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THE BANACH-TARSKI PARADOX
KARL STROMBERG

In this exposition we clarify the meaning of and prove the following “paradoxical” theorem
which was set forth by Stefan Banach and Alfred Tarski in 1924 [1]. We were inspired to do this
by a recent paper of A. M. Bruckner and Jack Ceder [2], where this theorem, among others, is
brought into their interesting discussion of the phenomenon of nonmeasurable sets. We are
grateful to Professor R. B. Burckel for calling this paper to our attention. We warmly
recommend it to the reader. It is our intention here to present a strictly elementary account of
this remarkable fact that will be accessible to readers with very little mathematical background.
We do presume a little matrix theory and the elements of real analysis. We first state the main
theorem and then give precise definitions before launching into its proof. We may as well admit
in advance that its proof depends on Zermelo’s Axiom of Choice, which is used in a very
obvious way in the proof of Theorem C below (the set C selected there is not specified in a
finitely constructable way).

BANACH-TARSKI THEOREM. If X and Y are bounded subsets of R® having nonempty interiors,
then there exist a natural number n and partitions {X;:1<j<n} and {Y;:1<j<n} of X and Y,
respectively (into n pieces each), such that X; is congruent to Y, for all j.

Loosely speaking, the theorem says that if X and Y are any two objects in space that are each
small enough to be contained in some (perhaps very large) ball and each large enough to contain
some (perhaps very small) ball, then one can divide X into some finite number of pieces and
then reassemble them (using only rigid motions) to form Y. This seems to be patently false if we
submit to the foolish practice of confusing the “ideal” objects of geometry with the “real”
objects of the world around us. It certainly does seem to be folly to claim that a billiard ball can
be chopped into pieces which can then be put back together to form a life-size statue of Banach.
We, of course, make no such claim. Even in the world of mathematics, the theorem is
astonishing, but true.

DEFINITIONS. For x =(x,, x,,x;) in R® we define the norm of x to be the number |x|=(x?+ x2
+x3)!/2. The closed ball of radius r >0 centered at a €R® is the set {x ER®:|x —a| <r}. A subset
X of R® is bounded if it is contained in some such ball, and X has nonvoid interior, if it contains
some such ball. An orthogonal matrix is a square matrix with real entries whose transpose is also
its inverse (its product with its transpose is the identity matrix). By a rotation we shall mean a
3 X3 orthogonal matrix p whose determinant is equal to 1. We also regard such a p as a mapping
of R?® onto R® by writing p(x) for the vector obtained by multiplying p by the column vector

X p(x) =) =(ylsy25y3) where x =(xl,X2,X3),

Pun P12 P13 3
p=|P21 P22 P3|, = 2 P %;
P31 P32 P33 Jj=1
for i=1,2,3. A rigid motion (or Euclidean transformation) is a mapping r of R® onto R> having the
form r(x)=p(x)+ a for x ER® where p is a fixed rotation and a ER? is fixed. We denote the 3 X3
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identity matrix by . Two subsets X and Y of R? are said to be congruent and we write X =Y if
there exists some rigid motion r for which r(X)=7Y. (Here, as usual, r(X) denotes the set
{r(x):x€ X}.) By a partition of a set X we mean a family of sets whose union is X and any two
members of which are either identical or disjoint. Thus, to say that {X;:1<j<n} is a partition
of X into n subsets means that

X=XuXu---UX, and XNX;=¢if i#j.

It is allowed that some or all X; be void.
The geometrical significance of our purely algebraic definition of a rotation is perhaps
clarified by the next proposition.

PROPOSITION. Let p be a rotation. Then we have the following.

(1) The image p of any line is a line: p(b+ tc)=p(b)+ tp(c) for all b,c ER® and tER.
(i) Inner products are preserved by p; if x,x' ER3, p(x)=y and p(x')=y’, then

3 3
2 yyi= 2 xx.
i=1 j=1
(iii) Distances are preserved by p: if x ER®, then |p(x)|=|x|.
(iv) If p5¢, then the set A={x ER®:p(x)=x} is a line through the origin: there is a p in R®
such that A={tp:tER} and |p|=1. We call A the axis of p.
(v) If q is any point of R® having the two properties of p in (iv), then g=p or g= —p. We call
p and —p the poles of p.

