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Voting as a group decision making tool

Collective decisions are often made by aggregating the
preferences of individual agents by means of voting:

• each agent ranks the available alternatives, and
• a voting rule is used to select one or more winners.



Decision making environment

The structure of the set of alternatives may be quite complex.

E.g., the set of possible plans of actions, may be huge, however
some plans may be very similar to each other.

It may be reasonable to establish, first, which plans differ
fundamentally, and which can be viewed as minor variations of
each other.

A family on holiday, having to rent a car, may face the options:

• an automatic white car;
• an automatic blue car;
• an automatic red car;
• a manual blue car;
• a manual red car.
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Renting a car quandary
The preferences of husband and wife may be:

husband wife
manual blue automatic white
manual red automatic red

automatic white automatic blue
automatic blue manual red
automatic red manual blue

husband wife
manual automatic

automatic manual

The question to resolve is: manual or automatic?
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Clones in consumer surveys and recommenders
systems

Suppose an electronics website runs a competition for the best
digital camera by asking consumers to vote for their two favorite
models from a given list.

Suppose preferences of consumers are:

60% : Sony > Nikon > Canon
40% : Canon > Nikon > Sony

If every brand is represented by a single camera, then Nikon
wins; if by two cameras, then Sony wins and Nikon will have no
votes!



Most voting rules are sensitive to cloning

In a Borda election with the set of candidates C = {a,b, c,d},
and there are four voters, whose preference orders are:

R1 : a � c � b � d
R2 : a � c � b � d
R3 : a � c � b � d
R4 : d � c � b � a

ScB(a) = 9
ScB(b) = 4
ScB(c) = 8
ScB(d) = 3

The winner here is a with 9 points. However, replacing b with
three clones b1,b2,b3 is a successful manipulation in favor of c:

R′1 : a � c � bi1 � bj1 � bk1 � d
R′2 : a � c � bi2 � bj2 � bk2 � d
R′3 : a � c � bi3 � bj3 � bk3 � d
R′4 : d � c � bi4 � bj4 � bk4 � a

ScB(a) = 15
ScB(bis) = 4− 12
ScB(c) = 16
ScB(d) = 5
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New York Times on September 6, 2010:

“Drifters and homeless people were recruited onto the Green
Party ballot to run for a seat on the Arizona Corporation
Commission, which oversees public utilities, railroad safety and
securities regulation.They are financed by a Republican
political operative.”

The Green party candidate was deliberately cloned.
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Goal of the paper

Many voting rules can be fooled into believing that clones are
independent alternatives.

We cannot rely on voting rules to fix this problem automatically.

There cannot be a universal solution.

However, revealing the structure of clones existing in the profile
may help clarifying:
• what the real alternatives are, and,
• what the real issues are.

Our goal is to learn what shape clone structures may take.
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Clone Sets and Clone Structures

Our set of alternatives is [m] = {1,2, . . . ,m}.

Definition (Tideman, 1987)
Let R = (�1, . . . ,�n) be a profile on [m]. We say that a
non-empty subset C ⊆ [m] is a clone set for R if every
a ∈ [m] \ C and every c, c′ ∈ C

c �i a =⇒ c′ �i a and a �i c =⇒ a �i c′

for every i = 1,2, . . . ,n.

Definition
Let R = (�1, . . . ,�n) be as above and let C(R) ⊆ 2[m] be a
family of all clone sets for R. We call C(R) the clone structure
on [m] associated with R.
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A Simple Example

Example
For R = (�1,�2) where

1 �1 3 �1 2
3 �2 2 �2 1

the clone structure will be

C(R) = {{1}, {2}, {3}, {2,3}, {1,2,3}}.



An Important Example

Example (String of sausages)
Let R consist of a single linear order R1 : 1 � 2 � · · · � m.
Then C(R) = {[i , j] | i ≤ j}, where [i , j] = {i , i + 1, . . . , j}.

The only nontrivial automorphism is a reflection.

Proposition
Any clone structure over [m] consists of at most m(m+1)

2 sets.
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Another Important Example

Example (Fat sausage)
Let R be a cyclic profile on [m], i.e., R = (R1, . . . ,Rm), and i-th
order is given by

Ri : i � i + 1 � · · · � m � 1 � · · · � i − 1.

