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In this report we present the work of ICME12 Survey Team 4, whose brief was to examine the 

transition from secondary school to university mathematics with a particular focus on mathematical 

concepts and aspects of mathematical thinking that are key to this transition. To this purpose we 

surveyed the recent literature in order to identify research that addresses issues of transition that are 

germane to the learning and teaching of: calculus and analysis; the algebra of generalised arithmetic 

and abstract algebra; linear algebra; reasoning, argumentation and proof; and modelling, 

applications and applied mathematics. The literature review revealed a multi-faceted web of 

cognitive, curricular and pedagogical issues, some spanning across the aforementioned 

mathematical topics (such as student cognitive preparedness for the requirements of university-level 

formal mathematical thinking) and some intrinsic to certain topics (such as little or no content 

coverage at school level). In addition to the literature review we surveyed the views on the transition 

of those engaged with teaching in university mathematics departments. Specifically, we aimed to 

elicit perspectives on: what topics are taught, and how, in the early parts of university-level 

mathematical studies; whether the transition should be smooth; student preparedness for university 

mathematics studies; and, what university departments do to assist those with limited preparedness. 

We present a summary of the survey results from 79 respondents from 21 countries. 

 

Keywords: Transition, mathematics, secondary, university, survey. 

 

BACKGROUND 

Changing mathematics curricula and their emphases, along with distinct changes in an 
enlarged tertiary entrant profile (Hoyles, Newman, & Noss, 2001; Hockman, 2005), have 
provoked some international concern about the ability of students entering university with 
regard to their apparently decreasing levels of competence (PCAST, 2012; Smith, 2004) and 
the sometimes traumatic effect of the transition from school to university mathematics on 
many students (Engelbrecht, 2010). Changes in competency have been particularly apparent 
with regard to essential technical facility, analytical powers, and perceptions of the place of 
precision and proof in mathematics. Such mathematical under-preparedness of students 
entering university has been seen as an issue (Faulkner, Hannigan & Gill, 2011; Gill, 
O’Donoghue, Faulkner & Hannigan, 2010; Hourigan & O’Donoghue, 2007; Kajander & 
Lovric, 2005; Luk, 2005; Selden, 2005), and one that may impact on students’ success in 
university mathematics (Anthony, 2000; D’Souza & Wood, 2003). However not all studies 
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agree on the extent of the problem (Engelbrecht & Harding, 2008) or that a high school focus 
on procedural tasks leads to undergraduate students who have difficulty with conceptual 
problems (Engelbrecht, Harding & Potgieter, 2005). Recently, for example, Faulkner, 
Hannigan and Gill (2011; also Gill, O’Donoghue, Faulkner & Hannigan, 2010) have noted 
the intensely shifting profile of students who take service mathematics courses along with a 
decline in the mathematical standard of these students entering university. Specifically, the 
study reports that between 1998 and 2010 the profile of students who take service 
mathematics courses in the University of Limerick (Ireland) changed dramatically: many 
more are diagnosed as at risk (increasing by around 25% to 58% for Technological 
Mathematics and 46% for Science Mathematics) and fewer have an advanced mathematics 
secondary qualification. On the other hand, research by James, Montelle and Williams (2008) 
analysed the relationship between the final secondary school qualifications in mathematics 
with calculus of incoming students and their results in the core first-year mathematics papers, 
and found that standards had been maintained. Some concern has been expressed about the 
levels of student enrolments in undergraduate mathematics programmes (The ICMI Pipeline 
Project, see Barton & Sheryn, 2009; and- 
http://www.mathunion.org/icmi/other-activities/pipeline-project/) along with implications 
for the future of the subject. Furthermore the report of the President’s Council of Advisors on 
Science and Technology (PCAST) (2012) states that in the USA alone there is a need to 
produce, over the next decade, around 1 million more college graduates in Science, 
Technology, Engineering, and Mathematics (STEM) fields than currently expected.  

While recent research has specifically addressed these issues with regard to the transition 
from school to university (Brandell, Hemmi & Thunberg, 2008; Engelbrecht & Harding, 
2008; James, Montelle & Williams, 2008; Jennings, 2009), overall the volume of research in 
tertiary mathematics education was, until about a decade ago, relatively modest (Selden & 
Selden, 2001). In response to this, the PCAST report (2012) in the USA recommends funding 
around 200 experiments at an average level of $500,000 each to address mathematics 
preparation issues. 

While we are aware that there are many aspects of the secondary school to university 
transition that are of interest to mathematics education practitioners and researchers, and 
relevant to the issues above, the brief of ICME-12 Survey Team 4 was restricted to a 
consideration of the role of mathematical thinking and concepts as they relate to transition. 
Hence, we sought to review the recent literature on transition to extract key issues that have 
been highlighted. We found relatively few papers that deal directly with mathematical 
thinking and concepts in transition. However, there were many other, relevant papers that 
discussed relevant mathematical issues involved and so our second aim was to review the 
recent literature analysing the learning of mathematics that occurs at either side (or both sides) 
of the transition boundary to present some of the mathematical transition issues identified. To 
achieve this we formed the, somewhat arbitrary, division of this mathematics into: calculus 
and analysis; the algebra of generalised arithmetic and abstract algebra; linear algebra; 
reasoning, argumentation and proof; and modelling, applications and applied mathematics, 
and report findings related to each of these fields.  
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Finally it was important to include the voices of those engaged in teaching in university 
mathematics departments and to record their perspectives on the mathematical thinking of 
students in transition. We wanted to know what topics are taught and how, if the professors 
think the transition should be smooth, or not, whether their students are well prepared 
mathematically, and what university departments do to assist those who are not. A summary 
of the survey results from 79 members of mathematics departments addressing these and 
other topics is included below. 

THEORETICAL PERSPECTIVES IN THE TRANSITION LITERATURE 

A number of different lenses have been used to analyse the mathematical transition from 
school to university. These have been summarised well elsewhere (see e.g., Winsløw, 2010) 
but we consider it useful to preface our findings with a very brief note on the major theoretical 
perspectives we find in the transition-related literature. One theory that is in common use is 
the Anthropological Theory of Didactics (ATD) based on the ideas of Chevallard (1985). 
This introduces the key concept of a praxeology defined to be a quadruple comprising (task, 
technique, technology, theory) and focuses on analysis of the organisation of praxeologies 
relative to institutions and the diachronic development of didactic systems. A second 
framework often employed is the Theory of Didactical Situations (TDS) of Brousseau (1997), 
which describes the use of didactical situations whereby the teacher orchestrates the elements 
of the didactical milieu under the constraints of a dynamic didactical contract. Some research 
uses the action-process-object-schema (APOS) framework for studying learning, as presented 
by Dubinsky and others (Dubinsky, 1991; 1997; Dubinsky & McDonald, 2001). This 
describes how a process may be constructed from actions by reflective abstraction, and 
subsequently an object is formed by encapsulation of the process. In turn the mental object 
can then become part of an appropriate mental schema. Other authors find the Three Worlds 
of Mathematics (TWM) framework of Tall (2004a, b, 2008) useful. This describes thinking 
and learning as taking place in three worlds: the embodied; the symbolic; and the formal. In 
the embodied world we build mental conceptions using visual and physical attributes of 
concepts, along with enactive sensual experiences. The symbolic world is where the symbolic 
representations of concepts are acted upon, or manipulated, and the formal world is where 
properties of objects are formalized as axioms, and learning comprises the building and 
proving of theorems by logical deduction from these axioms.  

THE QUESTIONNAIRE 

As a group we constructed an anonymous questionnaire on transition (see Appendix) using an 
Adobe Acrobat pdf form and each of us sent this out internationally by email to members of 
mathematics departments, with the responses collected electronically. There were 79 
responses to this survey from 21 countries. Clearly the experience for beginning university 
students varies considerably depending on the country and the university that they attend. For 
example, while the majority teach pre-calculus (53, 67.1%), calculus (76, 96.2%) and linear 
algebra (49, 62%) in their first year, minorities taught complex analysis (1), topology (3), 
group theory (1), real analysis (5), number theory (9), graph theory (12), logic (15), set theory 
(17) and geometry (18), among other topics. Further, in response to ‘Is the approach in first 

year mathematics at your university: Symbolic, Procedural; Axiomatic, Formal; Either, 
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depending on the course.’ 21 (26.6%) answered that their departments introduce symbolic 
and procedural approaches in first year mathematics courses, while 6 replied that their 
departments adapt axiomatic formal approaches. Most of the respondents (50, 63.3%) replied 
that their approach depended on the course. 

When asked ‘Do you think students have any problems in moving from school to university 
mathematics?’ 72 (91.1%) responded “Yes” and 6 responded “No”. One third of those who 
answered “Yes” described these problems as coming from a lack of preparation in high 
school, supported by comments such as “They don't have a sufficiently good grasp of the 
expected school-mathematics skills that they need.” Further, two thirds of those who 
answered “Yes” described the problems as arising from the differences between high school 
classes and university (including more than 50% of the respondents from the USA, New 
Zealand, South Africa and Brazil, all of whom sent at least 5 responses), such as differences 
in class size and work load, with many specifically citing the conceptual nature of university 
mathematics as being different from the procedural nature of high school mathematics. 
Comments here included “university is much more theoretical” and “Move from procedural 
to formal and rigourous [sic], introduction to proof, importance of definitions and conditions 
of theorems/rules/statements/formulas.” Other responses cited: students’ weak algebra skills 
(12.5%); that university classes are harder (5%); personal difficulties in adjusting (10%); poor 
placement (3%); and, poor teaching at university (1%). 

Looking at specific mathematical knowledge, we asked ‘How would you rate first year 
students’ mathematical understanding of each of the following on entry to university?’ With a 
maximum score of 5 for high, the mean scores of the responses were algebra or generalised 
arithmetic (3.0), functions (2.8), real numbers (2.7), differentiation (2.5), complex numbers 
(1.9), definitions (1.9), vectors (1.9), sequences and series (1.9), Riemann integration (1.8), 
matrix algebra (1.7), limits (1.7) and proof (1.6).  

