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Abstract

In this thesis we investigate term orders, Gröbner bases, and initial ideals in the

exterior algebra over a vector space of dimension n. We review properties of term

orders and Gröbner bases, first in the familiar case of multivariate polynomial

rings over algebraically closed fields, then in the exterior algebra. In the latter

case, we investigate in particular computation of Gröbner bases and initial ideals

with respect to noncoherent term orders.

Using properties of noncoherent term orders, we develop a construction method

which allows us to find noncoherent initial ideals in the exterior algebra over a

vector space of dimension n ≥ 6, and we give some illustrative examples.
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Chapter 1

Introduction

This thesis concerns properties of term orders and Gröbner bases in the exterior

algebra. We focus in particular on using Gröbner basis theory and properties of

term orders to construct a noncoherent initial ideal in the exterior algebra over

a vector space of dimension n.

For the purposes of this thesis, we will denote the polynomial ring in n variables

over an algebraically closed field k by S = k[x1, . . . , xn] = k[x].

Gröbner bases are important structures in commutative algebra and algebraic

combinatorics. A Gröbner basis G is a specific type of generating subset of an

ideal I ⊂ R, where R is typically the multivariate polynomial ring S, although

the concept may be generalised to other structures such as the exterior algebra.

Relative to some order ≺ taken on the monomials of S, a defining property of a
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CHAPTER 1. INTRODUCTION

Gröbner basis G is that the ideal generated by the initial terms of the polynomials

in I, called the initial ideal of I with respect to ≺, is itself generated by the initial

terms of the polynomials in G. It is important to realise that if a different term

order ≺′ is chosen on the monomials of S, Gröbner bases of I with respect to

≺′ may be very different from Gröbner bases of I with respect to the original

term order ≺. Choice of term order is particularly important for computational

considerations, as choosing a different term order on the monomials may radically

affect both the time taken to compute a Gröbner basis, and the degrees and

coefficients of the polynomials comprising the Gröbner basis.

Gröbner bases are a useful tool in a variety of situations. It is well known that

they solve the ideal membership problem in S, that is, how to decide whether

a specific polynomial is in an ideal I ⊆ S, given only a generating set for I.

This property is used as a motivating example for the study of Gröbner bases

in Chapter 2. Gröbner bases are also an effective tool for deciding whether two

given ideals are equal. This is because even though Gröbner bases for an ideal

with respect to a fixed term order are not in general unique, it can be shown that

every ideal has a unique reduced Gröbner basis. Gröbner bases further give us a

method for calculating the intersection of two ideals, and a method for solving

systems of polynomial equations.

Gröbner bases may also be defined for ideals in the exterior algebra. However,

the construction of Gröbner bases in the exterior algebra is more complicated
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than in S due the fact that the exterior algebra contains zero-divisors. The well-

known Buchberger algorithm for computing Gröbner bases of ideals in a ring R

implicitly assumes that if f and g are two polynomials in R, then the product

of the initial monomials of f and g is the initial monomial of fg. While this is

clearly true in S, it is not the case in rings with zero-divisors such as the exterior

algebra.

There are also important differences between term orders on the monomials of

S = k[x1, . . . , xn] and term orders on the monomials of the exterior algebra. The

monomials of the exterior algebra on n variables are a proper finite subset of the

monomials of k[x1, . . . , xn], namely those monomials which are square-free. This

means that even though there are infinitely many term orders on k[x1, . . . , xn]

for n ≥ 2, there are only finitely many term orders on the exterior algebra. An

interesting open problem, which we touch on in Chapter 3, is to provide bounds

on the number of such term orders.

A natural assumption is that term orders on the monomials of exterior algebra

may be defined by the restriction of term orders on the monomials of k[x1, . . . , xn]

to the monomials of the exterior algebra. However this is false: when n ≥ 5, there

exist term orders on the monomials of the exterior algebra which cannot be ex-

tended to term orders on the monomials of S. Such orders are called noncoherent.

Noncoherent term orders may be found in other structures, such as quotients of

S by an Artinian monomial ideal.
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CHAPTER 1. INTRODUCTION

Term orders on the monomials of the exterior algebra are in fact equivalent to

comparative probability orders, which are important in decision theory. These

orders have been studied in some depth, in particular Fishburn [8, 9] has devoted

much recent effort to them. This relationship allows us to use concepts from

comparative probability such as Fishburn’s cancellation conditions, which enable

us to decide whether a given term order is noncoherent, and give a set of binary

comparisons from the order which implies the noncoherency of the order.

The existence of noncoherent term orders leads to an interesting phenomenon:

noncoherent initial ideals. A noncoherent intial ideal is an initial ideal of an ideal

I with respect to a noncoherent term order, which is not equal to any initial

ideal of I with respect to any coherent term order. Maclagan [12] constructed

a noncoherent initial ideal in a quotient of the polynomial ring S by a specific

Artinian monomial ideal, and asked whether there exists a noncoherent initial

ideal in the exterior algebra.

In Chapter 2 we compare how division works in univariate and multivariate poly-

nomial rings. We then formally define Gröbner bases and present some of their

elementary properties, demonstrating the well-known facts that Gröbner bases

can be used to provide a simple proof of the famous Hilbert’s Basis Theorem,

and that Gröbner bases solve the ideal membership question in S. We intro-

duce the famous Buchberger algorithm for computing Gröbner bases in S, and

present a straightforward example of computing a Gröbner basis of an ideal in
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the two-variable polynomial ring k[x, y].

In Chapter 3 we introduce the exterior algebra, and examine how term orders

are defined in this context. We discuss the notion of coherency of term orders,

give an example of a noncoherent term order, and define cancellation conditions

for term orders. We reproduce [12] a method which may be used to compute

Gröbner bases in the exterior algebra, and conclude with a simple example on

three variables which illustrates the difference between computing Gröbner bases

in S and in the exterior algebra.

In Chapter 4 we introduce the concept of a noncoherent initial ideal. We present

a method which, given a noncoherent term order, enables us to construct an ideal

in the exterior algebra on six or more variables which possesses a noncoherent

initial ideal, thus answering Maclagan’s question affirmatively. We then give two

examples of ideals constructed via this process, one of which is homogeneous,

while the other demonstrates the use of a lexicographic extension of a term order

during the construction process.

In Chapter 5, we present some unsolved problems and comment on possibilities

for future research.
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Chapter 2

Gröbner Bases

2.1 Multivariate Division

Let k be an algebraically closed field, and let S = k[x1, . . . , xn] = k[x] denote the

polynomial ring in n variables over k. For simplicity, the monomials xa1
1 x

a2
2 . . . xan

n

where ai ∈ N for 1 ≤ i ≤ n, will be denoted by xa, where a ∈ Nn.

When n = 1, S is equal to the familiar univariate polynomial ring k[x]. Any

polynomial f ∈ k[x] has the form amx
m + am−1x

m−1 + . . . + a1x + a0, where

am 6= 0, ai ∈ k, and deg(f) = m, where deg(f) denotes the degree of f . For any

two polynomials f, g ∈ k[x] with deg(f) ≥ deg(g), one can divide f by g to find

f = hg + r for unique h, r ∈ k[x], where r is the remainder and deg(r) < deg(g).