Then C(R) = {[m]} ∪ {{i} | i ∈ [m]}.

The group of automorphisms is the whole Sm.



Four Necessary Conditions

Given two sets X ,Y ⊆ [m] are said to intersect non-trivially and
write X ./ Y if X ∩ Y 6= ∅, X \ Y 6= ∅ and Y \ X 6= ∅.

Proposition
Let R be a profile on [m]. Then C(R) satisfies:
(1) {i} ∈ C(R) for any i ∈ [m];

(2) ∅ /∈ C and [m] ∈ C(R);
(3) if C1 and C2 are in C(R) and C1 ∩C2 6= ∅, then C1 ∩C2 and

C1 ∪ C2 are also in C(R);
(4) if C1 and C2 are in C(R) and C1 ./ C2, then C1 \ C2 and

C2 \ C1 are also in C(R).

These are not sufficient since 2[m] \ {∅} satisfies these and it
has more than m(m+1)

2 sets.
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One More Necessary Condition

Given a profile R over [m] and a set X ∈ C(R), we say that a
set Z ∈ C(R) is a proper minimal clone superset of X if X ( Z ,
and there is no set Y ∈ C(R) such that X ( Y ( Z .

Proposition
For any profile R on [m], each X ∈ C(R) has at most two
proper minimal clone supersets in C(R).

Note, however, that for m = 3 the set family 2[m] \ {∅} satisfies
the conclusion of this Proposition and also (1)–(4). Yet, it is
obviously not a clone structure: its cardinality is still too large:

23 − 1 >
3 · (3 + 1)

2
.
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And One More

Definition
A set family {A0, . . . ,Ak−1} is a bicycle chain if k ≥ 3 and for all
i = 0, . . . , k − 1 it holds that (1) Ai−1 ./ Ai ; (2)
Ai−1 ∩ Ai ∩ Ai+1 = ∅; (3) Ai ⊆ Ai−1 ∪ Ai+1, where all indices are
modulo k .

Proposition
A clone structure over [m] does not contain a bicycle chain.
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Now we have enough axioms

Theorem
A family F of subsets of [m] is a clone structure if and only if it
satisfies the following axioms:

A1. {i} ∈ F for any i ∈ [m].
A2. ∅ /∈ F and [m] ∈ F .
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supersets in F .
A6. F does not contain a bicycle chain.

In the proof the concept of a subfamily plays an essential role.
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The idea of a subfamily
Example
Consider set families

D = {{x}, {y}, {x , y}},

C = {{a}, {x}, {y}, {x , y}, {c}, {a, x , y}, {x , y , c}, {a, x , y , c}}.

Then D would be naturally called a subfamily of C.

Subfamily is something that can be collapsed and replaced with
one element. In our case D can be collapsed into b:

C(D → b) = {{a}, {b}, {c}, {a,b}, {b, c}, {a,b, c}}.



Subfamilies

Definition
Let F be a family of subsets on a finite set F . A subset E ⊆ F is
a subfamily of F if there is a set E ∈ F such that

1. E = {X ∈ F | X ⊆ E};

2. for any Y ∈ F \ E we have either E ⊆ Y or Y ∩ E = ∅.

The set E is called the support of E . E is called a proper
subfamily of F if E is a proper subset of F .



Composition of Families

Composition of families does exactly the opposite to collapsing.
E.g., we can undo collapsing D in the previous example.

Example
Consider set families D = {{x}, {y}, {x , y}} and
C = {{a}, {b}, {c}, {a,b}, {b, c}, {a,b, c}}

Then we can replace {b} with D and in other sets b with x , y .
This results in a family of subsets C(b → D) given by

{{a}, {x}, {y}, {x , y}, {c}, {a, x , y}, {x , y , c}, {a, x , y , c}}.
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Composition of structures. Example

On the previous slide two families were composed over b:



Towards the Main Theorem

A crucial step towards the main theorem:

Proposition
Let E and F be families of subsets on disjoint sets E and F,
respectively, that are clone structures. Then for any e ∈ E the
composition E(e→ F) is also a clone structure.