Since there has been some literature (e,g., Clark & Lovric, 2009) indicating that, rather than 
being ‘smooth’, the transition to university should require some measure of struggle by 
students, we asked ‘Do you think the transition from secondary to university education in 
mathematics should be smooth?’ Here, 54 (68.4%) responded “Yes” and 22 (27.8%) 
responded “No”. Of those who responded “No”, many of the comments were similar to the 
following, expressing the belief that this is a necessary transition: “Not necessarily smooth, 
because it is for most students a huge change to become more independent as learners.” Those 
who answered yes were then asked ‘what could be done to make the transition from 
secondary to university education in mathematics smoother?’ The majority of responses 
mentioned changes that could be made at the high school level, such as: encourage students to 
think independently and abstractly; change the secondary courses; have better trained 
secondary teachers; and, have less focus in secondary school on standardised tests and 
procedures. A few mentioned changes that could be made at the university, such as: better 
placement of students in classes; increasing the communication between secondary and 
tertiary teachers; and, addressing student expectations at each level. This lack of 
communication between the two sectors was also highlighted as a major area requiring 
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attention by the two-year study led by Thomas (Hong, Kerr, Klymchuk, McHardy, Murphy, 
Spencer, & Thomas, 2009). 

Since one would expect that, seeing students with difficulties, universities might respond in 
some appropriate manner, we asked ‘Does your department periodically change the typical 
content of your first year programme?’. 33 (41.8%) responded “Yes” and 44 (55.7%) 
responded “No”. The responses to the question ‘How does your department decide on 
appropriate content for the first year mathematics programme for students?’ by those who 
answered yes to the previous question showed that departments change the content of the first 
year programme based on the decision of committees either on university level or on 
department level. Some respondents said that they change the course based on a decision by 
an individual member of faculty who diagnoses students’ need and background to change the 
course content for the first year students. 15 of the 35 responded that their universities try to 
integrate student, industry, and national needs into first year mathematics courses. The 
follow-up question ‘How has the content of your first year mathematics courses changed in 
the last 5 years?’ showed that 35 had changed their courses in the last 5 years, but 10 of these 
said that the change was not significant. 17 out of the 35 respondents reported that their 
departments changed the first year mathematics courses by removing complex topics, or by 
introducing practical mathematical topics. In some of the courses, students were encouraged 
to use tools for calculation and visualisation. However, there were also 6 departments that 
increased the complexity and the rigour of their first year mathematics courses. 

LITERATURE REVIEW 

Some authors (e.g. Eisenberg, Engelbrecht, & Mamona-Downs, 2010) consider transition in 
terms of the general differences in approach between the styles of mathematics taught at 
school against that at university. One aspect highlighted by Engelbrecht (2010) is that 
students are not familiar with logical deductive reasoning, required in advanced mathematics. 
Hence, it is necessary to assist students in this transition process, in moving from general to 
mathematical thinking, seeing the need for logical structure but recognising that mental 
processing, conceptualization and intuition also have a crucial, complementary role. Leviatan 
(2008) argues that school mathematics concentrates on problem solving skills, while tertiary 
mathematics is more abstract and emphasises the inquisitive as well as the rigorous nature of 
mathematics. Another perspective concerning transition considered by De Vleeschouwer 
(2010a, b) involves the movement from application of techniques to their justification and 
then significance within a mathematical theory. 

Calculus and Analysis 

A number of researchers have studied the problems of the learning of calculus and analysis in 
the transition between secondary school and university. Some of these studies focus on the 
specific topics of real numbers (Bergé, 2008, 2010; Bloch, Chiocca, Job & Scheider, 2006; 
Ghedamsi, 2008; Mamona-Downs, 2010), functions (Dias, Artigue, Jahn & Campos, 2008; 
Vandebrouk, 2010), limits (Bloch et al. 2006; Bloch & Ghedamsi, 2005), continuity (Artigue, 
2008) and open and closed sets (Bridoux, 2010). Ghedamsi (2008a, b) and sequences and 
series (González-Martin, 2009; Gyöngyösi, Solovej & Winsløw, 2010). They were located in 
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several countries (Brazil, Canada, Denmark, France, Israel, Tunisia) and use different 
frameworks (such as ATD; textbook analysis, analysis of students’ productions; use of CAS 
or innovative teaching and assessment methods). Some have shown that calculus conflicts 
that emerged from experiments with first year students could have their roots in a limited 
understanding of the concept of function, as well as suggesting the need for a more intensive 
exploration of the dynamical nature of the differential calculus (Junior, 2006). The transition 
from calculus to analysis has been extensively investigated within the Francophone 
community, with the research developed displaying a diversity of approaches and themes but 
a shared vision of the importance to be attached to epistemological and mathematical analyses. 
This has been demonstrated in studies by a number of researchers. For example, Robert (2010) 
shows that the Formalizing, Unifying, Generalizing (FUG) perspective can be useful for 
approaching the teaching and learning of some notions in analysis and Bridoux (2010), 
considering topological notions introduced in a first university course in Belgium, shows the 
FUG character of these notions. One important distinction in analysis, addressed by Artigue 
(2009), Rogalski (2008) and Vandebrouck (2010, 2011), is between local and global 
perspectives. They considered the evolution of functional thinking in transition from 
secondary to university, the latter using a TWM lens, and expressing the need to 
reconceptualise the concept of function in terms of its multiple registers and its process-object 
duality. He claims that university level work on functions requires that students can adopt a 
local point of view, whereas only pointwise (where functions are considered as a 
correspondence between two sets of numbers) and global points of view (where the 
representations are tables of variation) are constructed at secondary school. However, the 
emphasis on algebraic tasks at the end of the secondary school tends to erase the pointwise 
and global points of view and doesn’t allow students to reach the local point of view. The 
claim is that the school approach also prevents consideration of functions as complex objects 
with pointwise as well as global properties and consequently students face difficulties 
developing the necessary local viewpoint when entering the formal axiomatic world at the 
start of university. To illustrate Vandebrouck presents a task which algebraic techniques are 
not sufficient to solve, giving rise to student difficulties. An ATD-based study of the 
transition from concrete to abstract perspectives in real analysis was that of Winsløw (2008), 
who considered real functions and the operations on these functions associated with the limit 
process. He claims that in secondary schools the focus is on the practical-theoretical blocks of 
concrete analysis, while at university level the focus is on more complex praxeologies of 
concrete analysis and on abstract analysis. He considers two kinds of transitions in the 
student’s mathematical activity. The first is the transition from activity mainly centred on 
practical blocks to that of working with more comprehensive and structured mathematical 
organisations. The second is the transition to tasks with theoretical objects. Since the second 
kind of transition presupposes the first one an incomplete achievement of the first transition 
produces an obstacle for the second one by making the tasks to be worked on inaccessible. 

One of the key concept changes in the transition from school calculus to university analysis is 
the need to work with limits, especially of infinite sequences or series. Two obstacles 
regarding the concept of infinite sum were identified by González-Martin (2009, see also 
González-Martín, Nardi, & Biza, 2011)), the intuitive and natural idea that the sum of infinity 
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of terms should also be infinite, and the conception that an infinite process must go through 
each step, one after the other and without stopping, which leads to the potential infinity 
concept. If the concept of series is reduced to its algorithmic aspects, as he claims it usually is, 
this leads to misconceptions of the integral concept. Employing epistemological, cognitive 
and didactic dimensions to textbook analysis he concludes that series represents 10% or more 
of the content, but that the textbooks do not foster the links between visual and algebraic 
representations. Further, there was no consensus on how way to introduce series, very few 
tasks showing real life applications and very few historical references. A useful approach to 
building thinking about limits, suggested by Mamona-Downs (2010), is the set-oriented 
characterization of convergence behaviour of sequences of that supports the mental image of 
‘arbitrary closeness’ to a point. According to Oehrtman (2009), students’ reasoning about 
limit concepts appears to be influenced by metaphorical application of experiential 
conceptual domains. He identified strong metaphors for limit concepts by 120 students 
through analyses of their written assignments from an introductory calculus course and nine 
interviews. The metaphors were: collapse metaphors (for the definition of the derivative, the 
volume of solids of revolution, definite integrals and the fundamental theorem of calculus); 
approximation metaphors (for infinite series, the definition of the derivative); proximity 
metaphors (for the limit of function and continuity, infinite series, the definition of the 
derivative); infinity as number metaphors; and physical limitation metaphors (for a volume of 
revolution, the limit of a sequence of sets). He argues that the only metaphor cluster that was 
consistently detrimental to students’ understanding was that of the physical limitation 
metaphors. However, it could be a concern that students demonstrated an inability to apply 
abstract criteria for adopting, evaluating, or modifying particular metaphors, although this 
gives fertile opportunities for discussions. 

The theoretical influence of TDS led to a long-term Francophone tradition of didactical 
engineering research, which in the last decade has been designed to support the transition 
from secondary calculus to university analysis. Ghedamsi (2008a, b) articulated knowledge 
and designed situations related to the nature and properties of real numbers and the notion of 
limit. Through the development and use of approximation methods, two situations allowed 
students to connect the intuitive, perceptual and formal dimensions of the limit concept 
productively. The aim was to enlarge the experimental field of students concerning the nature 
of real numbers and their appearance and hence develop conceptualisation from both natural 
and formal thinking. Two approximation methods were used as experimental situations: the 
construction of the better rational approximation of  and, if possible, its generalisation to 
other irrationals; and the cosine fixed point. The conclusion was that the irrational numbers 
situation gave a status to numbers that students have only considered as “notations”, while the 
cosine fixed point situation gives access to real numbers that we cannot make explicit, and 
consequently requires the implementation of formal procedures. Bridoux’s (2010) study 
designed and implemented a succession of situations for introducing the notions of interior 
and closure of a set and open and closed set, after identifying the FUG characteristics of these 
notions. This example of didactical engineering used meta-mathematical discourse and 
graphical representations to assist students to develop an intuitive insight into these notions 
that would then allow the teacher to characterise them in a formal language. The notion of 
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completeness was examined by Bergé (2008, 2010), who considered student thinking about 
the concept as they progress in their undergraduate career. Analysing whether they have an 
operational or conceptual view of completeness, or if it is something taken for granted, she 
concludes that many students have a weak understanding that does not include ideas such as: 
R is the set that contains all the suprema of its bounded above subsets; Cauchy sequences 
come from the necessity of characterizing the kind of sequences that ‘must’ converge; and 
completeness is related to the issue whether a limit is guaranteed to lie in R. 