If r = 0, we say g divides f.
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The standard division algorithm in k[x] works as follows: Let axs be the term

of highest degree in g and bxt be the term of highest degree in f , where a, b ∈ k

with a, b 6= 0. Let f = hg + r, where h = 0 and r = f . If t < s we are done.

Otherwise, let

r = r − b
a
xt−sg, and h = h+ b

a
xt−s.

Repeat until t < s. Note that during each iteration, this process cancels the term

of highest degree in r. When the process terminates, we have f = hg + r, where

r is the remainder.

It is well known that for any ideal I ⊆ k[x], if I = 〈f1, f2, . . . fs〉, then I =

〈gcd(f1, f2, . . . fs)〉. The gcd of any number of polynomials can be computed via

the Euclidean algorithm, as k[x] is a Euclidean domain, and thus to determine if

a polynomial g is in the ideal generated by f1, f2, . . . fs, one need only compute

the gcd of the generators and check whether this divides g, using the standard

division algorithm.

For polynomials in one variable, the monomials are ordered by their degree,

meaning the ‘greatest’ monomial in a polynomial is the one of greatest degree.

However, in polynomials of more than one variable it is no longer obvious which

monomial is ‘greatest’ and therefore it is unclear which monomial should be

cancelled first when dividing. The notion of a term order on the monomials of

k[x1, . . . , xn] is therefore necessary for division in a multivariate polynomial ring.
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2.1. MULTIVARIATE DIVISION

Definition 2.1. A term order (or monomial order) is a total (complete, anti-

symmetric, transitive) order on the monomials of S which satisfies the following

two conditions:

• 1 = x0 ≺ xu for all u 6= 0.

• If xa ≺ xb then xaxc ≺ xbxc for all c.

Equivalently, we can represent this order as an order on the exponent vectors of

the monomials, satisfying the conditions:

• 0 ≺ u for all u 6= 0.

• If a ≺ b then a + c ≺ b + c for all c.

One of the most commonly encountered term orders is the lexicographic order,

with respect to a fixed order on the variables. Let us fix xn ≺ xn−1 ≺ . . . ≺ x1.

In the lexicographic order, xa ≺ xb if and only if the leftmost non-zero term in

the vector b− a is positive.

Example 2.2. In k[x, y, z] with the lexicographic order and z ≺ y ≺ x, we have

y999z10000 ≺ y1000 ≺ xy3z3 ≺ x2 ≺ x2y2 ≺ x3

Given a term order ≺ on S, we may define the leading term and the initial (or

senior) monomial of a polynomial f in S.
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CHAPTER 2. GRÖBNER BASES

Definition 2.3. The leading term of f , denoted LT≺(f), is the greatest term

of f with respect to ≺, while the initial monomial of f , denoted in≺(f), is the

monomial xa in LT≺(f).

Example 2.4. Let f = 1
2
x3 + 4x2y2 − 3xy3z3, where f ∈ C[x, y, z], and let ≺ be

the lexicographic order with z ≺ y ≺ x. Then LT≺(f) = 1
2
x3, and in≺(f) = x3.

The multivariate division algorithm approximates a division algorithm for mul-

tivariate rings. Note that polynomials in more than one variable do not form a

Euclidean domain, thus it is impossible to construct a true division algorithm.

For a given polynomial g ∈ k[x1, . . . , xn], a term order ≺, and an ordered set

of polynomials {f1, . . . , fm}, the multivariate division algorithm reduces g with

respect to {f1, . . . , fm}:

Set a1 = . . . = am = 0, r = 0, and s = g. Let

g = a1f1 + . . .+ amfm + r + s

The algorithm proceeds as follows: If s = 0 we are done. Otherwise, if LT≺(s) is

divisible by LT≺(fi) for some i, then take the smallest such i and let

s = s− LT≺(s)
LT≺(fi)

fi, and ai = ai + LT≺(s)
LT≺(fi)

.

Repeat this process until LT≺(s) is not divisible by LT≺(fi) for any i. If this

situation occurs, then let

10



2.1. MULTIVARIATE DIVISION

s = s− LT≺(s), and r = r + LT≺(s).

and continue the process from the beginning. Note that each iteration reduces the

size of LT≺(s). The process terminates when s = 0, and we have g =
∑m

i=1 aifi+r,

where r is the remainder.

A serious problem with multivariate division is that the remainder may be differ-

ent if the order on {f1, . . . , fm} is changed. It is even possible for the remainder

to be zero in some cases and non-zero in others, as the following example demon-

strates.

Example 2.5. Let S = k[x, y], g = x2− xy2, f1 = x− y2, f2 = x2− y, and let ≺

be the lexicographic order with y ≺ x. Note that g = xf1, so g ∈ 〈f1, f2〉. Then

g − xf1 = 0, so g reduces to zero immediately when divided by the ordered set

{f1, f2}.

However, if we divide by {f2, f1} instead, we find g − f2 = −xy2 + y. This is

no longer divisible by f2, so we now divide by f1, giving (−xy2 + y)− (−y2)f1 =

−y4 + y, which is not divisible by either f2 or f1, and thus cannot be reduced

further.

This raises questions about how to solve the ideal membership problem in S, i.e.

how to decide whether a given polynomial is in an ideal I, given only an arbitrary

generating set for I. However, as mentioned in the introduction, Gröbner bases

resolve this issue. If {f1, . . . , fm} is a Gröbner basis for I, then remainders on di-
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CHAPTER 2. GRÖBNER BASES

vision by {f1, . . . , fm} are unique regardless of the order in which the polynomials

f1, . . . , fm are given.

2.2 Properties of Gröbner Bases

There is much literature available on Gröbner basis theory. A straightforward

introduction to Gröbner bases is given in chapters 11 and 12 of Lectures in Ge-

ometric Combinatorics [16]. In this section we will give an overview of some of

the key concepts.

Definition 2.6. Let I be an ideal of S. I is a monomial ideal if there is a

generating set of I which consists only of monomials.

Definition 2.7. Let I be an ideal of S. The initial ideal of I with respect to a

term order ≺ is the monomial ideal

in≺(I) = 〈in≺(f) : f ∈ I〉.

Definition 2.8. A subset G of I is a Gröbner basis for I with respect to a term

order ≺ if the ideal generated by the set {in≺(g) : g ∈ G} of initial monomials of

polynomials in G is equal to in≺(I).

Definition 2.9. If {in≺(g) : g ∈ G} is the unique minimal generating set of

in≺(I), then G is a minimal Gröbner basis of I with respect to ≺. A minimal

Gröbner basis is reduced if the coefficient of the leading term of every g ∈ G is
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1, and no non-initial term of any g ∈ G is divisible by any element of {in≺(g) :

g ∈ G}.

We now present some basic properties of Gröbner bases, showing firstly that

Gröbner bases may be used to provide a simple proof of Hilbert’s Basis Theorem,

and concluding with a proof that Gröbner bases solve the ideal membership

problem in S.

