f need not be integrable.

Definition 8.4. Two measures λ, mu on \mathscr{S} are said to be **mutually singular** if there are disjoint sets A, B in \mathscr{S} such that $X = A \cup B$ and $\lambda(A) = \mu(B) = 0$. In this case we write $\lambda \perp \mu$. Although the relation of singularity is symmetric in λ and μ , we shall sometimes say that λ is **singular with respect to** μ .

Theorem 8.4. LEBESGUE DCOMPOSITION THEOREM Let λ, μ be σ -finite measures, then λ can be uniquely decomposed

$$\lambda = \lambda_1 + \lambda_2,$$

with $\lambda_1 \perp \mu, \lambda_2 \ll \mu$.

9 Generation of Measures

Definition. It is natural to define the length of the half-open interval (a, b] to be the real number b - a and the length of the sets $(-\infty, b] = \{x \in \mathbb{R} : x \leq b\}$, and $(a, +\infty) = \{x \in \mathbb{R} : a < x\}$, and $(-\infty, +\infty)$ to be the extended real number $+\infty$. We define the

MATHS 730 FC

length of the union of a finite number of disjoint sets of these forms to be the sum of the corresponding length. Thus the length of

$$\bigcup_{j=1}^{n} (a_j, b_j] \quad \text{is} \quad \sum_{j=1}^{n} (b_j - a_j)$$

provided the intervals do not intersect.

Remark 9.1. It is intuitive to give Lebesgue measure by

$$m^*(E) \coloneqq \inf \left\{ \sum_{j=1}^{\infty} m(I_j) : I_j \text{ is an interval } E \subset \bigcup_{j=1}^{\infty} I_j \right\}.$$

Then m^* is well defined for all $E \subset \mathbb{R}$, however, this is not a measure, namely, it does not necessarily have countable additivity. However, by Carathéodory Extension Theorem we can restrict m^* to a (large) σ -algebra of m^* -measurable sets, then it will be a measure.

Definition 9.1. A family \mathscr{S} of subsets of a set X is said to be an **algebra** or a **field** in case:

(A1) $\emptyset, X \in \mathscr{S}$. (A2) $E \in \mathscr{S}$ implies $X \setminus E \in \mathscr{S}$. (A3) If $E_1, \ldots, E_n \in \mathscr{S}$ implies $\bigcup_{j=1}^n E_j \in \mathscr{S}$.

Remark 9.2. Clearly, by De Morgan, algebra is closed under finite unions and finite intersections.

Example 9.1. Let J consists of all finite unions of intervals in \mathbb{R} , then this is an algebra.

Example 9.2. Let \mathscr{S} be finite disjoint unions of intervals open on the left and closed on the right. This is also an algebra.

Definition 9.2. If \mathscr{A} is an algebra of subsets of a set X, then a **measure** on \mathscr{A} is $\mu_0 : \mathscr{A} \to \overline{\mathbb{R}}$ such that (MA1) $\mu_0(\emptyset) = 0$, (MA2) $\mu_0(E) \ge 0$ for all $E \in \mathscr{A}$, and (MA3) If $(E_n) \in \mathscr{A}$ disjoint and $\bigcup_{n=1}^{\infty} E_n \in \mathscr{A}$, then

$$\mu_0\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu_0\left(E_n\right).$$

MATHS 730 FC

Example 9.3. On J for $A = \bigcup_{j=1}^{\infty} I_j$ (disjoint union of intervals I_j),

$$\mu_0(A) \coloneqq \sum_{j=1}^n m(I_j),$$

where $m(I_j)$ is the length of the interval, then this is a measure on the algebra J.