One aspect of transition highlighted by the ATD is that praxeologies exist in relation to 
institutions. Employing the affordances of ATD, and prior educational research, Praslon 
(2000) showed that by the end of high school in France a substantial institutional relationship 
with the concept of derivative is already established. Hence, for this concept he claims that 
the secondary-tertiary transition is not about intuitive and proceptual perspectives moving 
towards formal perspectives, as TWM might suggest, but is more complex, involving an 
accumulation of micro-breaches and changes in balance according several dimensions 
(tool/object dimensions, particular/general objects, autonomy given in the solving process, 
role of proofs, etc), something that university academics are not very sensitive to. Building on 
this work Bloch (2004) identified nine factors contributing to a discontinuity between high 
school and university in analysis. Further, using ATD Bosch, Fonseca and Gascón (2004) 
show the existence of strong discontinuities in the praxeological organization between high 
school and university, and build specific tools for qualifying and quantifying these. Another 
interesting anthropological contribution is that of Bergé (2008) who investigated the 
evolution of students’ relationships with real numbers and the idea of completeness, and 
linked these relationships with the characteristics of the different courses where students meet 
these notions and work with them. Also employing an institutional approach, Dias, Artigue, 
Jahn and Campos (2008) conducted a comparative ATD study of the secondary-tertiary 
transition in Brazil and France, using the concept of functions as a filter. They looked at the 
personal relationships developed by students with the concept of function and the continuities 
and discontinuities between teaching practices in secondary and tertiary institutions in the 
two countries. The analysis of institutional relationships considered evaluations used for the 
selection of students at university entrance or developed by specific universities. A typical 
task in Brazil involves the determination of terms of arithmetic and geometric sequences, 
with the associated praxeologies based on algebraic techniques and technology. A typical task 
in France is the study of the convergence of such sequences both qualitatively and 
quantitatively, with the associated praxeologies being the use of analytic techniques and 
technology, with a higher level of student guidance through hints and intermediate questions 
in France than in Brazil. The authors concluded that although contextual influences tend to 
remain invisible there is a need for those inside a given educational system to become aware 
of them in order to envisage productive collaborative work and evolution of the system. One 
crucial aspect of the institution is the teaching practice of the lecturers, and Smida and 
Ghedamsi (2006) studied the teaching practices of first year real analysis in 
mathematics/informatics courses in a Tunisian university. They distinguish two kinds of 
teaching projects leading to two different models of teaching practices: those where 
axiomatic, structures and formalism are the discourse that justify and generate the expected 
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knowledge and know-how (this model follows only mathematical logic); and projects where 
the variety of choices for proving, illustrating, applying or deepening the mathematical results 
highlights a declared intent – by teachers – to enrol in a constructivist setting (this model 
combines the logic of mathematics and cognitive demands). A questionnaire given to 57 
lecturers from 4 universities highlighted 3 groups of lecturers: those with a logico-theoretical 
profile, who do not take into account cognitive demands (more or less 40%); those with a 
logico-constructivist profile, who have some cognitive concern (more or less 35%); and those 
who take into account cognitive demands (more or less 25%). However, 80% of the lecturers 
report hardly ever, or never, giving students tasks that lead them to formulate a conjecture. 
Further, more than 90% of the lecturers do not consider the proof in analysis as a means of 
convincing students of the validity of mathematical statements, and almost 60% do not 
consider proof as a priority, as a logico-theoretical tool for validation. 

Some researchers consider possible ways to assist the transition. For example, Gyöngyösi, 
Solovej and Winsløw (2010, 2011) report an experiment using Maple CAS-based work to 
ease the transition from calculus to real analysis in Denmark. Using a combination of 
theoretical frameworks to study transition (an adaptation of ATD by Winsløw, Winsløw's 
semiotic representation, Artigue's notions of epistemic and pragmatic value, and Trouche's 
instrumental orchestration), they give examples of praxeologies to be developed by students 
and teachers and analyse them according to their pragmatic value (efficiency of solving tasks) 
and epistemic value (insight they provide into the mathematical objects and theories to be 
studied). They conclude that the use of instruments changes the kinds of mathematics 
students do, and those with an overall lower performance also commit more errors when 
using instrumented techniques. In a similar vein, Biehler, Fischer, Hochmuth and Wassong 
(2011) propose that blending traditional course attendance with systematic e-learning study 
can facilitate the bridging of school and university mathematics. Using a detailed 
calculus-based study, Farmaki and Paschos (2007) proposed that the transition from intuitive 
assumptions to mathematical argumentation of a first year student could suggest teaching 
interventions to develop students’ intuitive strengths in a controlled manner, and hence 
promote formal mathematical thinking. Using graphing calculator technology in 
consideration of the Fundamental Theorem of Calculus, Scucuglia (2006) made it possible for 
the students to become gradually engaged in deductive mathematical discussions based on 
results obtained from experiments. Another approach suggested by Chorlay (2009) is to turn 
to the history of mathematics. His historical study of the different viewpoints on functions in 
elementary and non-elementary mathematics in the 19th century allowed him to formulate a 
series of hypotheses about the long-term development of functional thinking in the transition 
from secondary to university. 

In our survey the mathematicians were asked whether students were well prepared for 
calculus study. Those whose students did not study calculus at school rated their students’ 
preparation for calculus at 2.1 out of 5. Those whose students did, rated secondary school 
calculus as preparation to study calculus at university at 2.4, and as preparation to study 
analysis at university at 1.5. These results suggest that there is some room for improvement in 
school preparation for university study of calculus and analysis. 
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Generalised Forms of Arithmetic and Abstract Algebra 

Understanding the constructs, principles, and eventually axioms, of the algebra of generalised 
arithmetic could be a way to assist students in the transition to study of more general algebraic 
structures. With a focus on students’ work on solving a parametric system of simultaneous 
equations and the difficulties they experience with working with variables, parameters and 
unknowns, Stadler (2011) describes students’ experience of the transition from school to 
university mathematics as an often perplexing re-visiting of content and ways of working that 
seems simultaneously both familiar and novel. Using a perspective that is discursive and 
enculturative, largely based on Sfard’s commognition, the paper illustrates the multi-faceted 
nature of transition from school to university mathematical discourse through the extensive 
examination of a selected episode. While the analysis of the episode as a case illustrating 
several facets of the transition (individual, institutional, social) is not totally convincing (the 
students' difficulty with variables, parameters and unknowns is palpable and slightly 
overshadows the other aspects), the impression is that Sfard's perspective is a good match for 
studies of transition. The constructs of number, symbolic literals, operators, the ‘=’ symbol 
itself, and the formal equivalence relation, as well as the principles of arithmetic, all 
contribute to building a deep understanding of equation. Godfrey and Thomas (2008), using 
the TWM framework, provide evidence that many students have a surface structure view of 
equation and hence fail to integrate the properties of the object with that surface structure. 
One example they provide concerns the way in which an embodied input-output, procedural, 
or operational, view of equation persists for approximately 25% of secondary school students, 
even when they reach university level. They also point out that equivalence is not well 
understood by school students, and that the reflexive, symmetric, and transitive properties 
forming an equivalence relation are rarely considered in schools, even though they are often 
assumed. 

Students’ encounter with abstract algebra at university marks a significant point in the 
transition to advanced mathematical formalism and abstraction. Topics such as group theory 
are characterised by deeper levels of insight and sophistication (Barbeau, 1995) and ask of 
students a commitment to what is often a fast-paced first encounter in lectures (Clark et al., 
1997). Key to this encounter is the realisation of the need to “think selectively about its 
entities, paying attention to those aspects consistent with the context and ignoring those that 
are irrelevant.” (Barbeau, 1995, p. 140). As Hazzan (1999) notes, students’ difficulty with 
abstract algebra can be attributed to the novelty of dealing with concepts that are introduced 
abstractly, defined and presented by their properties along with an examination of what facts 
can be determined from these properties alone (Hazzan, 1999). Furthermore the way that 
students approach proof writing, and the type of practices and beliefs that they bring to the 
task often exacerbates some of this difficulty (Powers, 2010; Weber, 2001). In research 
spanning mathematical topics, but focusing on examples from group theory and linear algebra, 
Nardi (2011) makes use of Sfard’s commognition perspective, and data from Nardi (2008), to 
analyse university mathematicians’ comments on new Year 1 students’ verbalisation skills. 
She notes: the role of verbal expression to drive noticing; the importance of good command of 
ordinary language; the role of verbalisation as a semantic mediator between symbolic and 
visual mathematical expression; and the precision proviso for the use of ordinary language in 

99



Thomas, de Freitas Druck, Huillet, Ju, Nardi, Rasmussen, Xie 
 

 
 

mathematics. One observation that emerges from the analysis is that discourse on 
verbalisation in mathematics tends to be risk-averse and that more explicit, and less 
potentially contradicting, pedagogical action is necessary in order to facilitate students’ move 
away from often wordless mathematical expression in school and appreciation of 
mathematical eloquence.  

Below we summarise results from some studies that focus on the difficulties students 
experience in their first encounters with key concepts in abstract algebra – and a few that 
touch on pedagogical insights emerging from our understanding of these difficulties. As 
mentioned above, students’ skills in proof production are central to the quality of their first 
encounter with Group Theory. According to Hart (1994): 

 Students’ conceptual schemas is the key element in the success of problem solving in 
Group Theory; 

 Students’ overreliance upon concrete examples of groups often causes operation 
confusion; 

 The ability to translate concrete representations is critical in the students’ proof 
production (as is the overreliance on concrete representations) 

 Students need to learn how to apply domain-specific proving strategies 
Dubinsky et al. (1994) made the first comprehensive attempt to explore student encounters 
with fundamental concepts of Group Theory (group, subgroup, coset, normality and quotient 
group). Written largely in the language of APOS, the study marked the importance of students’ 
understanding of the process-object duality of mathematical concepts as a prerequisite for 
understanding in Group Theory. It highlighted the importance of the concept of function in 
building group-theoretical understanding, and identified specific issues of difficulty such as 
confusing normality with commutativity. Cosets and normality were also identified as major 
stumbling blocks in the early stages of students’ learning. 

As a particular, and important, form of the concept of function, the concept of group 
isomorphism has attracted attention in several studies.  For example, Leron et al (1995) 
distinguished between students’ naive and formal conceptualisations of isomorphism through 
an elaborate discussion of student attempts to distinguish isomorphic relations between two 
groups and isomorphism; to prove that a certain function is, or not, an isomorphism; to work 
with isomorphisms in the abstract or in concrete cases. The results highlighted students’ 
difficulties to link isomorphic relations with group orders; to distinguish between properties 
of group elements and properties of groups’, and to construct isomorphisms between certain 
groups. 

Lagrange’s theorem is another topic from the introductory parts of Group Theory that has 
attracted attention in several studies. For example, Hazzan and Leron (1996) noted that 
students may use theorems such as this (particularly those with recognisable names to them) 
as slogan-style references in their proofs (in their data students use Lagrange’s theorem or 
some version of its converse where not appropriate or relevant to the problem and use the 
theorem and its converse, or ‘naïve’ versions of the converse, indistinguishably). 
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Other important introductory elements of Group Theory were treated in two papers published 
in the late 1990s in the Journal of Mathematical Behavior. Brown et al. (1997) focused on 
binary operations, groups and subgroups and Asiala et al. (1997) looked at cosets, normality 
and quotient groups. Soon after, an analogous report by Asiala et al. (1998) examined 
understanding of permutations of a finite set and symmetries of a regular polygon. Once again 
emphasis, in the context of groups of symmetries and dihedral groups, was on the need to 
facilitate students’ transition to object understandings of key notions in Group Theory. 