Proof. Assertion (i) is obvious and (iii) follows from (ii) by taking x’ = x. To prove (v) notice
that if {p:1ER}={1g:¢1ER} and |g|=|p|=1, then g=tp for some ¢ and t>=1?|p|*=|1p|*=|q[*
=lsotislor —1.

To prove (ii), use the fact that p is orthogonal[ > PPu = tx=1or 0 according as j=k or j#k

to write
2= 2( . pyig-)(%pikxé)
(2 > p.-,-p.-kx,-x;’c)
J kK

To prove (iv) we need a modest amount of matrix theory and real analysis. The characteristic
polynomial f(A)=det(o—A:) of p is a cubic polynomial having real coefficients so the Inter-
mediate Value Theorem assures that it has at least one real root. Let A;,A,,A; be its three
(complex) roots (counting multiplicity) where A, is the largest real root. Then f(A)=Q\, —AN)(A,—
AA;—A) so

A, =f(0)=detp= 1. (*)

If A, is a real root, then the system of equations
3
2 (py—Mty)5=0  (i=123)
j=1

has a real solution x,,x,,x; (not all 0) so there is an x ER?, |x|540, such that p(x)=A,x from
which (iii) yields |A,|=1, and so A\, =1 or —1. If A, is not real, then A, is its complex conjugate
and (*) becomes A;|\,>=1 so A, =1. If A, is real, then so is As, all three roots are 1 or — 1, and
(*) shows that A, =1 and A\, =A,. Since A;=1, we can take k=1 in the above system to find a



1979] THE BANACH-TARSKI PARADOX 153

vector p €R? with | p| =1 such that p(p)=p. Then tp €4 for all t €R. Our job is to see that there
are no other vectors in 4. Assume that there is a u €4 with us44p for all t €R. Choose a nonzero
vector v that is perpendicular to the plane containing p, u, and 0; that is, Zvp; =2 v,4,=0. Since
p(p)=p and p(u)=u, it follows from (ii) that p(v) is also perpendicular to this plane and thence
from (iii) that p(v)=v or —v. Any vector x&ER? can be written as x=ap+ Su+yv for
appropriate a, 8,y €ER and, by (i), p(x)= ap + Bu+ yp(v). Since ps=t, we cannot have p(v)=o.
Therefore p(v)= —v. The matrix
Py oy v
o= (Pz U 0 )

D3 Uz 0

has nonzero determinant (because p, u, and v are linearly independent) and the matrix product
Py ¥ Y
po={\Pp2 U —U,
P3 Uz —U3
satisfies
—deto=det(po) = (detp)(deta) =deto
so dete=0. This contradiction completes the proof of (iv). W
We now prove several theorems and lemmas which are of considerable interest in themselves
as well as being vital stepping stones toward our main goal. The first three of these, of which

Theorem C is the real key to our story, were set forth by Felix Hausdorff in 1914 [4, pp.
469-472]. We consider the two rotations

-1/2 -V3/2 0
V3/2 -1/2 0
0 0 1

2

and

—cosf 0 sinf
o= 0 -1 0
siné 0 cosé

where 6 is a fixed real number, to be chosen later. (Geometrically, y rotates R*> by 120° about
the z-axis and ¢ rotates R* by 180° about the line in the xz-plane whose equation is
xcos 18 =_zsin 16.) One checks that the matrix y? is the same as the matrix y except that V3 is

replaced by — V3 and that
P=¢?=u 1)

where ¢ is the identity matrix. Now let G denote the set of all matrices that can be obtained as a
product of a finite number of (matrix) factors, each of which is ¢ or y. Because of (1), it is clear
that G is a group under matrix multiplication (if p,6 € G, then p~!, po € G) and that each ps~¢ in
G can be expressed in af least one way as a product

pP=0,03"""0, )]

where n > 1, each g; is ¢ or ¢ or ¢?, and if 1< j <n, then exactly one of g; and g;.,, is ¢. We call
such expressions reduced words in the letters ¢, {, and 2. For example, the expression ¢y pipy’ep
is not a reduced word because of the two adjacent ¢’s, but it is equal to the reduced word ¢py¢
(“equal” means that these products are the same matrix). Thus each element of G other than ¢, ¢,
¥, and Y2 can be expressed in at least one of the four forms