9.1 The Extension of Measures

Definition 9.3. An outer measure on X is $\mu^* : \mathscr{P}(X) \to \overline{\mathbb{R}}$ such that

(OM1) $\mu^*(\emptyset) = 0$,

(OM2) $E_1 \subset E_2 \subset X$ implies that $\mu^*(E_1) \leq \mu^*(E_2)$,

(OM3) If (E_n) is an arbitrary sequence of subsets of X, then it satisfy countably subadditivity,

$$\mu^*\left(\bigcup_{n=1}^{\infty} E_n\right) \le \sum_{n=1}^{\infty} \mu^*(E_n).$$

Lemma 9.1. The function μ^* defined by

$$\mu^*(B) = \inf \sum_{j=1}^{\infty} \mu(E_j)$$

satisfies the following:

- (a) $\mu^*(\emptyset) = 0.$
- (b) $\mu^*(B) \ge 0$, for $B \subseteq X$.
- (c) If $A \subseteq B$, then $\mu^*(A) \leq \mu^*(B)$.
- (d) If $B \in \mathscr{A}$, then $\mu^*(B) = \mu(B)$.
- (e) If (B_n) is a sequence of subsets of X, then

$$\mu^*\left(\bigcup_{n=1}^{\infty} B_n\right) \le \sum_{n=1}^{\infty} \mu^*\left(B_n\right).$$

This final property is referred to by saying that μ^* is **countably** subadditive.

Lemma 9.2. If μ_0 is a measure on an \mathscr{A} of subsets of X. Then

$$\mu^*(E) \coloneqq \inf\left\{\sum_{j=1}^\infty \mu_0(A_j) : A_j \in \mathscr{A}, E \subset \bigcup_{j=1}^\infty A_j\right\}$$

is an outer measure on X.

Definition 9.4. Let μ^* be an outer measure. Then $E \subset X$ is μ^* -measurable if

$$\mu^*\left(Q\right) = \mu^*\left(Q \cap E\right) + \mu^*\left(Q \backslash E\right), \quad \forall Q \subset X.$$

Theorem 9.1. CARATHÉODORY EXTENSION THEOREM IF μ^* is an outer measure on $X, \mathscr{S} \coloneqq$ all μ^* -measurable sets then (X, \mathscr{S}) is a measurable space, and the restriction of μ^* to \mathscr{S} is a complete measure. Moreover, if (E_n) is a disjoint sequence in \mathscr{S} , then

$$\mu^*\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu^*\left(E_n\right).$$

Remark 9.3. Complete in this case means all null sets are measurable, that is, if $E \in \mathscr{S}, \mu(E) = 0$, then $F \subset E$ implies $F \in \mathscr{S}$.

9.2 Lebesgue Measure

Definition. Let set \mathscr{A} be all subsets of \mathbb{R} of the form of a finite union of sets of the form

$$(a,b], (-\infty,b], (a,+\infty), (-\infty,+\infty),$$

then \mathscr{A} is an algebra of subsets of \mathbb{R} and the length function $\mu_0 = l$ gives a measure on this algebra \mathscr{A} . We call m_0 the **Lebesgue** measure on \mathscr{A} .

MATHS 730 FC 24 LECTURE NOTES

Definition. The restriction of Lebesgue measure to the Borel sets is called either **Borel** or **Lebesgue measure**.

Theorem 9.2. There exists a complete measure space $(\mathbb{R}, \mathscr{L}, m)$ with $\mathscr{B} \subset \mathscr{L}$

1. $m(\{x\}) = 0, x \in \mathbb{R},$

2. for
$$a < b, m((a, b)) = m((a, b]) = m([a, b)) = m([a, b]) = b - a$$
,

- 3. for $a \in \mathbb{R}$, $m((a, \infty)) = m([a, \infty)) = m((-\infty, a)) = m((-\infty, a)) = m(\mathbb{R}) = \infty$,
- 4. If f is integrable over interval I with endpoints a and b in $\overline{\mathbb{R}}$, then f is integrable over all intervals with these endpoints and we denoted it by

$$\int_{a}^{b} f(x) \, \mathrm{d}x \text{ or } \int_{a}^{b} f(x) \, \mathrm{d}x$$

Theorem 9.3. Translation invariance If $E \in \mathscr{L}, x \in \mathbb{R}$ then $E + x \in \mathscr{L}$ and m(E + x) = m(E).