In addition to a consideration of fundamental Group Theory concepts, some studies have 
focused on issues such as the relationship between visual and analytic thinking (VA), and, 
largely, the need for both (Zazkis & Dubinsky, 1996). In these authors’ VA model, whether 
external or internal, visual representations are in a constant interplay with analytical ones. 
Eventually it is of little concern whether the emerging complex construct is visual or analytic 
as the elements of both types of thinking have merged into it effectively. In resonance with 
the VA proposition by Zazkis and Dubinsky, Hazzan (1999) explored how students attempt to 
cope in Group Theory through reducing its high levels of abstraction. In a related paper 
Hazzan (2001) examines these attempts at reducing levels of abstraction in the context of a 
problem that asked students to construct the operation table for a group of order four.  

Mirroring many of the difficulties outlined generally in the above in her analyses of student 
responses to introductory Group Theory problem sheets, Nardi (2000) identified students’: 

 difficulties with the static and operational duality within the concept of order of an 
element as well as the semantic abbreviation contained in    ; 

 often problematic use of ‘times’ and ‘powers of’ in association with the group 
operation; 

 ambivalent use of geometric images as part of meaning bestowing processes with 
regard to the notion of coset; 

 problematic conceptualization of multi-level abstractions embedded in the concept of 
isomorphism. 

The duality underlying the concept of group, and the role of binary operation in this concept, 
were also discussed later by Iannone and Nardi (2002) who offered evidence of the students’ 
tendency to: consider a group as a special kind of set, often ignoring the binary operation that 
is fundamental to its entity; consider the axioms in the definition of a group as properties of 
the group elements rather than the binary operation; and omit checking those axioms that they 
perceive as obvious (e.g. in some cases associativity). In addition, doctoral research by 
Ioannou, (see Ioannou & Nardi, 2009a, b; 2010; Ioannou & Iannone, 2011) considers students’ 
first encounter with abstract algebra, focusing on the Subgroup Test, symmetries of a cube, 
equivalence relations, and employing the notions of kernel and image in the First 
Isomorphism Theorem. Provisional conclusions are that students’ overall problematic 
experience of the transition to abstract algebra is characterised by the strong interplay 
between strictly conceptual matters, such as the ones addressed above, affective issues and 
those that are germane to the wider study skills and coping strategies that students arrive at 
university with.  
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Most of the above studies offer some pedagogical insight into how teaching can facilitate 
students’ transition to this most abstract and formal topic in mathematics. Briefly, included in 
these recommendations is reversing the order of presentation, using examples and 
applications to stimulate the discovery of definitions and theorems through permutation and 
symmetry (Burn, 1996; 1998). Many of these were similarly re-stated by Larsen (2009) as 
presenting a series of tasks that explore the symmetries of an equilateral triangle and 
culminate in negotiating preliminary understandings of the order of a group and isomorphism, 
as well as getting students to construct multiplication tables for groups of small order as a 
stepping stone for an understanding of the general notion of group structure (Thrash & Walls, 
1991). Other ideas are to start with an interactive approach involving computer-based 
experimentation with group structures, followed by a more formal introduction (Leron & 
Dubinsky, 1995), to use a set of group-work activities that take the place of the formal 
introduction in the lectures and stimulate students’ to take over responsibility for learning 
(Cnop & Grandsard, 1998) or encourage independent study of proofs in Group Theory 
through carefully prepared workbooks (Alcock et al., 2008). 

Linear Algebra 

A sizeable amount of research in linear algebra has documented students’ transition 
difficulties, particularly as these relate to students’ intuitive or geometric ways of reasoning 
and the formal mathematics of linear algebra (Dogan-Dunlap, 2010; Gueudet-Chartier, 2004; 
Harel, 1990). Related to this work, Hillel (2000) constructed a theoretical framework for 
understanding student reasoning in linear algebra, and identifying three modes of description: 
geometric, algebraic, and abstract. Hillel found that the geometric and algebraic modes of 
relating to vectors and vector spaces could become obstacles for understanding the abstract 
modes because they limited the amount of generality that a student could draw from either 
geometric or algebraic examples. Corriveau (2009) suggests that one of the challenges of the 
transition from secondary algebra to university linear algebra is that the formalism obstacle 
appears when students work with expressions, losing sight of the mathematical objects that 
the symbols represent. Hence, when a new algebra (e.g., matrix algebra, etc.) is introduced as 
a tool for calculation for algorithmisation of procedures and reasoning through calculations 
and their rules, then students have to accept delegation of parts of the control of validity and 
meaning to this algebra, leading to a loss of control and meaning. 

Wawro, Sweeney, and Rabin (2011) analyzed the ways that students used different modes of 
representation in making sense of the formal notion of subspace. Specifically, the authors 
studied the relationship between students’ understanding of the definition of subspace and 
their concept images. In the study, students demonstrated a variety of ways of engaging with 
the formal definition and showed that they utilized geometric, algebraic and metaphoric ways 
of relating their concept image and the definition.  The results of the study suggest that in 
generating explanations for the definition, students rely on their intuitive understandings of 
subspace.  These intuitive understandings can be problematic, as in the case of seeing R2 as a 
subspace of R4, but they can also be very powerful in developing a more comprehensive 
understanding of subspace.  
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In addition to the geometric mode of reasoning that Hillel references, problems with the 
symbolic notation of linear algebra have also been studied. Harel and Kaput (1991), for 
example, demonstrated that students have difficulties in generating relationships between 
many of the formal and algebraic symbols used in linear algebra and the conceptual entities 
that they are intended to represent. In examining students’ decisions about whether a given set 
was in fact a vector space, the authors demonstrated that students who related to the vector 
space as a conceptual idea were better able to reason about whether a given set was a vector 
space than those who procedurally checked the axioms against the new set. Because symbols 
in advanced mathematics in general, and in linear algebra in particular, connect so many 
different ideas (e.g., formal notions, systems of equations, vector systems, etc.), developing 
an understanding of what a symbol represents conceptually is crucial to understanding linear 
algebra as a whole. Further evidencing students’ difficulties with symbols in linear algebra, 
Britton and Henderson (2009) demonstrated that students had difficulties in dealing with the 
notion of closure.  Specifically, the students had problems in moving between a formal 
understanding of subspace and the algebraic mode in which a problem was stated. These 
authors argued that student difficulties stemmed from an insufficient understanding of the 
various symbols used in the questions and in the formal definition of subspace. 

Dorier, Robert, Robinet and Rogalski (2000a) expressed concern that in the French secondary 
school system the strong emphasis on algebraic concepts in linear algebra leaves little room 
for set theory and elementary logic. They contend that this absence leads to difficulty in 
working with the formal aspects of linear algebra.  For example, students are often unable to 
reason with definitions and abstract concepts. Dorier, Robert, Robinet, and Rogalski (2000b) 
and Rogalski (2000) take an approach to dealing with these problems that involves teaching 
linear algebra as a long term strategy, having students revisit problems in a variety of different 
settings—geometric, algebraic, and formal.  It also involves what the authors call the 
meta-lever in which students reflect on their activity in order to draw connections between the 
various settings and to build generalizations.  

Another dimension of research deals with the relationships between linear algebra and 
geometry. These relationships were at the core of the doctoral thesis by Gueudet (Gueudet, 
2004). Her habilitation dissertation (Gueudet, 2008a, b) synthesises ten years of research in 
that area and identifies specific views on students’ difficulties, in the secondary-tertiary 
transition in linear algebra, resulting from different theoretical perspectives. The 
epistemological view leads to a focus on linear algebra as an axiomatic theory, which is very 
abstract for the students. Focusing on reasoning modes leads her to identify the need, in linear 
algebra, for various forms of flexibility, in particular flexibility between dimensions.  

Other efforts to improve student learning include the work of Klapsinou and Gray (1999), 
who studied a course in which students were first given concrete instantiations of linear 
algebra concepts and then used those to generate understanding of the formal definitions of 
the concepts. The authors noted that students who were taught in this manner later had 
difficulty with understanding the definition and applying it to different situations. They argue 
that taking a computational approach and then developing the abstractions refines students’ 
processes for doing computation in linear algebra, but not their understanding of certain 
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concepts as objects. Portnoy, Grundmeier and Graham (2006), in a study of pre-service 
teachers in a transformational geometry course, demonstrated that students who had been 
utilizing transformations as processes that transformed geometric objects into other 
geometric objects had difficulty writing proofs involving linear transformations.  The authors 
argued that the process nature of students’ understanding of transformation contributed to 
their understanding of the concept in general, but they may not have developed the necessary 
object understanding for writing correct proofs.   

Other efforts to improve the learning and teaching of linear algebra have drawn on APOS 
theory, focusing on a variety of concepts including linear independence and dependence 
(Bogomolny, 2008). Recently, Stewart and Thomas (2009, also Thomas & Stewart, 2011) 
used a framework employing APOS theory in conjunction with TWM to analyze students’ 
understanding of various concepts in linear algebra, including linear independence and 
dependence, eigenvectors, span and basis.  In a series of studies, the authors found that 
students did not think of many of these concepts from an embodied standpoint, but instead 
tended to rely upon an action/process oriented, symbolic way of reasoning. Stewart and 
Thomas (2007) also conducted a study of two groups of linear algebra students. They 
employed a course in which the students were introduced to embodied, geometric 
representations in linear algebra along with the formal and the symbolic. The authors claim 
that the embodied view enriched students’ understanding of the concepts and allowed them to 
bridge between concepts more effectively than employing just symbolic processes.  In 
another study, Stewart and Thomas (2010) demonstrated that students viewed basis from an 
embodied perspective as a set of three non-coplanar vectors, symbolically, as the column 
vectors of a matrix with three pivot positions, and formally, as a set of three linearly 
independent column vectors. The students in this study, however, tended mostly toward a 
symbolic process-oriented matrix manipulation view for most concepts and hence did not 
attain the conceptually richer geometric aspects of linear algebra. 