We illustrate the proof on the following slide.



Idea of the proof
Consider two clone structures

C = {{1}, {2}, {3}, {2,3}, {1,2,3}}, D = {{4}, {5}, {4,5}}

and show that C(3→ D) is also a clone structure.

We know C = C(R), where R = (R1,R2) with

R1 : 1 � 3 � 2
R2 : 3 � 2 � 1

We obtain C(3→ D) by cloning 3:

R′1 : 1 � 4 � 5 � 2
R′2 : 5 � 4 � 2 � 1

Indeed we obtain the clone structure

C(R′) = {{1}, {2}, {4}, {5}, {4,5}, {2,4,5}, {1,2,4,5}}.

which is exactly C(3→ D).



A Crucial Step Towards the Main Theorem

Definition
A family of subsets is indecomposable if it does not have proper
subfamilies.

The crucial steps towards the main theorem is the following
proposition:

Proposition
Any indecomposable family of subsets satisfying A1–A6 is
either a string of sausages or a fat sausage and hence is a
clone structure.



Proof of the Main Theorem

Suppose family F satisfies A1–A6. If it is indecomposable, then
F is a clone structure.

If not, it contains a proper subfamily E . Let z be an element
which is not in the base set of F . Then F ′ = F(E → z) satisfies
A1–A6, hence a clone structure by the induction hypothesis.

So is E .

However, then by the previous proposition,

F = F ′(z → E)

also a clone structure.



Proof of the Main Theorem

Suppose family F satisfies A1–A6. If it is indecomposable, then
F is a clone structure.

If not, it contains a proper subfamily E . Let z be an element
which is not in the base set of F . Then F ′ = F(E → z) satisfies
A1–A6, hence a clone structure by the induction hypothesis.

So is E .

However, then by the previous proposition,

F = F ′(z → E)

also a clone structure.



Proof of the Main Theorem

Suppose family F satisfies A1–A6. If it is indecomposable, then
F is a clone structure.

If not, it contains a proper subfamily E . Let z be an element
which is not in the base set of F . Then F ′ = F(E → z) satisfies
A1–A6, hence a clone structure by the induction hypothesis.

So is E .

However, then by the previous proposition,

F = F ′(z → E)

also a clone structure.



Proof of the Main Theorem

Suppose family F satisfies A1–A6. If it is indecomposable, then
F is a clone structure.

If not, it contains a proper subfamily E . Let z be an element
which is not in the base set of F . Then F ′ = F(E → z) satisfies
A1–A6, hence a clone structure by the induction hypothesis.

So is E .

However, then by the previous proposition,

F = F ′(z → E)

also a clone structure.



PQ-trees
PQ-trees were introduced by Booth and Lueker (1976).

A PQ-tree T over a set A = {a1, . . . ,an} is a class of equivalent
ordered trees over A such that:
• The leaves of the tree correspond to the elements of A.
• Each internal node is either of type P or of type Q.
• If a node is of type P, then its children can be permuted

arbitrarily.
• If a node is of type Q, then the order of its children can only

be reversed.



Clone Structures and PQ-trees

Theorem
Clone structures are in 1-1 corresponcence with PQ-trees.

Proof:

Collapsing all maximal subfamilies C1, . . . ,Ck we get either a
fat sausage or a string of sausages which is either a P-vertex or
a Q-vertex. This will be the root of the tree.



Clone Structure as a PQ-tree. Example

Any fat sausage gives us a P-vertex and string of sausages
gives us a Q-vertex.



Implementability of Clone Structures 1
We say that a clone structure C is k -implementable if there exist
a profile R with k linear orders such that C = C(R).

Proposition
For m > 3 a fat sausage is 2-implementable.

Proof: Suppose e.g., that m = 2k . For convenience, set xi = i ,
yi = k + i for i = 1, . . . , k . We define R = (R1,R2) as follows.

R1 : x1 � . . . � xk � y1 � . . . � yk ,

R2 : y1 � x1 � y2 � x2 � . . . � yk � xk .