Lemma 2.10. Dickson’s Lemma.

Let U be a subset of Nn. Then there is a finite subset of vectors {v1, . . . ,vr} ⊆ U

such that

U ⊆ (v1 + Nn) ∪ . . . ∪ (vr + Nn).

Proof. We prove this statement by induction on n. The case n = 1 is trivial.

Suppose the statement is true for all m < n. Let π : Nn → Nn−1 be the projection

π(x1, x2, . . . , xn) = (x2, . . . , xn).

Then, by the induction hypothesis, there exist vectors u1, . . . ,ur such that

π(U) ⊆ (π(u1 + Nn−1) ∪ . . . ∪ (π(ur + Nn−1).

Let N be the largest number appearing in the first coordinate of u1, . . . , ur. Define

Ui = {u ∈ U : the first coordinate of u is i}, 0 ≤ i ≤ N

13
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and

U≥N = {u ∈ U : the first coordinate of u is at least N}.

Then U = U0 ∪ . . . ∪ UN−1 ∪ U≥N . It is clear that

U≥N ⊆ (u1 + Nn) ∪ . . . ∪ (ur + Nn).

The first coordinate is fixed for every Ui so we may apply the induction hypothesis

to it. We can see the number of vectors we need is at most r +N .

Theorem 2.11. Let I ⊆ S be an ideal, and ≺ any term order on S. Then I has

a finite Gröbner basis with respect to ≺.

Proof. Let

U = {v ∈ Nn : xv = in≺(f) for some f ∈ I} ⊆ Nn.

By Lemma 2.9, there are finitely many polynomials f1, f2, . . . , fm such that

U ⊆ (v1 + Nn) ∪ . . . ∪ (vm + Nn),

where xvi = in≺(fi) for 1 ≤ i ≤ m. Suppose that f ∈ I, with in≺(f) = axw.

Then w = vj + v for some v ∈ Nn, and some j such that 1 ≤ j ≤ m. This

means that xw = xvjxv, and therefore in≺(fj) divides in≺(f). But this implies

{f1, f2, . . . fm} is a Gröbner basis for I.
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Lemma 2.12. The Gröbner basis G of an ideal I is a basis of I.

Proof. We reproduce the proof from [16]. By definition, 〈G〉 ⊆ I, so we need to

show that if f ∈ I, then f ∈ 〈G〉. Suppose not. Then we can assume without loss

of generality that f is monic, and that among all polynomials of I which are not

in 〈G〉, f has the smallest initial monomial with respect to ≺. But f ∈ I implies

that in≺(f) ∈ in≺(I), which implies there is some g ∈ G with the property that

in≺(g) divides in≺(f). Suppose in≺(f) = xmin≺(g). Then h = f − xmg is a

polynomial in I with smaller initial monomial than f . Thus, by our assumption,

h ∈ 〈G〉, which implies that h + xmg = f ∈ 〈G〉, which is a contradiction. Thus

I ⊆ 〈G〉.

Theorem 2.13. Hilbert’s Basis Theorem. Every ideal I in S has a finite

generating set.

Proof. By Theorem 2.11, every ideal I in S has a finite Gröbner basis, and by

Lemma 2.12, a Gröbner basis of I with respect to any term order is a basis of I.

Thus I possesses a finite basis, that is, I has a finite generating set.

The following two results are reproduced from [16].

Theorem 2.14. If {f1, . . . , fm} is a Gröbner basis for I, then the multivariate

division algorithm will return the same remainder regardless of the order chosen

on {f1, . . . , fm}.
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Proof. Suppose {f1, . . . , fm} is a Gröbner basis for I, and suppose that if we

divide a polynomial g ∈ S by {f1, . . . , fm} with the elements ordered in two

different ways, then we obtain two remainders, r1, r2 ∈ S. Then f =
∑
aifi+r1 =∑

a
′
ifi+r2, so r1−r2 =

∑
a
′
ifi−

∑
aifi ∈ I, and no term of r1−r2 is divisible by

in≺(fi) for any fi in the Gröbner basis. But this implies r1− r2 = 0, as otherwise

0 6= in≺(r1 − r2) ∈ in≺(I) and some in≺(fi) would divide it.

Corollary 2.15. Gröbner bases solve the ideal membership problem in S, that

is, a polynomial f ∈ S is in I if and only if its remainder after division by a

Gröbner basis G of I is zero.

Proof. Firstly, assume f ∈ S has remainder zero after division by G. Then f can

be written as a combination of elements of the Gröbner basis, all of which are in

I, thus f ∈ I. Now, suppose f ∈ I. Then as G is a basis for I, f can be written

as a combination of elements of the Gröbner basis. Subtracting this combination

from f gives zero, implying zero is a remainder (and thus the unique remainder)

on division by G.

2.3 The Buchberger Algorithm

Given a term order ≺ and a generating set {f1, . . . , fm} for an ideal I, the stan-

dard way to compute a Gröbner basis is via the Buchberger algorithm, due to

Bruno Buchberger [1]. The algorithm requires the definition of the S-polynomial
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2.3. THE BUCHBERGER ALGORITHM

of a pair of polynomials fi, fj ∈ {f1, . . . , fm}, denoted Sfi,fj
.

Definition 2.16. Let mij be the least common multiple of the leading terms of

fi and fj. Then

Sfi,fj
=

mij

LT≺(fi)
(fi)− mij

LT≺(fj)
(fj).

The Buchberger algorithm uses the fact that a set of polynomialsG = {g1, . . . , gm}

is a Gröbner basis with respect to ≺ if and only if the remainder of every S-

polynomial on division by G is zero. We omit the proof, which can be found in

[3]. The algorithm works as follows:

LetG = {f1, . . . , fm}, the given set of generators of I. Calculate the S-polynomials

Sfi,fj
for all possible pairs fi, fj ∈ G, then find the remainder of each S-polynomial

on division by G. Whenever this results in a non-zero remainder r, add r to the

set G, and calculate all new S-polynomials formed due to the addition of r. Con-

tinue this process until every S-polynomial reduces to zero. G will then be a

Gröbner basis for I with respect to ≺.

Example 2.17. Let f1 = x − y2, f2 = x2 − y. We will use the Buchberger

algorithm to compute the Gröbner basis of the ideal I = 〈f1, f2〉 ⊂ k[x, y] with

respect to the lexicographic order with y ≺ x.

Observe first that LT≺(f1) = x and LT≺(f2) = x2. There are only two polynomials

generating I, so to begin with there is only one S-pair, Sf1,f2 We calculate:

17



CHAPTER 2. GRÖBNER BASES

Sf1,f2 = xf1 − 1f2 = x2 − xy2 − (x2 − y) = −xy2 + y.

We now reduce Sf1,f2 as much as possible with respect to {f1, f2}:

(−xy2 + y)− (−y2)f1 = −y4 + y.

f3 = −y4 + y cannot be reduced any further, so it must be added to the set

containing f1 and f2. The addition of f3 means Sf1,f2 will now reduce to zero,

but we must check Sf1,f3 and Sf2,f3. Observe that LT≺(f3) = −y4.