In order to address students’ difficulties in bridging the many representational forms and the 
variety of concepts present in linear algebra, some researchers have turned to computers for 
aid in teaching (e.g., Berry, Lapp, & Nyman, 2008; Dogan-Dunlap & Hall, 2004; Hillel, 
2001). Dreyfus, Hillel, and Sierpinska (1998) postulated that a geometric but coordinate-free 
approach to issues such as transformations and eigenvectors may be helpful in coming to 
understand these concepts. The authors found that the use of a computer environment and 
tasks enabled students to develop a dynamic understanding of transformation, but that it 
hindered their ability to understand transformation as relating a general vector to its image 
under the transformation. In another study the authors (Sierpinska, Dreyfus, & Hillel, 1999) 
investigated how students determined if a transformation was linear or not using Cabri. In this 
study, the researchers discovered that students made determinations about a transformation’s 
linearity based upon a single example. Thus, using only one image of kv under the 
transformation they checked if for a vector, v, a scalar k, and a transformation T, whether 
T(kv)=kT(v), and did not vary v using the program’s capabilities. Recently, Meel and Hern 
(2005) created a series of interactive applets using Geometer’s Sketchpad and JavaSketchpad 

to teach linear algebra. Their intention in developing and using these tools was “to help 
students experience the mathematics and then lead them to examine additional examples that 
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help them recognize the misinterpretation or mis-generalization” (ibid, p. 7).  From anecdotal 
evidence, the authors noted that these activities have been largely successful in accomplishing 
this task.  

More recently, different research teams have been spearheading innovations in the teaching 
and learning of linear algebra. Cooley, Martin, Vidakovic, and Loch (2007) developed a 
linear algebra course that combines the teaching of linear algebra with learning about APOS 
theory. By focusing on a theory for how mathematical knowledge is generated, students were 
made aware of their own thought processes and could then enrich their understanding of 
linear algebra accordingly. Other researchers have been working with Models and Modeling 
(Lesh & Doerr, 2003) and APOS to develop instruction that leverages students’ intuitive 
ways of thinking to teach linear algebra. For example, Possani, Trigueros, Preciado, and 
Lozano (2010) utilized a genetic composition of linear independence and dependence and 
systems of equations in order to aid in the creation of a task sequence. The task sequence, 
which asked students to model the coordination of the traffic flow in a particular area of town, 
was designed to present students with a problem that they could first mathematise and then 
use to understand linear independence and dependence.   

In the United States, another group of researchers has been drawing on sociocultural theories 
(Cobb & Bauersfeld, 1995) and the instructional design theory of Realistic Mathematics 
Education (Freudenthal, 1973) to explore the prospects and possibilities for improving the 
teaching and learning of linear algebra. Using a design research approach (Kelly, Lesh, & 
Baek, 2008), these researchers are simultaneously creating instructional sequences and 
examining students’ reasoning about key concepts such as eigenvectors and eigenvalues, 
linear independence, linear dependence, span, and linear transformation (Henderson, 
Rasmussen, Zandieh, Wawro, & Sweeney, 2010; Larson, Zandieh, & Rasmussen, 2008; 
Sweeney, 2011). For example, these authors examined students’ various interpretations of the 
equation A [x y] = 2 [x y], where [x y] is a vector and A is a 2 x 2 matrix prior to any 
instruction on eigentheory. They identified three main categories of student interpretation and 
argue knowledge of student thinking prior to formal instruction is essential for developing 
thoughtful teaching that builds on and extends student thinking. This group has also begun to 
disseminate studies on the sequences of tasks for developing student reasoning of basis and 
constructing understanding of vectors, vector equations, linear dependence and independence 
and span. For example, Wawro, Zandieh, Sweeney, Larson, and Rasmussen (2011) report on 
student reasoning as they reinvented the concepts of span and linear independence. The 
reinvention of these concepts was guided by an innovative instructional sequence that began 
with vector equations (versus systems of equations, that most introductory texts employ) and 
successfully leveraged students’ intuitive imagery of vectors as movement to develop formal 
definitions. This more recent work challenges some of the earlier findings that students’ 
intuitive ways of reasoning are an obstacle to induction into formal mathematics. 

Drawing on the TDS and ATD frameworks de Vleeschouwer and Gueudet (2011) put 
forward the view that some of the difficulties students experience may originate in the 
institutional experiences they have been offered (e.g. tasks). However, they observe that 
students can learn to appreciate the duality in linear forms (process-object or, to these authors, 
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micro-macro) if given an appropriate set of tasks that require them to engage with these 
concepts at both levels. Their perspective is that of the changing didactical contract between 
school and university mathematics, particularly with regard to ways of approaching 
mathematical content (and less of the more common research foci on more general aspects of 
the students' mathematical learning experiences such as teacher expectations, attitudes to 
proof etc.). 

Discrete Mathematics 

Discrete mathematics deals with finite or countable sets, bringing into play several 
overlapping domains, e.g. number theory, graph theory, and combinatorial geometry (Grenier, 
2011). It occupies a rather variable place in mathematics education; in some countries, only a 
very small number of discrete mathematics concepts are taught, often those related to 
combinatorics and the basics of number theory. Discrete mathematics can be introduced, 
either as a mathematical theory, or as a set of tools to solve problems (a graph is a basic and 
intrinsic modelling tool). For example, mathematical games are often based on problems in 
discrete mathematics. We present here three contributions that illustrate how discrete 
mathematics can be used in mathematics in both high school and university for addressing 
important issues in the transition such as the nature and elaboration of mathematical 
definitions, and reasoning modes such as for instance reasoning by induction, necessary and 
sufficient conditions. Using contexts such as the Königsberg’s bridges problem is suggested 
by Cartier and Moncel (2011) as a way to provide access to fundamental mathematical 
concepts like proofs, necessary and sufficient conditions, and modelling techniques. The 
elaboration of definitions was the topic of Ouvrier-Buffet (2011). She suggests that 
encouraging students to work on skills such as defining, proving and conceiving new 
concepts through various discrete mathematics concepts, such as trees, discrete straight lines 
and properties of displacements on a regular grid to generate knowledge and concepts. These 
types of activity give rise to specific reasoning modes and the potential for construction of 
new tools, such as coloring, proof by exhaustion of cases, proof by induction, and use of the 
Pigeonhole principle (Grenier, 2001, 2003). In this manner misconceptions that persist in the 
knowledge of many students as they are in transition to university, such as inaccurate 
knowledge about mathematical induction, may be addressed. 

Logic and Proof 

The difficulties met by transition students concerning logic are well recognized by teachers 
and mathematics educators around the world. In France, research on the role of logic in the 
learning and teaching of mathematics, and more specially proof and proving, has been 
developed since the eighties. Durand-Guerrier (2003), as well as Deloustal-Jorrand (2004) 
and Rogalski and Rogalski (2004) point out the importance of taking in account 
quantification matters in order to analyse difficulties related to implication, and more 
generally mathematical reasoning.  In the same vein, in a Tunisian context, Chellougui (2004, 
2009) investigates the use of quantification by new university students in Tunisia. Her 
didactic analysis of textbooks and course notes concerning upper limit, as well as an 
interview with pairs of students in a problem-solving situation, revealed, on the one hand, the 
didactic phenomena related to the alternation of the two types of quantifiers and, on the other 
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hand, difficulties in mobilizing the definition of the objects and the structures, which illustrate 
a major problem in the conceptualization process. These authors, as well as Durand-Guerrier 
and Arsac (2003, 2005) acknowledge that the importance of these questions seems to be 
largely underestimated by teachers at secondary school as well as at university level, as it 
appears in particular in textbooks. Durand-Guerrier and Arsac (2003, 2005) highlight the fact 
that a main challenge for novices is to develop together mathematical knowledge and logical 
skills, which are closely intertwined. Durand-Guerrier (2005) supports the relevance of a 
model theoretic point of view for analysing proof and proving in mathematics. These pieces 
of research concern mostly written mathematical discourse. In order to study deeply the oral 
interaction in argumentation and proof, Barrier (2009a, 2009b) introduces a semantic and 
dialogic perspective as developed by Hintikka. This permits one to highlight the importance 
of moving back and forth between syntax and semantics in the proving process in advanced 
mathematics (e.g. Blossier, Barrier & Durand-Guerrier, 2009). This research, together with 
research in other areas, calls for developing programmes allowing new university students to 
master the logical competencies required for the learning of advanced mathematics. The role 
of acquiring these competencies in a way that is similar to second language learning is 
developed by Durand-Guerrier and Njomgang Ngansop (2011), in a continuation of the work 
of Ben Kilani (2005) at secondary level. 

A previous ICME survey report on proof (Mariotti et al., 2004) raised a number of questions 
that relate to transition issues. Among these were: “Is proof so crucial in the mathematics 
culture that it is worthwhile to include it in school curricula?”; “What are the meanings of 
proof and proving in school mathematics and how are these meanings introduced into 
curricula in different countries?”. Important aspects include: students’ conceptions of proof, 
students’ performance in proof tasks; teachers’ conceptions of proof; and, how research in 
mathematics education has approached the issue of proof. Of particular interest has been the 
question “is it possible to overcome the difficulties in introducing pupils to proof so often 
described by teachers?” (Mariotti et al., 2004, p. 184). 

The key difference between school and university, which is expressed as a possible rupture, is 
that schools focus on argumentation while universities consider deductive proof  (Mariotti et 
al., 2004, p. 193). Iannone and Inglis (2011) discuss a range of weaknesses in newly arriving 
Year 1 mathematics students’ production of deductive arguments (rather than in the 
oft-reported perception that a deductive argument was expected of them). Specifically, Year 1 
mathematics students responded to four proof tasks and while they demonstrated a range of 
weaknesses in their production of deductive arguments, they were aware that when asked to 
generate a proof, they should provide a deductive argument. This is in some contrast to 
previous work in the field but this contrast may be accounted for by different student 
background and specialisms in the student sample.  

In a translation of his own paper (Balacheff, 1999), Balacheff argues for the notion of 
Cognitive Unity (Boero, Garuti & Mariotti, 1996) as a potential bridge between them, saying 
“I would summarize in a formula the place that I find possible for argumentation in 
mathematics, according to the notion of Cognitive Unity as it was introduced by our Italian 
colleagues: argumentation relates to conjecture, like proof does to a theorem” (Mariotti et al., 
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2004, p. 194). The survey report further proposed that “Research studies concerning the 
analysis of argumentation processes and their comparison with the production of 
mathematical proof appear to be very promising” (Mariotti et al., 2004, p. 201). The 
suggestion by Heinze and Reiss (2003) was that schools should move students away from 
inductive arguments toward formal argumentation. More recently, Antonini and Mariotti 
(2008) have applied the Cognitive Unity framework to the application of indirect proofs, such 
as contradiction and contraposition. They suggest that this provides a perspective, taking into 
account both epistemological and cognitive considerations, from which one may observe the 
relationship between argumentation and proof by focusing on analogies, without forgetting 
differences. 