Theorem 9.4. If $E \in \mathscr{L}$, then

1.
$$m(E) = \inf \{m(U) : U \text{ is open}, E \subset U\}$$
 (outer regular),

2. $m(E) = \sup \{m(K) : K \text{ is compact}, K \subset E\}$ (inner regular).

MATHS 730 FC

Theorem 9.5. LUSIN

Let $f : \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable which is zero outside a set of finite measure. Then $\forall \varepsilon > 0$, exists g continuous with compact support such that

$$m(\{: f(x) \neq g(x)\}) < \varepsilon, \quad \sup |g| \le \sup |f|.$$

Theorem 9.6. If f is Lebesgue measurable, exists g Borel measurable with f = g *m*-a.e.

Example 9.4. Lebesgue-Stieltjes measure

Let g be increasing, right continuous, so

$$g(c) = \lim_{h \to 0^+} g(c+h),$$

and define $m_g((a, b]) = g(b) - g(a)$, we have

$$m_g(\{c\} = \text{ jump at } c = g(c) - \lim_{x \to c^-} g(x).$$

Theorem 9.7. RIESZ REPRESENTATION THEOREM

If $\lambda : [a, b] \to \mathbb{R}$ is a bounded positive functional, then exists a (Lebesgue-Stieltjes) measure μ_g (defined on the Borel σ -algebra) with

$$\lambda(f) = \int_{a}^{b} f \,\mathrm{d}\mu_{g}, \quad \forall f \in C[a, b], \text{ and}$$
$$\|\lambda\| = \sup_{\|f\|_{\infty} = 1} \left| \int_{a}^{b} f \,\mathrm{d}\mu_{g} \right| = \mu_{g}\left([a, b]\right).$$

26

Remark 9.4. $\lambda \in (C[a, b])^*$, λ is positive if $f \ge 0$, hence $\lambda f \ge 0$. λ looks like

$$\lambda(f) = \sum_{j=1}^{\infty} a_j f(c_j) + \int_a^b f\omega,$$

where $f(c_j)$ is the jump of f at point c_j , ω is the weight function, absolutely continuous with respect to Lebesgue measure m.

10 Product Measure

Definition. Let X and Y be two sets; then the **Cartesian prod**uct $Z = X \times Y$ is the set of all ordered pairs (x, y) with $x \in X$ and $y \in Y$.

Definition 10.1. If (X, \mathscr{S}) and (Y, \mathscr{T}) are measurable spaces, then a set of the form $E \times F$ with $E \in \mathscr{S}$ and $F \in \mathscr{T}$ is called a **measurable rectangle**, or simple a **rectangle**. We shall denote the collection of all finite union of rectangles by \mathscr{R} .

$$\mathscr{R} = \mathscr{S} \times \mathscr{T} = \{ E \times F : E \in \mathscr{S}, F \in \mathscr{T} \}.$$

Remark 10.1. We wish to define a measure π such that $\pi(E \times F) = \mu(E)\nu(F)$.

Claim. Let \mathscr{A}_0 be all finite union of rectangles, we claim that all finite unions of rectangles can be written as a disjoint union of rectangles (proof by picture). So \mathscr{A}_0 is closed under finite union. We claim that \mathscr{A}_0 is an algebra.

Lemma 10.1. Let $\{D_j \times E_j\}$ be a sequence of disjoint rectangles, and $F_1 \times G_1, \ldots, F_n \times G_n$ be disjoint rectangles with

$$\bigcup_{j=1}^{\infty} D_j \times E_j = \bigcup_{k=1}^n F_k \times G_k, \text{ then}$$
$$\sum_{j=1}^{\infty} \mu(D_j)\nu(E_j) = \sum_{k=1}^n \mu(F_k)\nu(G_k).$$

Definition. On \mathscr{A}_0 define π_0 by

$$\pi_0(A) = \sum_{j=1}^n \mu(D_j)\nu(E_j),$$

where A is a disjoint union of rectangles $D_1 \times E_1, \ldots, D_n \times E_n$, by lemma, this is well defined.