Sf1,f3 = (−y4)f1 − xf3 = −xy4 + y6 + xy4 − xy = −xy + y6.

(−xy + y6)− (−y)f1 = y6 − y3.

(y6 − y3)− (−y2)f3 = 0, so Sf1,f3 reduces to zero.

Sf2,f3 = (−y4)f2 − x2f3 = −x2y4 + y5 + x2y4 − x2y = −x2y + y5.

(−x2y + y5)− (−y)f2 = y5 − y2.

(y5 − y2)− (−y)f3 = 0, so Sf2,f3 reduces to zero.

As all S-polynomials reduce to zero with respect to the set of polynomials {f1, f2, f3}

= {x − y2, x2 − y,−y4 + y}, this set is a Gröbner basis for I with respect to ≺.

Note that this Gröbner basis is not minimal, as in≺(f1) = x divides x2 = in≺(f2).

We may delete f2 to get a minimal Gröbner basis {x−y2,−y4 +y}, and multiply

f3 by −1 to obtain the reduced Gröbner basis {x− y2, y4 − y}.

18



Chapter 3

The Exterior Algebra

The exterior algebra, also called the Grassmann algebra, is important in vari-

ous fields. It is used widely in both differential and algebraic geometry and in

multilinear algebra, and it also plays a role in other areas such as representation

theory.

Let k be an infinite field of characteristic 6= 2, and V a vector space of dimension

n over k, with ordered basis {X1, . . . Xn}.

Definition 3.1. The exterior algebra of V over k is the quotient of the free asso-

ciative (non-commutative) polynomial ring k〈X1, . . . , Xn〉 by the anticommutator

ideal I = 〈XiXj +XjXi : 1 ≤ i ≤ j ≤ n〉.

The multiplication in the exterior algebra is often called the wedge product or

exterior product, and is typically denoted ∧. It is associative and bilinear, and
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has the following properties:

• x ∧ x = 0 for all x ∈ V .

This implies that

• x ∧ y = −y ∧ x for all x, y ∈ V

• If σ is a permutation of {1, 2, . . . , n}, then xσ(1)xσ(2) . . . xσ(n) = sgn(σ)x1x2 . . . xn,

where sgn(σ) denotes the signature of the permutation σ

• x1 ∧ . . . ∧ xk = 0 if x1, . . . , xk are linearly dependent in V .

For a more intuitive definition, the exterior algebra (on n variables) can be

thought of as the algebra generated by the exterior product ∧ (as defined above)

on a vector space of dimension n over k.

For the sake of brevity, from this point we will omit the wedge product notation,

and write xy for x ∧ y in the exterior algebra.

The set of monomials Mext of the exterior algebra on n variables is

Mext =
⋃n
k=0{xi1xi2 . . . xik : 1 ≤ i1 < i2 . . . < ik ≤ n}

where the k = 0 case is the set {1} containing only the unity element.

We may observe that Mext is exactly the set of square-free monomials of S, and

there are
∑n

k=0

(
n
k

)
= 2n of them. This set forms a basis of the exterior algebra,

so the exterior algebra (on n variables) has dimension 2n.
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3.1 Term Orders on the Exterior Algebra

Let [n] denote the n-element set {1, 2, . . . , n}. There is a natural bijection between

the set of all subsets of [n], denoted 2[n], and the set Mext of monomials of the

exterior algebra on n variables. This bijection ϕ : 2[n] →Mext is given by

ϕ(A) =


1 if A = ∅

Πi∈Axi if A 6= ∅

for all A ⊆ [n].

It is clear we may also effectively map an order on 2[n] to an order on Mext by

defining for all A,B ⊆ [n]:

A ≺ B ⇐⇒ ϕ(A) ≺ ϕ(B).

Where there is no ambiguity, we will identify these two orders.

Therefore, considering term orders on the monomials of the exterior algebra on

n variables is equivalent to considering certain orders on 2[n]. Maclagan [11] calls

these Boolean term orders.

Definition 3.2. A Boolean term order is a total order on the subsets of [n] such

that:

• ∅ ≺ A for all ∅ 6= A ⊆ [n]
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• A ≺ B ⇐⇒ A ∪ C ≺ B ∪ C, for all A,B,C ⊆ [n] with the condition that

(A ∪ B) ∩ C = ∅.

For brevity, instead of writing {ai1 , ai2 , . . . , aij} for the subset A ⊆ [n] we will

write ai1ai2 . . . aij .

Example 3.3. The following order is a Boolean term order on the subsets of a

three-element set:

∅ ≺ 1 ≺ 2 ≺ 12 ≺ 3 ≺ 13 ≺ 23 ≺ 123

Applying ϕ to this order gives us the following equivalent order on the monomials

of the exterior algebra on 3 variables:

1 ≺ x1 ≺ x2 ≺ x1x2 ≺ x3 ≺ x1x3 ≺ x2x3 ≺ x1x2x3.

It is worth noting that Boolean term orders are equivalent to comparative proba-

bility orders. Comparative probability orders are used in mathematical economics

and other disciplines to analyse preferences. Their study dates back to funda-

mental work done by Bruno de Finetti [5], and in the context of comparative

probability the second condition in Definition 3.2 is called de Finetti’s axiom.

The comparison A ∪ C ≺ B ∪ C derived from a known comparison A ≺ B via

de Finetti’s axiom is sometimes referred to as a de Finetti consequence of the

comparison A ≺ B. We will make use of this idea in Chapter 4.
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Definition 3.4. A Boolean term order ≺ is coherent if there is a weight vector

w = (w1, w2, . . . , wn) ∈ Rn such that

A ≺ B ⇐⇒
∑

i∈Awi <
∑

j∈B wj

The equivalent concept in the context of comparative probability is that of an (ad-

ditively) representable comparative probability order. In the context of Gröbner

basis term orders on monomials of the exterior algebra on n variables, a term

order is coherent if it can be extended to a term order on all the monomials of

k[x1, . . . , xn].

Following Maclagan [11], we will henceforth assume the elements are ordered

1 ≺ 2 ≺ . . . ≺ n.

Note this is the opposite to the order we assumed on the variables of k[x1, . . . , xn]

in Chapter 2, however in this context, this order is more convenient.

This assumption reduces the number of possible orders under consideration by a

factor of n!. Following [4], we denote the set of Boolean term orders under this

condition by P∗n, and the subset of coherent orders by L∗n.

We can observe that while there are infinitely many term orders on k[x1, . . . , xn]

for n ≥ 2, there are only finitely many Boolean term orders as the exterior

algebra over n variables has only a finite number of monomials. For n ≤ 7, the

enumerated number of Boolean term orders is:
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n 1 2 3 4 5 6 7

|P∗n| 1 1 2 14 546 169444 560043206

|L∗n| 1 1 2 14 516 124187 214580603

It is not known how many Boolean term orders there are in general. Some

bounds, however, have been found on both the total number of term orders and

the number of coherent term orders. See [7] for more details.