The 2004 survey report further recommended a cautious approach, suggesting that the 
inclusion of proof in the school or university curriculum is only a first step, and it is important 
to ensure that the goals for doing so should be clarified, along with processes for how they 
will be operationalized (Mariotti et al., 2004). In the years since that report there have been 
many studies considering the role of proof, both at school and university. However, there 
appear to have been few studies directly addressing proof as an issue of transition (we note 
that at the time of writing the book Proof and Proving in Mathematics Education: The 19

th
 

ICMI study (Hanna & de Villiers, 2012) was still in print). While this is the case, the research 
does point out some of the key differences between approaches to proof in school and in 
university and makes suggestions for pedagogical approaches that might assist in the 
transition. In this section we draw on some of these aspects of proof studies. 

One theoretical perspective that may prove useful in considering the role of proof in transition 
is that of Harel (2008a, b), who proposes a framework called DNR-based instruction, which 
involves duality (D), necessity (N) and repeated reasoning (R). In this he distinguishes 
between ways of understanding, a generalisation of the idea of proof, and ways of thinking, 
which generalises the notion of proof scheme, but also includes problem solving approaches 
and beliefs about mathematics. In general, proof schemes are present at school, while learning 
and understanding in university is via proofs. One of the principal implications of defining 
mathematics as comprising both aspects is “that mathematics curricula at all grade levels, 
including curricula for teachers, should be thought of in terms of the constituent elements of 
mathematics—ways of understanding and ways of thinking—not only in terms of the former, 
as currently is largely the case.” (Harel, 2008, p. 490). However, such a definition of 
mathematics is consistent with mathematicians’ practice of mathematics, but not with their 
perception of it. There is a fundamental difference between the way mathematicians perceive 
mathematics and the way they practice it in their research. One reason for this may be, as 
Hanna and Janke (1993 – cited in Balacheff, 2008) hypothesise, that “Communication in 
scholarly mathematics serves mainly to cope with mathematical complexity, while 
communication at schools serves more to cope with epistemological complexity.” (Balacheff, 
2008, p. 433).  

According to Solomon (2006), enabling students to access academic proof processes in the 
transition from pre-university to undergraduate mathematics is a question of understanding 
and building on students’ own pre-existing epistemological resources in order to foster an 
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epistemic fluency that will allow them to recognize, and engage in, the process of creating 
and validating mathematical knowledge. Since transition involves maturation and its 
accompanying changes in thinking, Tall and Mejia-Ramos (2006) apply TWM to outline the 
changes in proof types that they suggest occur as students become more mathematically 
sophisticated. Firstly, in the embodied world, the individual begins with physical experiments 
to find how things fit together. Then in the symbolic world, arguments begin with specific 
numerical calculations and develop into the proof of algebraic identities by symbolic 
manipulation. However, it is only in the formal world where proof by formal deduction 
occurs. Thus as students develop cognitively, moving through the three worlds, their 
argument warrants (Toulmin, 1958) change, and the hope is that formal proof will become the 
only acceptable warrant. Tall (2004) refers to this as moving through the ‘three worlds’ of 
mathematics and characterizes development through the worlds, which impinges on 
production of proof schemes, as a move from perception and action, through operation and 
symbolism, to reason and formality (Tall, Yevdokimov, Koichu, Whiteley, Kondratieva & 
Cheng, 2012).  Pinto and Tall (2002) also describe natural thinking as using thought 
experiments based on embodiment and symbolism to give meaning to definitions and to 
suggest possible theorems for formal proof. 

Among the recommendations for pedagogical change that would have implications for 
transition is the point made by Balacheff (2008) and others (eg Hanna & de Villiers, 2008; 
Hemmi, 2008) that there is a need for more explicit teaching of proof, both in school and 
university. Some, (e.g., Stylianides & Stylianides, 2007; Hanna & Barbeau, 2008) argue for it 
to be made a central topic in both institutions. One reason given by Hanna and Barbeau (2008) 
is that, apart from their intrinsic value, proofs may display fresh methods, tools, strategies and 
concepts that are of wider applicability in mathematics and open up new mathematical 
directions for students. One example they cite, applicable to transition, is that an algebraic 
proof of the formula for solving a quadratic equation introduces the technique of adding a 
term and then subtracting it again. Hence they argue that “…proofs could be accorded a major 
role in the secondary-school classroom precisely because of their potential to convey to 
students important elements of mathematical elements such as strategies and methods.” 
(Hanna & Barbeau, 2008, p. 352). One way to make proof more central in the school 
mathematics classroom, proposed by Heinze et al. (2008) is the use of heuristic worked-out 
examples as an instrument for learning proof. While these kind of examples are based on 
traditional worked-out examples, they make explicit the heuristics of the problem solving 
process. The research showed some success with low- and average-achieving students, but 
there was no significant effect for high-achieving students (ibid). However, if proof is made 
more central, Balacheff, (2008) cautions that teaching of mathematical proof  “must not lead 
to an emphasis on the form, but on the meaning of proof within the mathematical activity.” (p. 
506).  Further, he maintains that to understand what proving is about requires the systematic 
organization of validation (eg control), communication (eg representation) and the nature of 
knowing. Three requirements for successful engagement with proof are also listed by 
Stylianides and Stylianides (2007): to recognize the need for a proof; to understand the role of 
definitions in the development of a proof; and the ability to use deductive reasoning. 
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Two potential difficulties in any attempt to place proving more prominently in the transition 
years are the role of definitions, and the problem of student met-befores (Tall & Mejia-Ramos, 
2006). A desire to use definitions as the basis of deductive reasoning in schools is likely to 
meet serious problems, since, according to Harel (2008), this form of reasoning is generally 
not available to school students. In fact he claims “…it does not become an integral part of the 
repertoire of students’ ways of thinking until advanced grades (if at all)… Understanding the 
notion of mathematical definition and appreciating the role and value of mathematical 
definitions in proving is a developmental process, which is not achieved for most students 
until adulthood.” (Harel, 2008, p. 495).  

Evidence for this is that when asked to define an invertible matrix, many linear algebra 
students stated a series of equivalent properties (e.g., “a square matrix with a nonzero 
determinant”, ‘‘a square matrix with full rank”, etc.) rather than a definition. The conclusion 
is that the provision of more than one such property indicates that they were not thinking in 
terms of a mathematical definition (Harel, 2008). A study by Hemmi (2008) agrees that 
students have difficulties understanding the role of definitions in proofs and lack experience 
of proving in their secondary school mathematics. She advocates a style of teaching that uses 
the principle of transparency, making the difference between empirical evidence and 
deductive argument visible to students. In this manner proof techniques, key ideas, structures 
of proofs could be taught at the same time as proof is used by the teacher and the students to 
verify convince and explain mathematics. Her study showed that for students many aspects of 
proof remained invisible and they often wondered exactly what constituted a proof, since 
there were no discussions about proof or proof techniques for students new to it. Adding 
transparency would avoid students being left to find out by themselves and judge if their 
solutions are correct, and why. A study by Cartiglia et al. (2004) showed that the cognitive 
influence of student met-befores (Tall & Mejia-Ramos, 2006) was strong, with the most 
recent met-before for university students, namely a formal approach, having a strong 
influence on their reasoning. Having formed the habit of using formal mathematical 
knowledge as the only resource for doing mathematics inhibited their ability to look for 
meaning in algebraic formulas. 

Another possible difficulty is the form of teaching in schools. It has been suggested that one 
of the major differences between argumentation and mathematical proof that could lead 
teachers to advance mostly argumentation skills with little or no deductive reasoning is the 
need to distinguish between the status and content of a proposition (Duval, 2002; Harel, 2008). 
A potential way forward, proposed by Inglis, Mejia-Ramos, and Simpson (2007), is the use of 
the full Toulmin argumentation scheme, including its modal qualifier and rebuttal. Their 
research indicates “non-deductive warrant-types play a crucial role in mathematical 
argumentation, as long as they are paired with appropriate modal qualifiers… they retain the 
use of the warrants that have been used in previous ‘worlds’ or ‘proof schemes,’ but they 

qualify them appropriately (where appropriateness is defined by expert practice).” (Inglis, 
Mejia-Ramos, & Simpson, 2007, p. 17) This has possible implications for transition, since it 
would not be necessary for teaching to go straight to the use of formal deductive warrants. 
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A positive pedagogical approach to the teaching of proving proposed by a number of 
researchers (eg Kondratieva, 2010; Pedemonte, 2007, 2008) is student construction and 
justification of conjectures. Pedemonte’s (2007) conclusion was that teaching of proof based 
on presentation of proofs to students and getting them to reproduce them, rather than to 
construct them, appears to be unsuccessful. Instead she highlights the need for open problems 
that ask for a conjecture, which appears to be a very effective way to introduce the learning of 
proof. She also discusses (Pedemonte, 2007, 2008) the relationship between argumentation 
and proof in terms of structural distance, moving from abductive, or plausible, argumentation 
to a deductive proof, where in the former inferences are based on content rather than on a 
deductive scheme. She argues for an abductive step in the structurant argumentation (coming 
after a conjecture, to justify it), since it “could be useful in maintaining the connection 
between the referential system in the constructive argumentation [contributing to 
construction of a conjecture] and the referential system in the proof, because it could help 
students to maintain the meaning of numerical examples used to construct the conjecture and 
algebraic letters used in the proof.” (Pedemonte, 2008, p. 390). In this way it is hoped that the 
abductive step would decrease the gap between the arithmetic field in argumentation and the 
algebraic field in proof, and thus assist transition. 

Another pedagogical approach, presented by Kondratieva (2010), uses the idea of an 
interconnecting problem to get students to construct and justify conjectures. The problem 
should allow simple formulation, solutions at various levels, be solvable using tools from 
different mathematical branches, and appropriate for different contexts. The value of 
conjecture production has also been espoused (Antonini & Mariotti, 2008) during production 
of indirect proofs, such as by contradiction and contraposition. The research, using a 
Cognitive Unity approach, showed that the production of indirect argumentation can hide 
some significant cognitive processes. Hence, they propose that task of producing a conjecture 
offers students the possibility both of activating these processes and of constructing a bridge 
to overcome the gaps. The conclusion is that “…without any conjecturing phase, some gaps 
could not be bridged or could require sacrifices and mental efforts that not all the students 
seem to be able to make.” (Antonini & Mariotti, 2008, p. 411). 