a= ¢P1¢¢P;¢. <« YPrgh, B= WP;@PP:. - P,
Y=QUPGYP  ping,  B=YPYrpe - G 3)
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where m > 1 and each exponent p; is 1 or 2 (for 8,m > 1). These are the reduced words having
more than one letter. Depending on our choice of 8, it may happen that two reduced words that
appear to be different are actually equal; i.e., when multiplied out, they equal the same matrix.
For example, if we choose 6=, one checks that Y¢=¢y? and Yo =1 However, we do have
the following remarkable theorem which is the key to our later results.

THEOREM A. [4]. If cosO is a transcendental number, then each element of G other than i ha:
exactly one expression as a reduced word in the letters ¢, ¥, and 2. That is, if

(i) 0105 - 0,=p1py " Pm

where each side of this equation is a reduced word, then m=n and g;=p; for 1 <j <n.

Proof. We need only show that no reduced word is equal to ¢, for then if (i) held true with »n
as small as possible it would follow that n=1 and p,=o,.

We first show that if « is as in (3), then as~«. We have a=0,,0,,_," - - 0,0, where each o is
either Y¢ or Y2¢. That is, each o is one of the two matrices

1 V3 1.
50050 iT —§Sln0
o=1_V3 1 V3. |
+—2—C080 5 i‘TSIHG
sinf 0 cosf

One checks by induction on m that if K=(0,0, 1), then o,,0,,_, - - 6;(K)=(sin8P,,_ (cosf), V3
sinfQ,,_(cosf), R,(cosf)) where the P, Q, and R are certain polynomials with rational
coefficients, their subscripts are their degrees, and their leading coefficients are

_1(§)m—l +l(g)m—l g)m—l
212 T 2\2 '\ 2 ’
respectively. In fact, simple computations show that
1 1
Py(x)=— 5,Q0(x)= + Z,Rl(x)=x,

Pm(x)= %xpm—l(x)t % Qm—l(x)_ %Rm(x)

On(x)=% %me_l(x)+ % Om-1(x)x % (%)
R, 1(x)=(1—xH)P,_ (x)+ xR, (x).

This done, we see that since cos# is a root of no polynomial with rational coefficients, it is
impossible that a(K)=K (else R, (cosf)—1=0) and so az=..

Now we see that no 8 as in (3) can equal ¢, for otherwise a=¢S¢=pip=0¢>=1. Similarly, if
y=1t, then 8 =¢yd =1, so it remains only to rule out the possibility that §=1.

Assume that § =1 where § is as in (3) and m is the smallest natural number for which this is
true. Of course m> 1. If p, =p,,, then ?1+Pn is either Y2 or Yy*=y¢ so

= 4,_P18¢P1 =¢¢P2. .. ¢.4/P1+Pm
is a reduced word of the form B which is impossible. Thus p, +p,, =3. In case m >3, we have

L=¢¢P,,.84,P|¢= .4,?2(#. .o ¢¢Pm—1
which is again of the form 8, contrary to the minimality of m. Therefore m=2 or 3. But m=2
yields ¢=”28y? 1 =¢ while m=3 yields ¢=¢P28y?1¢p=1/P> and these results are ridiculous. We
conclude that § =: is impossible. W
We hereby choose and fix any 6 such that cos# is transcendental. Of course all but countably
many real numbers # have this property. (Incidentally, it follows from the Generalized Linde-
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mann Theorem that any nonzero algebraic 4 will do; e.g., §=1.)

If an element p € G is expressed in its unique way as a reduced word as in (2), we call n the
length of p and we say that o, is the first letter of p or that p begins with ,. We write /(p)=n and
I(t)=0.

As usual, by a partition of a set X, we mean a pairwise disjoint family of subsets of X whose
union is X.

THEOREM B. There exists a partition { G, G,,G3} of G into three nonvoid subsets such that for
each p in G we have

() PEGI®PEG,UG,,
(i) pEGSYpEG,,
(i) pEG,=Y*EG,;.