Definition 3.5. The lexicographic extension of a Boolean term order ≺ on the

subsets of [n] is the order ≺′ on the subsets of [n + 1] defined by letting the first

2n subsets of [n+ 1] appearing in ≺′ be the subsets of [n], ordered by ≺, and the

remaining 2n subsets of [n+ 1] be ordered by the rule

A ≺ B ⇐⇒ (A \ {n+ 1}) ≺ (B \ {n+ 1}).

Note the central comparison of the lexicographic extension of ≺ will always be

12 . . . n ≺ n+ 1.

Example 3.6. The lexicographic extension of the order

≺= ∅ ≺ 1 ≺ 2 ≺ 3 ≺ 12 ≺ 13 ≺ 23 ≺ 123

is the order

≺′= ∅ ≺ 1 ≺ 2 ≺ 3 ≺ 12 ≺ 13 ≺ 23 ≺ 123 ≺ 4 ≺ 14 ≺ 24 ≺ 34 ≺ 124 ≺ 134 ≺

234 ≺ 1234.
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This method of creating an order on 2[n+1] from an order on 2[n] will be useful in

Chapter 4.

3.2 Noncoherent Term Orders

While representation by a weight vector for a Boolean term order seems natural,

when n ≥ 5 we encounter term orders which cannot be represented by a weight

vector. Such orders are called noncoherent.

The question of whether all Boolean term orders are coherent was first asked in

terms of comparative probability. In 1951, de Finetti [6] raised the question as

to whether all comparative probability orders are additively representable, and

this was answered in the negative by Kraft, Pratt, and Seidenberg [10] in 1959.

Example 3.7. A noncoherent Boolean term order for n = 5 is

∅ ≺ 1 ≺ 2 ≺ 12 ≺ 3 ≺ 13 ≺ 4 ≺ 14 ≺ 23 ≺ 123 ≺ 24 ≺ 124 ≺ 5 ≺ 34 ≺ 15 ≺

25 ≺ 134 ≺ 234 ≺ 125 ≺ 1234 ≺ 35 ≺ 135 ≺ 45 ≺ 145 ≺ 235 ≺ 1235 ≺ 245 ≺

1245 ≺ 345 ≺ 1345 ≺ 2345 ≺ 12345

To see that this term order is not coherent, we observe that the order contains

the following comparisons:

13 ≺ 4

14 ≺ 23
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34 ≺ 15

25 ≺ 134

Note that the quantity on the left hand sides is equal to the quantity on the right

hand sides. If we now take this order to be an order on the monomials of the

exterior algebra, we have:

x1x3 ≺ x4

x1x4 ≺ x2x3

x3x4 ≺ x1x5

x2x5 ≺ x1x3x4

We now multiply all the left hand sides together and all the right hand sides

together, which gives us x2
1x2x

2
3x

2
4x5 ≺ x2

1x2x
2
3x

2
4x5, a contradiction. Therefore

this order cannot be extended to an order on all monomials in 5 variables, and

thus it is noncoherent.

The method of giving a certificate for the noncoherency of a Boolean term or-

der has been given much attention by Fishburn [8, 9]. Let (A1, . . . , AM) =0

(B1, . . . , BM) mean that Aj, Bj ∈ 2[n] for all j and, for every i ∈ {1, . . . , n},

|{j : i ∈ Aj}| = |{j : i ∈ Bj}|. Fishburn quotes the following axiom from Kraft,

Pratt, and Seidenberg which, when added to the defining axioms of a Boolean

term order, results in a set of axioms which are both necessary and sufficient for

coherency:
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For all M ≥ 2 and all Aj, Bj ∈ 2[n], if (A1, . . . , AM) =0 (B1, . . . , BM) and

Aj ≺ Bj for all j < M , then it is not the case that AM ≺ BM .

Violation of this axiom for a certain M implies the failure of the M th cancellation

condition, denoted CM , and means the order is noncoherent.

Example 3.8. The four comparisons 13 ≺ 4, 14 ≺ 23, 34 ≺ 15, 25 ≺ 134 quoted

earlier comprise a failure of C4, implying that any order containing this set of

comparisons is noncoherent.

For a Boolean term order to be coherent, it is necessary and sufficient that all

cancellation conditions CM are satisfied. Thus to show an order is noncoherent,

it is enough to present a failure of CM for some M .

Fishburn demonstrated [8] that the cancellation conditions C2 and C3 are implied

by de Finetti’s axiom and properties of term orders, and thus cannot fail. Hence

C4 is the first non-trivial cancellation condition. The construction process in

Chapter 4 will focus on failures of C4.

3.3 Gröbner Basis Computation in the Exterior

Algebra

To define and compute Gröbner bases in the exterior algebra, we use the following

work of Maclagan [12].
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Definition 3.9. A monomial ideal I ⊆ S = k[x1, . . . , xn] is an Artinian mono-

mial ideal if xd11 , . . . , x
dn
n are among its minimal generators (the unique smallest

set of monomials that generates I) for some strictly positive d1, . . . , dn.

Let I be an Artinian monomial ideal in S. Then S/I is a finite-dimensional k-

vector space with basis the set of images of monomials of S not in I, denoted M .

These monomials are called standard monomials.

Definition 3.10. A term order ≺ on M is a total order on M which satisfies:

• 1 = x0 ≺ xu for all xu 6= 1 in M .

• If xa ≺ xb then xaxc ≺ xbxc whenever xaxc and xbxc are both in M .

Note that a Boolean term order is a term order on S/I when I is generated by

the squares of the variables.

Gröbner basis theory in S/I is similar to Gröbner basis theory on S, with some

modifications. A set G = {g1, . . . , gl} is a Gröbner basis for an ideal J ⊆ S/I

with respect to a term order ≺ if in≺(G) = {in≺(g1), . . . , in≺(gl)} generates

in≺(J). We may now give the method for calculating a Gröbner basis in S/I. The

definition of S-polynomials in S/I is analagous to the definition in the polynomial

ring S.

Definition 3.11. Let mij be the least common multiple of the leading terms of

gi and gj. An S-polynomial, Sgi,gj
is the polynomial

mij

LT≺(gi)
(gi)− mij

LT≺(gj)
(gj).
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When calculating a Gröbner basis in S/I, we require the additional concept of a

T -polynomial.

Definition 3.12. A T -polynomial, Tgi,xa, where xain≺(gi) ∈ I, is the polynomial

xagi.

Theorem 3.13. A set of polynomials G = {g1, . . . , gl} ⊆ S/I is a Gröbner basis

for the ideal 〈G〉 they generate if and only if all S-polynomials and T -polynomials

reduce to zero with respect to G.

The proof of this theorem may be found in [12].

This defines Gröbner basis computation for quotients of S by Artinian mono-

mial ideals, which are commutative, contain only finitely many monomials, and

contain zero-divisors. While the exterior algebra is not commutative, it is anti-

commutative, i.e. commutative modulo a negative sign. Changes in sign do not

alter the working of the division algorithm, and therefore the same theorem holds

for the exterior algebra.