Two possible strategies to prepare upper secondary school students for transition to the rigour 
of tertiary proofs suggested by Yevdokimov (2003) include: the value of intuitive guesses, 
and experience in what distinguishes a reasonable guess from one that is less reasonable; and 
a consideration of restrictions on statements and proofs. This idea of considering restrictions, 
which links to ideas about the status of a proposition (Duval, 2002; Harel, 2008), has led some 
to propose the idea of pivotal and bridging examples, and suggest that a strategy using 
counterexamples can assist students with proof ideas (Zazkis & Chernoff, 2008). These 
authors claim that one benefit of a counterexample is to produce cognitive conflict in the 
student, and a pivotal example is designed to create a turning point in the learner’s cognitive 
perception (ibid). In a similar vein Stylianides and Stylianides (2007) state that 
counterexamples also foster deductive reasoning, since we make deductions by building 
models and looking for counterexamples. For Zazkis and Chernoff (2008) a counterexample 
is a mathematical concept, while a pivotal example is a pedagogical concept, and it is 
important that pivotal examples are within, but pushing, the boundaries of the student’s 

111



Thomas, de Freitas Druck, Huillet, Ju, Nardi, Rasmussen, Xie 
 

 
 

potential example space (Watson & Mason, 2005 – the examples students have experienced). 
The importance of developing mathematical thinking through extension of example spaces by 
the addition of examples and counterexamples has been advocated by Mason and Klymchuk 
(2009). Another way to expand students’ example spaces, researched by Iannone et al. (2011), 
was based on Dahlberg and Housman’s (1997) idea that getting students to generate their own 
examples of mathematical concepts might improve their ability to produce proofs. However, 
the results did not support the hypothesis that generating examples is a more effective 
preparation for proof production tasks than reading worked examples. These authors 
conclude that this may be because of the examples employed, and believe that there is 
currently insufficient guidance available on how to generate suitable examples effectively 
(Iannone et al., 2011). The role of examples also arose in research by Weber and 
Mejia-Ramos (2011) on how to read proofs. They looked at proof reading by mathematicians 
and found that they were mainly concerned with understanding the key ideas, the structure 
and the techniques employed. Hence they suggest that “One implication for the design of 
learning environments is that students might be taught how to use examples to increase their 
conviction in, or understanding of, a proof in the same way that the mathematicians in this 
paper described the ways that they read proofs.” (Weber and Mejia-Ramos, 2011. p. 14). One 
of these ways is that they might see the value or insight that understanding a proof may 
provide for them personally. 

A pedagogical strategy propose by Yevdokimov (2003) is that a way to arouse interest and 
free students from the monotony of ‘standard’ problems is to give them questions such as to 
find the mistakes in a given proof. However, when students check for errors in proofs they 
should be directed to consider three aspects of the methodological knowledge, proof scheme, 
proof structure and chain of conclusions (Heinze & Reiss, 2003). 

Regardless of the route taken, there has been a discussion (Alcock & Inglis, 2008, 2009; 
Weber, 2009) on the relative roles of syntactic and semantic reasoning in proof construction. 
However, this seems to hinge on the definition of a syntactic proof, whether all, or just most, 
of the reasoning occurs within the representation system of proof. Alcock and Inglis (2008, 
2009) argue that there are different strategies of proof construction among experts, and hence 
we need to identify these in order to know what skills we need to teach students and how they 
can be employed. They propose a need for large-scale studies to investigate undergraduate 
proof production, and an extension of this to include upper secondary school could be 
beneficial for transition. 

One specific kind of problem that may be a good introduction to proof in schools, as 
suggested by Harel (2008), is one involving proof by mathematical induction. However, he 
claims that this method of proving is often considered too quickly and the DNR framework 
suggests that a slower approach is necessary for understanding (Harel, 2001). The research by 
Palla, Potari and Spyrou (2011) suggests that induction can be taught in a meaningful way at 
the upper secondary level if students are given tasks that encourage them to focus on the 
critical properties of mathematical induction. In addition, Man-Keung Siu (2008) 
recommends the use of history to help students engage with proof, thus humanising it, placing 
it in a cultural, socio-political and intellectual context. In a similar vein Nagafuchi (2009) 
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presents some elements that would make a historical-philosophical approach possible for 
mathematical proofs in undergraduate courses and Furinghetti (2000) provided students with 
a historical presentation of ‘definition’ in an attempt to encourage flexibility, 
open-mindedness and motivation towards mathematics.  

Our survey considered proof in several questions. In response to ‘How important do you think 
definitions are in first year mathematics?’ 52 (65.8%) replied that definitions are important in 
first year mathematics, while 15 presented their responses as neutral. Only 8 respondents 
replied that definitions are not important in first year mathematics. Responses to the question 
‘Do you have a course that explicitly teaches methods of proof construction?’ were evenly 
split with 49.4% answering each of “Yes” and “No”. Of those who responded “Yes”, 15 
(38.4%) replied that they teach methods of proof construction during the first year, 23 (58.9%) 
during the second year and 5 (12.8%) in either third or fourth year. While some had separate 
courses (e.g. proof method and logic course) for teaching methods of proofs, many 
departments teach methods of proofs traditionally, by introducing examples of proof and 
exercises in mathematics class. Some respondents replied that they teach methods of proof 
construction in interactive contexts, citing having the course taught as a seminar, with 
students constructing proofs, presenting them to the class, and discussing/critiquing them in 
small size class. One respondent used the modified Moore method in interactive lecture. 
Looking at some specific methods of introducing students to proof construction was the 
question ‘How useful do you think that a course that includes assistance with the following 
would be for students?’ Four possibilities were listed, with mean levels of agreement out of 5 
(high) being: Learning how to read a proof, 3.7; Working on counterexamples, 3.8; Building 
conjectures, 3.7; Constructing definitions, 3.6. These responses appear to show a good level 
of agreement with employing the suggested approaches as components of a course on proof 
construction.  

Mathematical Modelling and Applications 

Blum et al. (2002) wrote in the Discussion Document of the 14th ICMI Study: “It is not at all 
surprising that applications and modelling have been – and still are – a central theme in 
mathematics education. Nearly all questions and problems in mathematics education, that is 
questions and problems concerning the learning and teaching of mathematics, affect, and are 
affected by, relations between mathematics and the real world.” This might be the reason why 
research on mathematical modelling and applications has attracted an increasing interest in 
recent years. This trend can be noted from the fact that there is a growing research literature 
focusing on the teaching and learning of mathematical modelling and applications published 
in various mathematics education journals. In addition, there are also several international 
conferences/events dedicated to the teaching and learning of mathematical modelling and 
applications.  

The literature reports many studies and practices on the teaching and learning of 
mathematical modelling and applications, for both the secondary and tertiary levels. The 
primary focus of much research is on practice activities, e.g. on constructing and trying out 
mathematical modelling examples for teaching and examinations, writing 
application-oriented textbooks, implementing applications and modelling into existing 
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curricula or developing innovative, modelling oriented curricula (Blum et al., 2002). There 
are also extensive studies on clarifying modelling concepts, characterising the features of 
modelling processes, classifying the modelling tasks, and investigating what are and how to 
evaluate and improve the students’ modelling competencies and sub-competencies required 
for each modelling process. However, it appears that no literature exists explicitly discussing 
this topic with a focus on the ‘transition’ from the secondary to the university levels. One 
reason might be that until now there are have been no roadmaps to sustained implementation 
of modelling education at all levels. As Blum et al. (2002) point out the role of applications 
and mathematical modelling in everyday teaching practice is still rather marginal for all levels 
of education. The big issue seems to be whether, and if so how, this trend can be reversed to 
ensure that applications and mathematical modelling is integrated and preserved at all levels 
of mathematics education.   

There is recent literature partially relevant to the secondary-tertiary transition issue and this is 
briefly considered here. One crucial duality, mentioned by Niss et al. (2007), is the difference 
between ‘applications and modelling for the learning of mathematics’ and ‘learning 
mathematics for applications and modelling’. They point out that in lower secondary levels 
this duality is seldom made explicit, and instead both orientations are simultaneously insisted 
on. However, at upper secondary or tertiary level the duality is often a significant one. Their 
analysis suggests that for students to develop applications and modelling competency as one 
outcome of their mathematical education, these have to be put explicitly on the agenda of the 
teaching and learning of mathematics.  

The close relationship between modelling and problem solving is taken up by a number of 
authors and reports (see, for example, Focus in High School Mathematics: Reasoning and 

Sense Making, NCTM, 2009 and the Common Core State Standards for Mathematics, 
National Governors Association Center for Best Practices & Council of Chief State School 
Officers, 2010). For example, English and Sriraman (2010) suggest that mathematical 
modelling is a powerful option for advancing the development of problem-solving in the 
curriculum. However, according to Petocz et al. (2007), there are distinct advantages to using 
real world tasks in problem solving. They note that well-designed learning tasks that model 
the way mathematicians work can encourage students towards broader conceptions of 
mathematics, enabling explicit connections between students’ courses and the world of 
professional work. One difficulty described by Ärlebäck and Frejd (2010) is that upper 
secondary students (in Sweden) do not have much experience working with real situations 
and modelling problems, making the incorporation of real problems from industry in the 
secondary mathematics classroom problematic. One possible solution they suggest is closer 
collaboration, with representatives from industry working directly with classroom teachers. A 
second potential difficulty arose in a survey of 62 secondary mathematics teachers by 
Gainsburg (2008): teachers don not tend to make many real-world connections in teaching. 
Reasons given for this were that it would take more time than teachers feel they can spend on 
most mathematics topics, it isn’t stressed in the curriculum or assessment, and teachers feel a 
need for more resources, ideas, or training about what real world connections to make. One 
possible solution to this, suggested by the German experience, is to bring together 
combinations of students, teachers and mathematicians to work on modelling problems. An 
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example of this approach is reported by Kaiser and Schwarz (2006) who describe their 
experience of modelling projects where prospective teachers together with upper secondary 
level students carry out modelling examples either in ordinary lessons or special afternoon 
groups. Further, Kaland et al. (2010) present experiences with modelling activities known as 
the “modelling week”, in which small groups of students from upper secondary level work 
intensely for one week on selected modelling problems, while their work is supported by 
pre-service-teachers. These activities are unique because they create a setting where 
pre-service teachers and upper secondary students are afforded the opportunity to work on 
authentic problems that applied mathematicians tackle in industry. In other studies on 
modelling activities, Heilio (2010) reports tertiary level experiences with a “modelling week” 
project for undergraduate students across Europe and Göttlich (2010) reflects experiences in 
conducting “modelling week” projects and modelling courses with students (especially 
secondary level and undergraduates) at the University of Kaiserslautern, describing how 
practical implementations can be performed. Another way to assist teachers proposed by 
Maaß (2010) is a scheme for modelling tasks that provides an overview of the different 
features of modelling tasks, thus offering guidance in task design and selection processes for 
specific aims and predefined objectives and target groups. According to Bracke (2010) his 
twenty years experience of modelling with students suggest that mathematical modelling 
should be integrated into teacher training, including the learning by doing component, 
training of the supervisor role and learning how to find problems. To achieve this he proposes 
including student teachers in organisation and implementation of modelling events in schools, 
as implemented at Technische Universität Kaiserslautern, with promising results.  