Theorem 10.1. π_0 defines a measure on the algebra \mathscr{A}_0 .

Remark 10.2. There is a naturally associated outer measure (defined on $\mathscr{P}(X \times Y)$)

$$\pi^*(E) \coloneqq \inf \left\{ \sum_{j=1}^{\infty} \pi_0(R_j) : R_j \text{ is a rectangle } (\in \mathscr{A}_0), E \subset \bigcup_{j=1}^{\infty} R_j \right\}.$$

Bt Carathéodory, there exists σ -algebra \mathscr{U} consisting of the π^* measurable subsets, for which $\pi^*|_{\mathscr{U}}$ is a complete measure with the properties that $\mathscr{A}_0 \subset \mathscr{U}, \pi^*(A) = \pi_0(A), \forall A \in \mathscr{A}$.

Definition. Let $\mathscr{S} \times \mathscr{T}$ be the σ -algebra generated by \mathscr{A}_0 (all rectangles), so $\mathscr{S} \times \mathscr{T} \subset \mathscr{U}$.

Definition. The product measure $\pi = \mu \times \nu$ is π^* restricted to $\mathscr{S} \times \mathscr{T}$ (σ -algebra generated by rectangles.)

Definition 10.2. Let $Q \subset \mathscr{S} \times \mathscr{T}, x \in X$, then the **x-section of Q** is the set

$$Q_x \coloneqq \{y \in Y : (x, y) \in Q\}$$

Similarly, if $y \in Y$, then the **y-section of Q** is the set

$$Q^{y} = \{ x \in X : (x, y) \in Q \}$$

If f is a function defined on R to $\overline{\mathbb{R}}$, and $x \in X$, then the **x-section** of **f** if the function f_x defined on Y by

$$f_x(y) = f(x, y), \quad y \in Y.$$

Similarly, if $y \in Y$, then the **y-section of f** is the function f^y defined on X by

$$f^{y}(x) = f(x, y), \quad x \in X.$$

MATHS 730 FC

Lemma 10.2. If $Q \subset \mathscr{S} \times \mathscr{T}$, then

- 1. $Q_x \in \mathscr{T}, Q^y \in \mathscr{S},$
- 2. $f:X\times Y\to\overline{\mathbb{R}}$ is $\mathscr{S}\times\mathscr{T}\text{-measurable},$ then
 - $f(\cdot, y) : X \to \overline{\mathbb{R}}$ is \mathscr{S} -measurable,
 - $f(x, \cdot): Y \to \overline{\mathbb{R}}$ is \mathscr{T} -measurable.

Definition. Let \mathscr{M} be a collection of subsets of a set Z, \mathscr{M} is a **monotone class** if

- $\{E_n\}$ is expanding in \mathscr{M} implies that $\bigcup_{n=1}^{\infty} E_n \in \mathscr{M}$;
- $\{E_n\}$ is contracting in \mathscr{M} implies that $\bigcap_{n=1}^{\infty} E_n \in \mathscr{M}$.

Example 10.1. The collection of all intervals in \mathbb{R} is a monotone class, but not a σ -algebra .

Theorem 10.2. TONELLI'S THEOREM

Let (X, \mathscr{S}, μ) and (Y, \mathscr{T}, ν) be σ -finite measure spaces with product measure $(X \times Y, \mathscr{S} \times \mathscr{T}, \pi)$. If $f : X \times Y \to \overline{\mathbb{R}}, f \ge 0, f$ is $\mathscr{S} \times \mathscr{T}$ -measurable, then

1. the function $x \mapsto \int_Y f(x, y) d\nu(y)$ is \mathscr{S} -measurable, and

$$\int_X \left(\int_Y f(x,y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x) = \int_{X \times Y} f \, \mathrm{d}\pi(x,y),$$

2. the function $y \mapsto \int_X f(x, y) d\mu(x)$ is \mathscr{T} -measurable, and

$$\int_{Y} \left(\int_{X} f(x, y) \, \mathrm{d}\mu(x) \right) \, \mathrm{d}\nu(y) = \int_{X \times Y} f \, \mathrm{d}\pi(x, y).$$