The necessity of the T -polynomials is due to the fact that in an algebra with

zero-divisors, it is not always the case that if a polynomial reduces to zero with

respect to a generating set of polynomials, then all monomial multiples of that

polynomial reduce to zero as well.

Example 3.14. Let f = x1x2 + x3, let ≺ be a term order such that x3 ≺ x1x2,

and let
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K = 〈x1x2 + x3〉

be the principal ideal generated by f in the exterior algebra on three variables.

As K is principal, there are no S-polynomials to consider. But {x1x2 + x3} is

not a Gröbner basis for K, as in≺(x1x2 +x3) = x1x2 does not generate the initial

ideal in≺(K). This is because the T -polynomials

Tf,x1 = x1(x1x2 + x3) = x1x3 and Tf,x2 = x2(x1x2 + x3) = x2x3

are also monomials in K, and thus appear in in≺(K), but are not generated by

x1x2.

Therefore, taking T -polynomials into account, we find a Gröbner basis for K is

{x1x2 + x3, x1x3, x2x3}

and the initial ideal in≺(K) is

〈x1x2, x1x3, x2x3〉.
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Chapter 4

Noncoherent Initial Ideals in the

Exterior Algebra

The previous sections give us sufficient background to work with term orders,

Gröbner bases, and initial ideals in the exterior algebra.

Definition 4.1. A noncoherent initial ideal of an ideal I is an initial ideal of I

with respect to a noncoherent term order, which is not equal to the initial ideal of

I with respect to any coherent term order.

Maclagan [12] demonstrated the existence of a noncoherent initial ideal of an

ideal J in a quotient of k[x1, x2, x3, x4] by a specific Artinian monomial ideal

I, and asked whether a noncoherent initial ideal exists in the exterior algebra.

We will give a construction theorem that produces noncoherent intial ideals in
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the exterior algebra on n variables where n ≥ 6, and demonstrate some simple

examples.

4.1 A Construction Theorem

Let n ≥ 5, and A1, . . . , A4, B1, . . . , B4 be subsets of [n] such that in some Boolean

term order ≺, we have (A1, . . . , A4) =0 (B1, . . . , B4) and A1 ≺ B1, A2 ≺ B2, A3 ≺

B3, A4 ≺ B4. Then ≺ is noncoherent, with {Ai ≺ Bi : 1 ≤ i ≤ 4} comprising a

failure of the cancellation condition C4.

We now recall the definition of the bijection ϕ : 2[n] →Mext given in Chapter 3:

ϕ(A) =


1 if A = ∅

Πi∈Axi if A 6= ∅

for all A ⊆ [n].

As before, we will identify the Boolean term order ≺ on subsets of [n] with the

equivalent term order on monomials of the exterior algebra on n variables.

Theorem 4.2. Suppose the eight subsets {Ai : 1 ≤ i ≤ 4, Bi : 1 ≤ i ≤ 4} which

form the four comparisons comprising a failure of C4 have the additional property

that none of them is contained in (or equal to) any of the other seven. Then if

we take the ideal

I = 〈 ϕ(B1)− ϕ(A1), ϕ(B2)− ϕ(A2), ϕ(B3)− ϕ(A3), ϕ(B4)− ϕ(A4) 〉
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and the term order ≺, the initial ideal in≺(I) is a noncoherent initial ideal in the

exterior algebra on n variables.

Proof. We first note that only ≺, or another noncoherent term order, chooses

(respectively) ϕ(B1), ϕ(B2), ϕ(B3), ϕ(B4) as the initial monomials of the

four generators of I. If ≺c is any coherent term order, then it must be the case

that for some i, Bi ≺c Ai, and thus ϕ(Ai) ∈ in≺c(I). It is therefore sufficient to

show that in≺(I) does not contain any of ϕ(A1), ϕ(A2), ϕ(A3), ϕ(A4).

We therefore need to establish that generating sets of in≺(I) do not contain

divisors of any ϕ(Ai), 1 ≤ i ≤ 4. Note that a Gröbner basis of I with respect

to ≺ will comprise the four generators of I plus certain T -polynomials and the

remainders of S-polynomials on division by the generators of I, so we can establish

this by examining the properties of the S-polynomials and T -polynomials created

during the calculation of a Gröbner basis of I.

Let r be the remainder on reducing an S-polynomial with respect to the genera-

tors of I. In general, r may not be zero. But any monomial part of a nonzero r

(and thus in≺(r)) will be a multiple of a monomial part of one of the generators

of I - that is, it will be of the form xa · ϕ(Ai) or xa · ϕ(Bi) for some ϕ(Ai) or

ϕ(Bi), where 1 ≤ i ≤ 4 and 1 6= xa is some monomial in the exterior algebra on

n variables. None of the ϕ(Ai) or ϕ(Bi) divides any of the other ϕ(Ai) or ϕ(Bi),

so in≺(r) will also not divide any of these - in particular, it will not divide any

of the ϕ(Ai). Therefore, the non-initial monomials of the four generators (the
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ϕ(Ai)) cannot be generated by the initial monomial of the remainder created by

reducing an S-polynomial.

Any nonzero T -polynomial of a generator has the form xa · ϕ(Ai), where 1 6= xa

is some monomial in the exterior algebra on n variables. As the generators of I

each consist of exactly two monomial parts, each of these T -polynomials is itself

a monomial, and thus is equal to its initial monomial. All we need to do then

is observe that as ϕ(Ai) does not divide ϕ(Aj) for 1 ≤ i, j ≤ 4, i 6= j, then

xa · ϕ(Ai) does not divide ϕ(Aj) for any 1 ≤ i, j ≤ 4. The other case to consider

is T -polynomials of a remainder r of an S-polynomial. This has a maximum of

two monomial parts, and and any one of these is a multiple of a monomial part

of one of the generators, so any nonzero T -polynomial of r will likewise be a

multiple of a monomial part of one of the generators, and so will not divide any

ϕ(Ai). Therefore, no T -polynomial can generate any of the ϕ(Ai).

By definition, the initial ideal in≺(I) is generated by the set of initial monomials

of polynomials in a Gröbner basis. A Gröbner basis will consist of the four

generators of I, various T -polynomials, and remainders of S-polynomials that

did not reduce to zero during the calculation, so in≺(I) is generated by the

initial monomials of these polynomials. We have shown that none of the initial

monomials of T -polynomials or of remainders of S-polynomials generates any of

the ϕ(Ai). Neither does any of ϕ(B1), . . . , ϕ(B4), the initial monomials of the

generators with respect to ≺, as we have assumed that none of the eight subsets
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{ϕ(Ai), ϕ(Bi) : 1 ≤ i ≤ 4} divides any of the other seven. Therefore, no divisor

of any of the ϕ(Ai) is in in≺(I), so none of the ϕ(Ai) is in in≺(I), but in≺c(I)

must contain at least one of the ϕ(Ai) for any coherent term order ≺c.