(Note, for example, that ¢p need not begin with ¢. If p= ¢y, then ¢pp= ¢ begins with v.)
Proof. Assign the elements of G inductively according to their lengths as follows. Put

LE G, 0 E Gy E G Y2 E G, 4

Suppose that n > 1 is some integer such that each ¢ € G with /(o) <n has been assigned to exactly
one of G, G5, and G;. We now assign all elements of length n+ 1. If /(06)=~n and o begins with ¢
or Y2, put

P EG,if 6EG,, ®)
¢o € G, if 6€G,U G;s.
If /(6)=n and o begins with ¢, put
YoEG,,ifEG, 6)
Y6 EG,,if6EG, )

for j=1, 2, 3 where G,=G, and Gs=G,. By induction our partition is now formed. The
assignment of any element of length n can be easily determined in n steps. For example, if
p=yYydy’dy?, then /(p)=7 and we note successively, beginning with the last letter, that
V2 € Gy, Y’ € G, YW € G, WY € G,
YU oY’ € Gy, pYdU ¢y’ € G, p E Gy
One easily checks that the elements of length two satisfy

{‘P‘P’(P‘PZ"PZ‘P} - Gb‘l/q’e G39

and therefore that (i)—(iii) hold if /(o) <1 (for example, both sides of equivalence (i) are false
unless p=1). For an inductive proof of (i)—(iii), suppose that n > 1 is some integer and that these
three equivalences are known to hold for all p € G having /(p) <n. Now let p € G with /(p)=n be
given.

Caskg, 1. Suppose that p begins with ¢. Then (6) and (7), with o=p, imply (ii) and (iii),
respectively. Since ¢p has length n— 1, our induction hypothesis yields

P& Gi=d(dp) =pE G,U G;
SPpE Gopp & G,U Gs

and so (i) also holds for p.

CAsE 2. Suppose that p begins with y. Then (i) follows from (5) with o =p. We have Yyp=1y’%
where l[(6)=n—1 and ¢ begins with ¢, so (7) and (6) yield

Yp=y%0 E G0 E Gop=y0 EG;=Y*p=0EG,

which proves (ii) and (iii) for p.
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CasE 3. Suppose that p begins with y2. As in Case 2, (i) follows from (5). Here we have yp=0¢
has length n—1 and begins with ¢. So again (6) and (7) yield

Yp=0E G,op=Y0E G0 E Gy’ p=Y0E G,
proving (ii) and (iii) in this final case. W

THEOREM C. There exists a partition { P, S,,S,,Ss} of the unit sphere S={x ER®:|x[*= x}+ x3
+ x2=1} into four subsets such that

(i) P is countable, (i) H(S)=S,US;
(i) ¥(S)=S, @(iv) $*(S)=S5s.

Proof. Let P={p€ES:p(p)=p for some pE G with p#}. Since G is countable and each
p+ leaves just two points of S fixed (the poles of its axis of rotation) we see that (i) obtains. For
each x ES\P, let G(x)={p(x):pE G}. Each such G(x) is a subset of S\ P (if p(x) € P for some
p, then ap(x)=p(x) for some 65t s0 p ~lap(x)=x, p ~'ops~t, and x € P), x € G(x)[x =«(x)], and
any two such sets G(x) and G(y) are either disjoint or identical (if 1€ G(x)N G(y), say
p(x)=t=0(y), and z € G(x), say z=7(x), then z=1(x)=7p '({)=7p 'o(y) E G(y); whence,
G(x)N G(»)# ¢=>G(x)= G(»)). Therefore, the family of sets ¥ ={G(x):x € S\ P} is a partition
of S\ P. Next, choose exactly one point from each member of F and denote the set of points so
chosen by C. The set C has the properties:

CcS\P, (@)
¢ 7#c; in C=G(c)) N G(cr) =9, (b)
xES\P=x€G(c) for some cEC ()

because x € G(c)<>c € G(x) for all x,c € S\P. Now define
S;=G(C)={p(c):pEG,cEC}
for j=1,2,3 where G;,G,, G; are as in Theorem B. Using (a) and the fact that G(x)C S\P if
xE€S\P, we see that S;C S\P for each j. The fact that G=G,U G,U G; and (c) imply that
S\P=S,US,US;. If ji in {1,2,3}, then S;NS;=¢ (otherwise, for xES;,N S, we have
x=p(c;)=o0(c,) for some c,,c,€ C,p € G;,6 €G; so (b) yields ¢;=c,=c, say, and hence o ~1o(c)
= ¢ while ¢ & P from which ¢ ~'p=¢ and p=o0 contrary to G;N G;=¢). Therefore { P, S, S,,S;} is
a partition of S.
Finally, we apply (i)—(iii) of Theorem B to write
o(S1)={dp(c):pEG,cEC}={1(c):TEG,UG;cEC}=S5US3
\P(Sl)"_— {\Lp(c) :pEGl,CE C} = {’T(C) TE Gz,CEC} = S2,
YA(S1)={¥?0(c):pEG,,cEC}={7(c):TEG3cEC} =5,
which proves (i))—-(iv). M
The following lemma and its use in deducing Theorems D and E from Theorem C are
contributions of W. Sierpinski (see [6]).

LemMa. If P is any countable subset of S, then there exists a countable set Q and a rotation &
such that P C Q C S and w(Q)=Q\P.

Proof. The idea of the proof is very simple. We first select an axis of rotation for w that
contains no point of P, then we use the countability of PXP XN to select one of the
uncountable supply of angles of rotation for w that make w satisfy P Nw"(P)=¢ for all n> 1,
and finally we put

g=PU U «"(P) ®)

n=1



1979] THE BANACH-TARSKI PARADOX 157

We now give details.

Among all vectors v=(v;,0,,0;) in S having v;=0, there are only countably many for which v
or —vis in P. Select any v=(v;,v,,0)E S such that neither v nor —v is in P. Writing u=(1,0,0)
and

(Y (%) 0
0O=| —1, (0 0
0 0 1

we see that ¢ is a rotation, o(v)=u, and the set o(P) contains neither ¥ nor —u. For real
numbers ¢, consider the rotations
1 0 0
7,=|1 0 cost —sint

0 sint cost

that leave u fixed. For each triple (x,y,n) with x,y €E6(P) and n€N, it follows easily from the
fact that x3 + x3 >0 that there exist either exactly n or exactly O values of ¢ in [0,27[ for which
7/(x)=y according as x, =y, or x,7y,. Since there are only countably many such triples in all,
there are only countably many ¢ for which the equality

a(P)N L_Jl T/o(P)=9¢ &)

fails. Fix any ¢ €R for which (9) obtains and write 7=1,. Now defione w=0""70 and define Q as
in (8). Since T"6 =o0w" for all n, (9) yields o(P Nw(Q@))=0c| PN U w"(P)) =¢ from which we

n=1

have P Nw(Q)=¢. But Q=P Uw(Q) so the proof is finished. W

THEOREM D. There exists a partition {T;:1<j<10} of the unit sphere S into ten (disjoint)
subsets and a corresponding set {p;:1<j<10} of rotations such that {p(T):1<j<6} is a
partition of S into six subsets and {p,(T;): 7 <j < 10} is a partition of S into four subsets. Moreover,
we can take T,, Ty, and T, to all be rotates of S, and take T,, T,, Ts, and T\, to all be countable.

Proof. We continue our previous notation and define
Ur=¢(82), Uy=y(S2), Us=4*(S),
Vi=9(S3), Va=19a(S3), V3=4¢(S3).

By Theorem C it is clear that {U, ¥;} is a partition of S; for j=1,2,3 and that these six sets
along with P form a partition of S into seven subsets. Now let

T;=U,,Tg= U, To=U;, T\o=P,
p7="1%, 05 =Y, po =Y, p1o =1
and check that p,o(Ty)= P and p(T;)=S;_¢ for j=7,8,9 so that {p(7}):7 <j <10} is indeed a
partition of S. We shall now divide S\(7;U TgU ToU T)¢)= VU V,U V3 into six pieces. Let Q
and w be as in the preceding Lemma and define
Ty =ps(SiN Q) T, =ps(S2N Q), T3=p+(S3N Q)
T4=ps(S1\Q), Ts=ps(S2\Q), Ts=p+(S5\ Q).
Plainly,
{T,,T,} partitions pg(S,)= V1,
{ T, T} partitions py(S;) = V>,
{ T3, T} partitions p,(S3)= V3,
and thus we see that { 7;:1 < < 10} partitions S. Next define
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Pa=ps ps=ps ,ps=p7 "