That is

$$\int_X \left(\int_Y f(x,y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x) = \int_{X \times Y} f \, \mathrm{d}\pi(x,y)$$
$$= \int_Y \left(\int_X f(x,y) \, \mathrm{d}\mu(x) \right) \, \mathrm{d}\nu(y).$$

MATHS 730 FC

Theorem 10.3. MONOTONE CLASS THEOREM If \mathscr{A} is an algebra of sets, then the σ -algebra \mathscr{S} generated by \mathscr{A} coincides with the monotone class \mathscr{M} generated by \mathscr{A} .

Lemma 10.3. Tounelli for $f = \chi_Q$ If $f = \chi_Q, Q \in \mathscr{S} \times \mathscr{T}$, then Tonelli holds for f.

Remark 10.3. If (f_n) is an increasing sequence of non-negative, measurable functions for which 1 and 2 of Tonelli holds, then 1 and 2 of Tonelli holds for $f = \lim f_n$.

Claim. Let $\mathcal{M} := \{Q \subset X \times Y : \text{ Tonelli holds for } \chi_Q\}$, note $\mathcal{A}_0 \subset \mathcal{M}$. Then \mathcal{M} is a monotone class.

Remark 10.4. Recall each f non-negative, measurable function can be approximated by an increasing sequence of non-negative, simple, measurable functions. By linearity, Tonelli holds for these approximations, hence Tonelli holds for f.

In the general case, $X = \bigcup X_i, Y = \bigcup Y_i$, where X_i, Y_i are expanding sets of finite measures, then $f|_{X_i \times Y_i}$ satisfies Tonelli, hence so does the limit $f = f|_{X \times Y}$.

Theorem 10.4. FUBINI'S THEOREM

Let (X, \mathscr{S}, μ) and (Y, \mathscr{T}, ν) be σ -finite measures with product measure $(X \times Y, \mathscr{S} \times \mathscr{T}, \pi)$ and $f : X \times Y \to \overline{\mathbb{R}}$ be π -integrable, i.e. $\int f^+ d\pi, \int f^- d\pi < \infty$ implies $\int |f| d\pi < \infty$.

1. There is a set Y_0 with $\nu(Y_0) = 0$, such that $f(\cdot, y)$ is μ integrable over $X, \forall y \in Y \setminus Y_0$.
Further, if $f(\cdot, y) \coloneqq 0$ on Y_0 (or some other choice)

 $y \mapsto \int_X f(x,y) \,\mathrm{d}\mu(x)$

is ν -integrable over Y, and

$$\int_{Y} \left(\int_{X} f(x, y) \, \mathrm{d}\mu(x) \right) \, \mathrm{d}\nu(y) = \int_{X \times Y} f \, \mathrm{d}\pi(x, y)$$

2. If either of the iterated integrals

$$\int_{Y} \left(\int_{X} |f| \, \mathrm{d}\mu \right) \, \mathrm{d}\nu, \quad \int_{X} \left(\int_{Y} |f| \, \mathrm{d}\nu \right) \, \mathrm{d}\mu$$

is finite, then

$$\int_Y \int_X f \, \mathrm{d}\mu \, \mathrm{d}\nu = \int_X \int_Y f \, \mathrm{d}\nu \, \mathrm{d}\mu.$$

Example 10.2. It is not always possible to change the order of integration Let

$$f(x,y)\coloneqq \frac{y^2-x^2}{(x^2+y^2)^2}, \quad \frac{\partial}{\partial x}\left(\frac{x}{x^2+y^2}\right)=f(x,y).$$

MATHS 730 FC

Example 10.3. σ -finite is necessary:

Let μ be Lebesgue measure on [0,1], ν be counting measure on [0,1], let

$$f(x,y) \coloneqq \begin{cases} 1, & x = y \\ 0, & x \neq y \end{cases}$$

 ν is not $\sigma\text{-finite}$ and the iterated integrals are not the same.