Then no proper clone set D exists. Looking at R1: three cases
to consider:
• D ⊆ {x1, . . . , xk};
• D ⊆ {y1, . . . , yk};
• D ⊇ {xk , y1}.

All cases are impossible if we take R2 into account.
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Implementability of Clone Structures 2
Proposition
Any indecomposable clone structure over [m] is
3-implementable.
Proof
• A string of sausages is 1-implementable;
• For m > 3 a fat sausage is 2-implementable;
• For m = 3 a fat sausage is 3-implementable.

Proposition
Let E and F be two 3-implementable clone structures on
disjoint sets E and F, respectively. Then for any e ∈ E the
composition E(e→ F) is also 3-implementable.

Theorem
Any clone structure is 3-implementable.
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Any clone structure is 3-implementable.



Single-Peaked Preferences

One of the assumptions often made in Political Science is that
the ideological spectrum is one-dimensional.

This means that there exist a linear order > over C (the societal
axis). We say that an order � over C is compatible with > if for
all c,d ,e ∈ C such that either c > d > e or e > d > c, it holds
that c � d =⇒ d � e.



Two definitions

Definition
Let R = (�1, . . . ,�n) be a profile over C. It is called
single-peaked if there is a societal axis such that �i is
compatible with it for every i = 1, . . . ,n.

Definition
A clone structure C is single-peaked if it can be rimplemented
by a single-peaked profile R, that is C = C(R).



Some observations and open question

Proposition
Any fat sausage and string of sausages are single-peaked.

For example, this profile, called a slide, is single-peaked and
implements the fat sausage:

v1 v2 v3 v4 v5
a b b b b
b a c c c
c c a d d
d d d a e
e e e e a

However, if C is a string of sausages over {a,b, c} and D is a
string of sausages over {u, v ,w}. Then C(b → D) is not
single-peaked.



Some observations and open question

Proposition
Any fat sausage and string of sausages are single-peaked.

For example, this profile, called a slide, is single-peaked and
implements the fat sausage:

v1 v2 v3 v4 v5
a b b b b
b a c c c
c c a d d
d d d a e
e e e e a

However, if C is a string of sausages over {a,b, c} and D is a
string of sausages over {u, v ,w}. Then C(b → D) is not
single-peaked.



Some observations and open question

Proposition
Any fat sausage and string of sausages are single-peaked.

For example, this profile, called a slide, is single-peaked and
implements the fat sausage:

v1 v2 v3 v4 v5
a b b b b
b a c c c
c c a d d
d d d a e
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However, if C is a string of sausages over {a,b, c} and D is a
string of sausages over {u, v ,w}. Then C(b → D) is not
single-peaked.



Open Question

Open Question: Characterise single-peaked clone structures in
terms of their PQ-trees.



Single-crossing profiles

Let R = (�1, . . . ,�n) be a profile over C and let {a,b} ⊆ C. We
say that R is single-crossing with respect to {a,b} if there exist
1 ≤ k ≤ n such that a �i b for i ∈ [1, . . . , k ] and b �i a for
i ∈ [k + 1, . . . ,n] or b �i a for i ∈ [1, . . . , k ] and a �i b for
i ∈ [k + 1, . . . ,n].

A profile is single-crossing if it is single-crossing with respect to
any pair. For example, any slide is single-crossing:

v1 v2 v3 v4 v5
a b b b b
b a c c c
c c a d d
d d d a e
e e e e a



Indecomposable structures are single-crossing

Any 1-implementable or 2-implementable clone structures are
trivially single-crossing. The only indecomposable clone
structure left is a fat sausage for m = 3.

We can use a slide to implement it:

a b b
b a c
c c a

Proposition
Let E and F be two single-crossing clone structures on disjoint
sets E and F, respectively. Then for any e ∈ E the composition
E(e→ F) is also single-crossing.

Theorem
Every clone structure is single crossing.



Shall we always declone?

Once you start decloning it is not clear where to stop.

However there is an exception: if you expected that the election
will be single-peaked but it was not. You suspect that it was due
to cloning.

We found a polynomial time algorithm that takes an election
and outputs a single-peaked election collapsing as few clones
as possible.

However decloning to a single-crossing election is
NP-complete.
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And may the force be with you all!