for j=1,2,3. Evidently,

and p=w""pj43

pea(Ti)=5\Q  (j=1,2.3)
and, since P C Q, the union of these three sets is S\ Q. Finally, we have
o) =0 lgs(T)=0"(§NQ)  (j=123)
so these three sets are disjoint and their union is @ “}(Q\P)=0. W
If, for a subset T of S, we write T'={tx:xE€T,0<t< 1}, then S’={yER*:0<|y| <1} is
the punctured ball obtained from the solid unit ball B={y €R*:|y| < 1} by removing the origin

0=(0,0,0), and it is clear that the first sentence of Theorem D remains true if we replace S by
S’ and T; by T; throughout. We use this observation in the next proof.

THEOREM E. There exists a partition { B : 1 <k <40} of the closed unit ball B into forty subsets
and a corresponding set {r, : 1<k <40} of rigid motions such that {r,(B,): 1 <k <24} partitions B
into twenty-four subsets and {r,(B,):25 <k <40} partitions B into sixteen subsets.

Proof. Apply the above Lemma to the case that P is the singleton set {#} where u=(1,0,0)€
S to obtain a countable set Q with € Q C S and a rotation p, such that po(Q)=Q\{u}. Next
let Ny={3(g—u):q€ Q} and define the rigid motion r, by
ro(x)=po(x +3u)— ju.
Plainly the vector 0 is in N, and ro(N,)=N,\{0}. Writing N,=B\N,, s,=r, s,=1, and
M, =s,(N,;) for h=1 and 2, we see that {N,,N,} partitions B and {M;,M,} partitions
S’=B\{0}. We complete the proof by combining these partitions and rigid motions with the
partition {7/:1<;<10} of S’ and the rotations {p;:1<,<10} as in the remark following
Theorem D.
Notice that, for each j(1 <j<10), the family {7/ np,~'(M;): 1 <i <2} partitions T; and that
in turn (M, N T/Np; '(M)): 1 <h <2} partitions T/ Np,” '(M;) for i=1 and i=2. Thus {M,N T}
Np~'(M):1<h<2,1<i<2,1<,j< 10} is a partition of S’ into forty subsets and the forty sets
By=s; [ Myn T/ np '(M)]
form a partition of B while for each fixed j the four sets
0:5(Brg) = Min p/(M, N T})) (10)
(1<h<2,1<i<2) form a partition of p,(T;). We now invoke Theorem D to see that the families
{05n(Bry) 1 1<h<2,1<i<2,1<<6}
{osn(Bhy) : 1<h <2,1<i<2,7<;<10}
are each a partition of S’ while, for fixed i, (10) shows that the respective families of twelve and

eight sets are each a partition of M; which we can in turn map to partitions of N, via s;” .
Therefore, writing r,; =5, 'p;s;, we infer that

{ruy(Bry): 1 <h<2,1<i<2,1<j <6}
and
{ruy(Bry) : 1<h<2,1<i<2,7<j <10}

are partitions of B into twenty-four sets and sixteen sets, respectively. Finally, relabel the forty
sets B,; and the forty rigid motions r,; with single subscripts k=1,2,...,40. m

DEerINITION. We shall say that two subsets X and Y of R® are piecewise congruent and we
write X~ if, for some natural number n, there exist a partition {X;:1<j<n} of X into n
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subsets and a corresponding set {f;: 1<,/ <n} of rigid motions such that {f(X)):1<j<n} is a
partition of Y. In case X is piecewise congruent to a subset of Y, we shall write XY
Our next theorem gives some simple properties of the relations just defined.

THEOREM F. For subsets X, Y, and Z of R® we have

(i X~X,

(i) X~Y=Y~X,
(ii) X~Yand Y~Z=X~2Z,
iv) X~Y=XIY,

V) XSYand YSZ=XSZ,
Vi) XCcY=X<Y,
(i) XSYand YSX=>X~Y.

Proof. Since Y C Y, (iv) is banal. Since : is a rigid motion, (i) and (vi) are obvious (with n=1).
Assertion (ii) follows from the fact that inverses of rigid motions are rigid motions.