Some difference between problem solving at school and university are identified by Perrenet 
and Taconis (2009), who investigated changes in mathematical problem-solving beliefs and 
behaviour of mathematics students during the years after entering university. They report 
significant shifts for the group as a whole, such as the growth of attention to metacognitive 
aspects in problem-solving or the growth of the belief that problem-solving is not only routine 
but has many productive aspects. The students explain these shifts mainly by the change in 
the specific nature of the mathematics problems encountered at university compared to 
secondary school mathematics problems, with the latter not succeeding in presenting an 
authentic image of the culture of mathematics with regard to problem-solving.  

There is some agreement that there is a need to target curriculum changes in the upper 
secondary school to include more modelling activities. For example, in a summary discussion 
of perspectives on mathematical modelling and applications in upper secondary and tertiary 
levels, Stillman (2007) points out that high-stakes assessment at the upper secondary-tertiary 
interface is often seen as an unresolved problem for the infusion of modelling into the 
secondary curriculum at this level. Explaining that other imperatives are uppermost in the 
minds of teachers and students due to the pressure from the external examination system, she 
advocates authentic evaluation of current upper secondary assessment practices so future 
planning and policy can be based on actualities. Other possible initiatives in this direction 
were suggested by Stillman and Ng (2010), who recognised two different models of 
curriculum embedding intended to bring authentic real world applications into secondary 
school curricula. The first has a system-wide focus emphasising an applications and 
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modelling approach to teaching and assessing all mathematics subjects in the last two years of 
pre-tertiary schooling. The second model involves interdisciplinary project work from upper 
primary through secondary school with mathematics as the anchor subject. Another initiative 
presented by Maaß and Mischo (2011) is the framework and methods of the project 
STRATUM (Strategies for Teaching Understanding in and through Modelling), whose aim is 
to design and evaluate teaching units for supporting the development of modelling 
competencies in low-achieving students at the German Hauptschule. Also, in the USA, 
Leavitt and Ahn (2010) have provided a teacher’s guide to implementation strategies for 
Model Eliciting Activities (MEAs), which are becoming more popular in secondary schools. 
Another arena that might prove helpful to students making the secondary-tertiary transition in 
mathematical modelling and applications is entry to contests in mathematical modelling and 
applications, available to both high secondary and tertiary students. Examples include 
HiMCM (The High School version of the Mathematical Contest in Modeling) for high school 
students, MCM (Mathematical Contest in Modeling) and ICM (Interdisciplinary Contest in 
Modeling) for undergraduate students. each of these operated annually by the Consortium for 
Mathematics and it Applications (COMAP, see http://www.comap.com). In addition, there is 
CUMCM (Contemporary Undergraduate Mathematical Contest in Modelling) for 
undergraduate students (http://en.mcm.edu.cn).  This international contest is operated 
annually by the Chinese Society for Industrial and Applied Mathematics (CSIAM) and each 
year there are more than 1,000 institutions and about 50,000 students participate in it (Xie, 
2010). 

Our survey addressed the topic of mathematical modelling in universities. In response to the 
questions “Does your university have a mathematical course/activity dedicated to 
mathematical modeling and applications?” Or “Are mathematical modelling and applications 
contents/activities integrated into other mathematical courses?”, 44 replied that their 
departments offer dedicated courses for modelling, while 41 said they integrate teaching of 
modelling into mathematics courses such as calculus, differential equations, statistics, etc and 
7 answered that their university does not offer mathematics courses for mathematical 
modelling and applications. Among the reasons given for choosing dedicated courses were 
that: the majority of all mathematics students will end up doing something other than 
mathematics so applications are far more important to them than are detailed theoretical 
developments; most of the mathematics teaching is service teaching for non-majoring 
students so it is appropriate to provide a course of modelling and applications that is relevant 
to the needs of the target audience; and if modelling is treated as an add-on then students do 
not learn the methods of mathematical modeling. Those who chose integrated courses did so 
because: for modeling, students need to be equipped with a wide array of mathematical 
techniques and solid knowledge base. Hence it is appropriate for earlier level mathematics 
courses to contain some theory, proofs, concepts and skills, as well as applications. 

Considering what happens in upper secondary schools, 26 (33%) reported that secondary 
schools in their location have mathematical modelling and applications integrated into other 
mathematical courses, with only 4 having dedicated courses. 44 (56%) said that there were no 
such modelling courses in their area. When asked for their opinion on how modelling should 
be taught in schools, most of the answers stated that it should be integrated into other 
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mathematical courses. The main reasons presented for this were: the many facets of 
mathematics; topics too specialised to form dedicated courses; to allow cross flow of ideas, 
avoid compartmentalization; and students need to see the connection between theory and 
practice, build meaning, appropriate knowledge. The question ‘What do you see as the key 
differences between the teaching and learning of modelling and applications in secondary 
schools and university, if any?’ was answered by 33 (42%) of respondents. The key 
differences pointed out by those answering this question were: at school, modelling is poor, 
too basic and mechanical, often close implementation of simple statistics tests; students have 
less understanding of application areas; university students are more independent; they have 
bigger range of mathematical tools, more techniques; they are concerned with rigour and 
proof. Asked ‘What are the key difficulties for student transition from secondary school to 
university in the field of mathematical modelling and applications, if any?’ the 35 (44%) 
university respondents cited: lack of knowledge (mathematical theory, others subjects such as 
physics, chemistry, biology, ecology); difficulties in formulating precise mathematical 
problems/interpreting word problems/understanding processes, representations, use of 
parameters; poor mathematical skills, lack of logical thinking; no experience from secondary 
schools; and lack of support.  

BRIDGING THE GAP AND WAYS FORWARD  

In order to address how universities respond to assist students with transition problems our 
survey asked “Do you have any academic support structures to assist students in the transition 
from school to university? (e.g., workshops, bridging courses, mentoring, etc).”, and 56 (71%) 
replied ‘Yes’ and 22 ‘No’. Of those saying yes, 34% have a bridging course, 25% some form 
of tutoring arrangement, while 23% mentioned mentoring, with one describing it as a 
“Personal academic mentoring program throughout degree for all mathematics students” and 
another saying “We tried a mentoring system once, but there was almost no uptake by 
students.” Other support structures mentioned included ‘study skills courses’, ‘maths clinics’, 
‘support workshops’, ‘pre-course’, ‘remedial mathematics unit’, and a ‘Mathematics 
Learning Service (centrally situated), consulting & assignment help room (School of Maths). 
The MLS has a drop-in help room, and runs a series of seminars on Maths skills. These are 
also available to students on the web.’ Others talked of small group peer study, assisted study 
sessions, individual consultations, daily help sessions, orientation programmes and remedial 
courses. 

There is some evidence that bridging courses can assist in transition. A recent study by 
(Tempelaar, Rienties, Giesbers & Schim van der Loeff, 2012) showed that an online summer 
course with a broad coverage of basic mathematical topics and learning controlled by 
individual, adaptive testing, was very efficient in addressing skill deficiencies, with the 
treatment effect of successful summer course participation about 50% of the effect size of 
advanced prior math education. A description by Carmichael and Taylor (2005) of a study of 
students in a supportive bridging mathematics course indicates that student confidence 
contributes significantly to performance, even after accounting for prior knowledge, and for 
some this may be because they struggle with their learning of mathematics in English at 
undergraduate level much more than is sometimes appreciated (Barton, Chan, King, 
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Neville-Barton & Sneddon, 2005). In Australia, an increasing number of students elect not to 
undertake studies in mathematical methods in the final years of their secondary schooling, 
and hence some support structures are required. Some higher education providers offer 
pathways for these students to pursue mathematics studies up to a major specialization within 
the bachelor of science programme. The article by Varsavsky (2010) analyses the 
performance in, and engagement with, mathematics of students who elect to take up this 
option. Findings indicate that these are not very different when compared to students who 
enter university with an intermediate mathematics preparation. Leviatan (2008) presents 
details of a transition course aimed at bridging the gap for students of four-year 
secondary/high schoolteacher training programme. The objectives of this transition 
programme are: to identify and reinforce previous “core school mathematics”; to deepen and 
enrich the existing knowledge by adopting a more mature perspective to school mathematics; 
to introduce mathematical “culture” (language, rules of logic, etc.); to get acquaintance with 
typical mathematical activities (generalizations, deductions, definitions, proofs, etc.); to 
re-introduce central mathematical concepts and tools; and to provide a rigorous, yet only 
semiformal, exposure to selected new topics in advanced mathematics. Students’ evaluations 
of the programme report increasing self-confidence, as well as enjoyment of the sessions 
about misconceptions and playing the role of a reviewer. She concludes that a more 
systematic investigation is required and suggests possible follow-up. In other cases, a 
university first year programme of tutor training and collaborative tutorials, reported by Oates, 
Paterson, Reilly and Statham (2005), proved an effective way of addressing some of the 
mathematical issues in the transition. 

The literature review presented here revealed a multi-faceted web of cognitive, curricular and 
pedagogical issues, some spanning across mathematical topics and some intrinsic to certain 
topics – and certainly exhibiting variation across the institutional contexts of the many 
countries our survey focused on. For example, most of the research we reviewed discusses the 
students’ limited cognitive preparedness for the requirements of university-level formal 
mathematical thinking (whether this concerns the abstraction, for example, within Abstract 
Algebra courses or the formalism of Analysis). Within other areas, such as discrete 
mathematics, much of the research we reviewed highlighted that students may arrive at 
university with little or no awareness of certain mathematical fields. 

The literature review presented in this report is certainly not exhaustive. However we believe 
it is reasonable to claim that the bulk of research on transition is in a few areas (e.g. calculus, 
proof) and that there is little research in other areas (e.g. discrete mathematics). While this 
might simply reflect curricular emphases in the various countries that our survey focused on, 
it also indicates directions that future research may need to pursue. Furthermore across the 
preceding sections a pattern seems to emerge with regard to how, not merely what, students 
experience in their first encounters with advanced mathematical topics, whether at school or 
at university. Fundamental to addressing issues of transition seems also to be the coordination 
and dialogue across educational levels – here mostly secondary and tertiary – and our survey 
revealed that at the moment this appears largely absent. 
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