Therefore, in≺(I) is a noncoherent initial ideal.

4.2 Examples

The proof in the previous section does not actually demonstrate the existence of

an order≺ containing four comparisonsAi ≺ Bi, with (A1, . . . , A4) =0 (B1, . . . , B4)

and satisfying the property that none of these eight subsets is contained in any

of the other seven.

In this section we will see that if we take a noncoherent order that violates the

cancellation condition C4, we can use the subsets of the C4 violation to generate

another set of comparisons which still violates C4 and has the desired pairwise

noncontainment property. This is achieved by taking de Finetti consequences

of some of the comparisons. The new set of comparisons will either be in the

original order on 2[n] or in another order on 2[n+k], k ≤ 4 which can be obtained

from the original order by use of lexicographic extensions.

We will provide some examples of such orders and the noncoherent initial ideals

that may be generated from them.

Example 4.3. We take the following Boolean term order on the subsets of a
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six-element set:

∅ ≺ 1 ≺ 2 ≺ 3 ≺ 12 ≺ 13 ≺ 4 ≺ 5 ≺ 14 ≺ 6 ≺ 23 ≺∗ 15 ≺ 16 ≺ 123 ≺ 24 ≺

25 ≺∗ 34 ≺ 124 ≺ 35 ≺∗ 26 ≺ 125 ≺ 134 ≺ 36 ≺ 135 ≺ 126 ≺ 45 ≺ 136 ≺

46 ≺ 234 ≺ 145 ≺ 56 ≺ 146 ≺∗ 235 ≺ 1234 ≺ 236 ≺ 156 ≺ 1235 ≺ 245 ≺

1236 ≺ 345 ≺ 246 ≺ 1245 ≺ 256 ≺ 346 ≺ 1345 ≺ 1246 ≺ 356 ≺ 1256 ≺ 1346 ≺

1356 ≺ 456 ≺ 2345 ≺ 2346 ≺ 1456 ≺ 12345 ≺ 2356 ≺ 12346 ≺ 12356 ≺ 2456 ≺

3456 ≺ 12456 ≺ 13456 ≺ 23456 ≺ 123456

Let us label the comparisons marked with an asterisk as follows:

A
′
1 = 25 ≺ 34 = B

′
1

A
′
2 = 35 ≺ 26 = B

′
2

A
′
3 = 23 ≺ 15 = B

′
3

A
′
4 = 146 ≺ 235 = B

′
4

We may observe (A
′
1, . . . , A

′
4) =0 (B

′
1, . . . , B

′
4), as the sum on the left hand side

of the four comparisons equals the sum on the right hand side, so these compar-

isons comprise a failure of the cancellation condition C4, implying this order is

noncoherent.

However, some of the eight subsets in these comparisons are contained within

others. To get around this problem, we take de Finetti consequences of the first

three comparisons listed above to form the set of comparisons marked in bold:

A1 = 125 ≺ 134 = B1
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A2 = 135 ≺ 126 = B2

A3 = 234 ≺ 145 = B3

A4 = 146 ≺ 235 = B4

These clearly satisfy the pairwise noncontainment property we desire, as all eight

of these sets have equal cardinality and are not equal to any of the other seven. We

may observe they still comprise a C4 failure because the same quantity has been

added to both the left and right hand sides, ensuring (A1, . . . , A4) =0 (B1, . . . , B4).

We now apply ϕ to the above order to obtain the following comparisons in a term

order ≺ on the monomials of the exterior algebra on six variables:

ϕ(A1) = x1x2x5 ≺ x1x3x4 = ϕ(B1)

ϕ(A2) = x1x3x5 ≺ x1x2x6 = ϕ(B2)

ϕ(A3) = x2x3x4 ≺ x1x4x5 = ϕ(B3)

ϕ(A4) = x1x4x6 ≺ x2x3x5 = ϕ(B4)

Applying ϕ preserves noncoherency, so this set of comparisons comprises a failure

of C4 for ≺. It is possible this set of comparisons may also appear in some

noncoherent order which is not equal to ≺, but never in any coherent order.

Following the process outlined in the previous section, let

gi = ϕ(Bi)− ϕ(Ai), 1 ≤ i ≤ 4

and let
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I = 〈g1, g2, g3, g4〉 =

〈x1x3x4 − x1x2x5, x1x2x6 − x1x3x5, x1x4x5 − x2x3x4, x2x3x5 − x1x4x6〉

We claim that in≺(I) is a noncoherent initial ideal. As at least one of the mono-

mials x1x2x5, x1x3x5, x2x3x4, x1x4x6 must appear in in≺c(I) where ≺c is any

coherent order, it will suffice to show that none of these monomials is in in≺(I).

To find in≺(I), we first calculate a Gröbner basis G of I with respect to ≺, using

the process given in Chapter 3. The calculation is somewhat involved and tedious,

so we omit it here. We find

G = {x1x3x4 − x1x2x5, x1x2x6 − x1x3x5, x1x4x5 − x2x3x4,

x2x3x5 − x1x4x6, x1x3x5x6, x2x3x4x6}

and thus

in≺(I) = 〈x1x3x4, x1x2x6, x1x4x5, x2x3x5, x1x3x5x6, x2x3x4x6〉

It is easy to observe that none of the four monomials x1x2x5, x1x3x5, x2x3x4, x1x4x6

are in in≺(I). Therefore, in≺(I) 6= in≺c(I) for any coherent term order ≺c, and

so in≺(I) is a noncoherent initial ideal.

Given a noncoherent Boolean term order on 2[n], we may construct a noncoher-

ent intial ideal on the exterior algebra on m variables, where m > n, by use of
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lexicographic extensions. This technique can guarantee construction of a nonco-

herent initial ideal on m = n + 4 variables, and may allow for construction of a

noncoherent initial ideal on n+ 1 ≤ m ≤ n+ 3 variables. The following example

uses a noncoherent order on 5 variables to construct a noncoherent initial ideal

in the exterior algebra on 6 variables.

Example 4.4. We take the following Boolean term order ≺5 on 5 elements:

∅ ≺ 1 ≺ 2 ≺ 12 ≺ 3 ≺ 13 ≺∗ 4 ≺ 14 ≺∗ 23 ≺ 123 ≺ 24 ≺ 124 ≺ 5 ≺ 34 ≺∗ 15 ≺

25 ≺∗ 134 ≺ 234 ≺ 125 ≺ 1234 ≺ 35 ≺ 135 ≺ 45 ≺ 145 ≺ 235 ≺ 1235 ≺ 245 ≺

1245 ≺ 345 ≺ 1345 ≺ 2345 ≺ 12345

This order contains the comparisons

A
′
1 = 13 ≺ 4 = B

′
1

A
′
2 = 14 ≺ 23 = B

′
2

A
′
3 = 34 ≺ 15 = B

′
3

A
′
4 = 25 ≺ 134 = B

′
4

The sum on the left hand side of these four comparisons is equal to the sum on

the right hand side, so (A
′
1, . . . , A

′
4) =0 (B

′
1, . . . , B

′
4), and thus they comprise a

failure of the cancellation condition C4, which implies this order is noncoherent.