To prove (v), suppose that {X;:1<j<n} and {Y;:1<i<m} are partitions of X and Y,
respectively, and that {f:1<,j<n} and {g:1<i<m} are sets of rigid motions such that
{f(X):1<j<n} is a partition of some Y,CY and {g(Y;):1<i<m} is a partition of some
ZyC Z. Then one readily checks that the mn sets A;=X;N f~'(Y;) form a partition of X (for
fixed j, the m sets 4,;,4,;,...,4,,; are pairwise disjoint and their union is X;) and, for fixed i, the
n sets f(4;)= Y, N f(X))(1 <j <n) form a partition of Y;N Y, so { g:fi(4;): 1 <i<m,1<j<n}is
a pairwise disjoint family whose union is some subset Z,; of Z. Each composite mapping g;f; is a
rigid motion, so we have X~ Z, and hence X SZ. This proves (v). The same argument proves
(iii) by taking Y,=Y and Z,=Z.

To prove (vii), suppose that X~ Y, and Y~ X, where Y,C Y and X,C X. Let the notation be
as in the preceding paragraph with X=Z and X,=Z, We prove that X~Y by copying a
well-known proof of the Schroder—Bernstein Theorem. First define f on X and g on Y by
f(x)=f(x) if x€EX; and g(y)=g(y) if y EY,. For E C X, define E'CX by

E'=X\g[Y\f(E)] (1D

Plainly,
ECFCX=E'CF’ (12)
Let 9 ={E:E CX,E CE’}. Notice that ¢ . Let D= |J D be the union of all the sets that
belong to . For each E €% we have E’C D’ by (12) so ECD’. Thus D c D’ and so (12)
yields D’ C(D’)’; hence, D'E€%, D'’C D, and D’=D. Put E=D in (11) to obtain
D=X\g[Y\f(D),X\D=g[Y\f(D)].
Clearly, X\ D C X,,. Now define, for 1<j<n and 1<i<m,

4;=DNX;A4,.,;=g[Y\(D)h=f, and h,,,=g "

It follows that {4,,...,4,} partition D, {A,,,,...,4,,,,} partitions X\D, {hy(4)),...,h,(4,)}
partitiohs f(D), and {h,, (A4, +1)s-- > P s m(Ans.m)} partitions Y\f(D). Therefore X~Y. W

Recall that a closed ball in R? is any set of the form 4 ={x €R®:|x — a| <&} where a €R® and
¢>0 are given. Recall also that a translate of a set A CR? is any set of the form A +b={x+b:x
€A} where b €R? is given.

THEOREM G. If ACR3 is a closed ball and if A\, A,,...,A, are a finite number of translates of
A, then

n
A~ 4,
Jj=1
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Proof. We may suppose that 4 = {x ER’:|x| <e} for some & >0. Choose any a ER? for which
|a|>2e and let A’=A4 +a={yER?:|y —a|<e}. We use Theorem E to show that A~(4UA’).
So let the B, and r, be as in that theorem. For any set D CR? and any & >0, let 8D={dx:x €
D}. We consider the partition {eB, : 1 <k <40} of A. Define rigid motions s, by

sk(x)=£rk(%x) if 1<k <24,

sk(x)=erk(%x)+a if 25 <k < 40,

(Note that if r is a rigid motion (r(x)=p(x)+ b where p is a rotation) and s(x)=er %x , then s
is a rigid motion because s(x)=p(x)+¢eb.) From Theorem E we see that {s5(eB;): 1<k <24}
partitions A4, {s,(eBy):25 < k <40} partitions 4’, and so, since ANA"=¢. {s,(eB;): 1<k <40}
partitions 4 U A’. This proves that

A~(Au4).

We now prove the theorem by induction on n. The theorem is obvious if n=1. Suppose that
n>1 is such that 4 is piecewise congruent to the union of any n—1 of its translates and
let Ay,...,A, by any n of its translates. By hypothesis A~[4,U - -+ UA4,_,] and it is obvious that
AN[A U -+ UA,_] is congruent (by translation) to a subset of 4’ so we have

AU UA,SAUA'~A.

But clearly A <SA4,U - UA, so Theorem F yields A~A4A,U---UA4,. B
We now state the Banach—Tarski Theorem again and then prove it.

THEOREM H. If X and Y are bounded subsets of R® having nonvoid interiors, then X~Y.

Proof. Choose interior points a and b of X and Y, respectively, and then choose &€ >0 such
that A={x €R3:|x|<e)} satisfies 4 +ac X and 4 +bC Y. Since X is bounded, there exist a
finite number A4,,...,4, of translates of 4 whose union contains X. We therefore have, using
Theorem G,

ASX C(AU-- UA,)~A

so it follows from Theorem F that X~A. Similarly Y~A. Another application of Theorem F
gives X~Y. H

REeMARKS. 1. The number 40 that appears in Theorem E is not the smallest possible. In fact,
R. M. Robinson showed in 1947 [5] that there is a partition of B into five sets (one of them a
singleton) which can be reassembled by rigid motions to form two disjoint closed balls of unit
radius. Moreover, T. J. Dekker and J. deGroot proved [3] that these five sets can be chosen so
that each is both connected and locally connected.

2. It follows from Theorem C that, since Lebesgue measure A> on R® is rotation invariant,
none of the three sets Sy = {#x:x €5;,0<#< 1},1< k<3, can be Lebesgue measurable.

3. A poor analogue of Theorem C can be explicitly constructed (no Axiom of Choice) in the
plane as follows. Fix any transcendental complex number ¢ with |c|=1 (plenty of these exist,
since there are only countably many z with |z|=1 that fail to be transcendental; we can take
c=e'). Now let X be the set of all complex numbers of the form

n
z= 2 ad
j=0

where n and ag,a,,...,a, are nonnegative integers. Each z € X has a unique such expression. Let
X, be the set of those z for which a,=0 and let X;=X\X,. Then {X,,X,} partitions X. Define
the rotation p of the plane by p(z)=cz and define the translation 7 by 7(z)=z+1. Then
p(X)=X, and 7(X)= X, so the sets X, and X, are each congruent to X. The reason that this
analogue is “poor” is twofold: X is both countable and unbounded.
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SEX DIFFERENCES IN MATHEMATICS:
HOW NOT TO DEAL WITH THEM

EDITH H. LUCHINS

Even casual observation of this distinguished assemblage reveals sex differences among
mathematicians. There are both male and female mathematicians! This may seem to be a
vehement way of expressing the obvious. But it seems to be not at all obvious to those who
portray the history of mathematics. A case in point is an important collection of portraits and
biographies of mathematicians throughout the ages on a wall map entitled “Men of Modern
Mathematics™ [7]. There is a woman among them, Emmy Noether. But absent are other women
who, despite enormous obstacles, contributed significantly to mathematics, e.g., Sophia Germain
and Sonya Kovalevsky. In a similar vein, a well-known and otherwise excellent textbook on the
history of mathematics has no women listed in the name index—and seemingly not mentioned
in the text—not even Emmy Noether, although her father, Max Noether, is listed [3]. Still
another well-known text on the history of mathematics referred to Hypatia of the fourth century
as the first woman mathematician to be mentioned in the history of mathematics—but it
referred to no other women, at least not in its first three editions, even as recently as 1969;
however, there is a brief reference to Emmy Noether in the most recent edition of the text [S].

These are illustrations of ways in which not to deal with sex differences in mathematics. Do
not ignore or overlook or hide the achievements of one sex. Let us find out more about these
achievements and make them known to our colleagues, our students and the general public.

True, famous women mathematicians throughout history can be counted on one’s fingers.
But when mathematics students were asked to name such women, they usually did not reach
even the first finger. For example, when the request to name famous women mathematicians was
made of 26 mathematics majors in a junior-senior level algebra class, 24 did not list any names.
In contrast, when they were then asked to name three to five famous mathematicians, 22
students answered, listing an average of four (male) mathematicians. It is important to increase
the awareness of the contributions of women mathematicians in the past (cf. {4], [20]).

Nor should we belittle the women’s contributions. At a recent conference on women in the
history of mathematics, one of the participants remarked that on the whole she was disappointed

Edith H. Luchins did graduate work at New York University with Kurt Friedrichs and the late Richard
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