We now take the lexicographic extension of this Boolean term order, to form the

following Boolean term order ≺6:

∅ ≺ 1 ≺ 2 ≺ 12 ≺ 3 ≺ 13 ≺ 4 ≺ 14 ≺ 23≺ 123 ≺ 24 ≺ 124 ≺ 5 ≺ 34 ≺
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15≺ 25 ≺ 134 ≺ 234 ≺ 125 ≺ 1234 ≺ 35 ≺ 135 ≺ 45 ≺ 145 ≺ 235 ≺ 1235 ≺

245 ≺ 1245 ≺ 345 ≺ 1345 ≺ 2345 ≺ 12345 ≺ 6 ≺ 16 ≺ 26 ≺ 126 ≺ 36 ≺

136 ≺ 46≺ 146 ≺ 236 ≺ 1236 ≺ 246 ≺ 1246 ≺ 56≺ 346 ≺ 156 ≺ 256 ≺ 1346 ≺

2346 ≺ 1256 ≺ 12346 ≺ 356 ≺ 1356 ≺ 456 ≺ 1456 ≺ 2356 ≺ 12356 ≺ 2456 ≺

12456 ≺ 3456 ≺ 13456 ≺ 23456 ≺ 123456

The four bolded comparisons

A1 = 123 ≺ 24 = B1

A2 = 25 ≺ 134 = B2

A3 = 146 ≺ 236 = B3

A4 = 346 ≺ 156 = B4

are carefully chosen de Finetti consequences of the failure of C4 for ≺5. Therefore,

any term order in which these above four comparisons appear (in particular ≺6)

must be noncoherent. Observe that we now have the property we desire, that is,

none of the above eight subsets are contained in any of the other seven.

As before, we apply ϕ to the above Boolean term order ≺6. This creates a term

order ≺ on the monomials of the exterior algebra on six variables, containing the

comparisons

ϕ(A1) = x1x2x3 ≺ x2x4 = ϕ(B1)

ϕ(A2) = x2x5 ≺ x1x3x4 = ϕ(B2)

ϕ(A3) = x1x4x6 ≺ x2x3x6 = ϕ(B3)
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ϕ(A4) = x3x4x6 ≺ x1x5x6 = ϕ(B4)

We now take the ideal

I = 〈x2x4 − x1x2x3, x1x3x4 − x2x5, x2x3x6 − x1x4x6, x1x5x6 − x3x4x6〉

in the exterior algebra on six variables. As before, to show in≺(I) is a noncoherent

initial ideal, it suffices to show that in≺(I) does not contain any of the monomials

x1x2x3, x2x5, x1x4x6, x3x4x6, at least one of which must be in in≺c(I) for any

coherent term order ≺c.

We now compute a Gröbner basis G of I with respect to ≺:

G = {x2x4 − x1x2x3, x1x3x4 − x2x5, x2x3x6 − x1x4x6,

x1x5x6 − x3x4x6, x1x2x5, x2x3x5, x2x5x6, x3x4x5x6}

and thus

in≺(I) = 〈x2x4, x1x3x4, x2x3x6, x1x5x6, x1x2x5, x2x3x5, x2x5x6, x3x4x5x6〉.

It is easy to observe that none of the four monomials x1x2x3, x2x5, x1x4x6, x3x4x6

are in in≺(I). Therefore in≺(I) 6= in≺c(I) for any coherent term order ≺c, and

so in≺(I) is a noncoherent initial ideal.
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Chapter 5

Conclusions and Remaining

Questions

The previous section demonstrates examples of noncoherent initial ideals in the

exterior algebra on six variables, and methods to extend the construction to an

arbitrary number of variables greater than six. It is known [8] that there are

no noncoherent term orders on subsets of n-element sets where n ≤ 4. This

raises a question with regards to minimality of noncoherent initial ideals, specif-

ically whether there exists a noncoherent initial ideal in the exterior algebra on

5 variables.

With the help of Fishburn’s classification of all possible C4 failures for compar-

ative probability orderings on the subsets of a five-element set, we may demon-

strate that our construction theorem is unable to produce an ideal in the exterior
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algebra on 5 variables which possesses a noncoherent intial ideal, as follows:

Theorem 5.1. (Fishburn) Let the dual of a comparison A � B be B � A and

the dual of a set of comparisons be the set of their duals. Let n = 5, with the

elements ordered 1 � 2 � 3 � 4 � 5. Then an order is noncoherent if and only

if it satisfies one of I through V or the dual of one of I through V:

I II III IV V

245 � 13 235 � 14 234 � 15 235 � 14 234 � 15

15 � 24 15 � 23 1 � 235 1 � 345 1 � 245

34 � 25 34 � 35 25 � 34 34 � 25 25 � 34

2 � 45 2 � 35 35 � 2 45 � 3 45 � 2

Theorem 5.2. The construction theorem from Chapter 4 cannot produce an ideal

in the exterior algebra on 5 variables which possesses a noncoherent initial ideal.

Proof. First note that for each of the five C4 failures in the table, none of them

satisfies the pairwise noncontainment property we desire. Therefore, for each C4

failure, we must take de Finetti consequences of at least one of the comparisons.

Observe all of the C4 failures contain the central comparison of the order. The

union of the two subsets comprising the central comparison is always the whole

set [n]. This means that in the case where n = 5, any one-element subset must

be contained in one of these two central subsets, and any four-element subset
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must contain one of these two central subsets. Therefore, to satisfy the pairwise

non-containment property, all of the eight subsets comprising the failure of C4

must contain either two or three elements.

The C4 failures (III), (IV), and (V) all contain a comparison between a one-

element subset and a three-element subset. As we cannot have a one-element

subset, we must take a de Finetti consequence of this comparison, but this will

turn the three-element subset into a four-element subset, which is also not al-

lowed. Hence none of these C4 failures can be used in the construction.

For (I), we can observe that the subset 24 in the second comparison is contained

in the subset 245 in the first (central) comparison. Thus we must take a de Finetti

consequence of the second comparison - our only option is to form 135 ≺ 234.

But then 135 contains the subset 13 from the first comparison. This comparison

already contains all five elements, so we cannot take a de Finetti consequence of

it without introducing a sixth element. Thus (I) cannot be used. The case for

(II) is similar.

Therefore, if a noncoherent initial ideal exists in the exterior algebra on five

variables, a different method must be used to construct it.

Another question raised by the existence of noncoherent initial ideals is how a

Gröbner fan may be defined for an ideal I in the exterior algebra which possesses
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a noncoherent initial ideal in≺(I), as in≺(I) 6= inw(I) for any weight vector w.

For more information on Gröbner fans, see Chapter 14 of [16] or Chapter 2 of

[15].

There also remain some interesting questions relating specifically to Boolean term

orders. We reproduce two of these here.

• Can we find improved bounds on both the number of coherent orders and

the total number of orders?

• Does the ratio of the number of coherent term orders to the total number

of term orders tend to zero as n increases?
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