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1 Introduction

Decision rules for choice under complete uncertainty rank actions on the basis of the sets

of possible outcomes they induce. The term complete uncertainty is intended to describe

a situation where an agent knows the set of possible consequences of an action but cannot

assign probabilities to these outcomes. The choice of an action is assumed to proceed

in two steps. First, a ranking of sets of possible outcomes is established and then the

agent selects an available action that is associated with a set of consequences that is best

according to the ranking. In the model considered here, the universal set of outcomes

is non-empty and finite and the ranking of sets to be established is an ordering. Con-

sequently, best elements always exist and the above-described procedure is well-defined.

Rankings of sets that are interpreted as sets of possible outcomes under complete uncer-

tainty have been analyzed in numerous axiomatic studies such as the pioneering contribu-

tion of Kannai and Peleg (1984); see also Bandyopadhyay (1988), Barberà, Barrett and

Pattanaik (1984), Barberà and Pattanaik (1984), Bossert (1989), Fishburn (1984), Heiner

and Packard (1984), Holzman (1984a,b), Nitzan and Pattanaik (1984) and Pattanaik and

Peleg (1984). A survey can be found in Barberà, Bossert and Pattanaik (2004).

Clearly, there are approaches to choice under complete uncertainty other than the

set-based model analyzed here. For example, Arrow and Hurwicz (1972), Barrett and

Pattanaik (1993), Cohen and Jaffray (1980), Luce and Raiffa (1957), Maskin (1979) and

Milnor (1954) model non-probabilistic choice under uncertainty by specifying a set of

possible states of the world and an outcome results from combining a feasible action with

a possible state. In this more conventional setting, actions are ranked by comparing the

vectors of contingent outcomes that are generated by this approach and, in contrast to our

set-based model, it is possible to keep track not only of the set of possible outcomes but

also, for example, of the number of states in which a given outcome materializes. In defense

of the set-based model, however, it should be noted that we may want to avoid attaching

importance to the number of states where the same outcome materializes because this

number may be the result of an arbitrary subdivision of otherwise indistinguishable states.

In addition, if the number of possible states of the world is large, an agent may find it

too complex to take into account the entire vector of contingent outcomes. Restricting

attention to the set of possible outcomes is one way of arriving at a more tractable

representation of the information that is available. Finally, in a Rawlsian veil-of-ignorance

framework (see Rawls, 1971), it may not be obvious how states and outcomes can be

distinguished in a satisfactory manner and, again, the set-based model seems very suitable
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in these circumstances. We do, of course, not claim that the set-based approach represents

the most suitable model of choice under complete uncertainty in all circumstances, but the

above discussion demonstrates that there are compelling arguments in favor of adopting

it in numerous situations. Thus, analyzing the properties of set-based decision rules is an

important task.

One important feature of a decision rule under uncertainty is the degree of risk aversion

or uncertainty aversion it represents. Attitudes such as risk aversion and uncertainty

aversion have been analyzed thoroughly in the linear expected-utility framework of von

Neumann and Morgenstern (1944, 1947); see, for example, Arrow (1971) and Pratt (1964).

Chew, Karni and Safra (1987) examine risk and uncertainty aversion in the presence of

rank-dependent probabilities, and Wakker (1990) characterizes optimism and pessimism in

non-linear probability models. A definition of uncertainty aversion for Choquet expected-

utility models is presented in Schmeidler (1989), and Epstein (1999) formulates a notion

of uncertainty aversion that is particularly suitable in a Savage (1954) framework. Bossert

(1997) provides a definition of uncertainty aversion for the set-based model. However, his

definition is an absolute definition in that it only allows us to establish whether or not a

given ordering of sets of possible outcomes is uncertainty averse in a specific sense—it does

not permit comparisons of different decision rules with respect to their relative degree of

uncertainty aversion.

In this paper, we suggest an intuitively appealing definition of relative uncertainty

aversion that allows us to rank all set-based decision rules within a given class with

respect to the uncertainty aversion they represent. Although a formal definition will have

to wait until we have introduced some basic notation and definitions, a simple example

serves to introduce the basic idea. Suppose we have four objects numbered 1 to 4 where

1 is best, 2 is second-best, followed by 3, and 4 is worst. Suppose one ordering of sets

of possible outcomes declares both the set {2} and the set {3} better than the set {1, 4}
whereas, according to a second ordering, {1, 4} is better than {3} but {2} is better than

{1, 4}. Abstracting from all other comparisons for the moment, it is plausible to say that

the first ranking exhibits more uncertainty aversion than the second: an agent with the

second ranking is willing to forgo the certain outcome 3 in favor of the possibility of getting

the best choice 1, even though the worst possible outcome 4 is also a possibility. Clearly,

this is not the case for the first ranking. Our criterion for comparing orderings of sets

with respect to the uncertainty aversion they represent is based on this intuition. Loosely

speaking, the closer a certain outcome has to be to the better of two possible outcomes in

order to be declared at least as good, the more uncertainty aversion the ranking represents.
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Clearly, without any restrictions on the set rankings, it cannot be expected that such a

criterion can be applied consistently to all comparisons. Interestingly, it turns out that

three plausible axioms restrict the class of possible orderings in a way such that the

proposed criterion generates an uncertainty-aversion ordering defined on this class.

In Section 2, we introduce two fundamental axioms and characterize all set ranking

rules that satisfy them. A new translation-neutrality axiom is defined in Section 3 and we

show that the rules characterized by it and the previous axioms can be given a convenient

diagrammatic representation. Section 4 discusses our new definition of relative uncertainty

aversion if applied to the orderings characterized in Section 3. Furthermore, we prove an

asymptotic combinatorial result regarding the number of orderings in our class. Section

5 examines the issue of additive representability and we show that some, but not all, of

our orderings are additively representable in a weak sense. Section 6 concludes.

2 Set rankings

Our goal is to examine rankings of all non-empty subsets of a finite and non-empty

universal set of objects, based on a ranking of the objects themselves. We interpret

these sets as sets of possible outcomes and their ranking as a decision rule in the context

of choice under complete uncertainty. We assume that the objects are ranked by an

antisymmetric ordering, where an ordering is a reflexive, transitive and complete binary

relation. Without loss of generality, we simplify notation by identifying the objects with

natural numbers ordered from best to worst, that is, the universal set is given by [n] =

{1, . . . , n} with n ∈ N and the antisymmetric ordering on [n] is such that, for all i, j ∈ [n],

i is at least as good as j if and only if i ≤ j. P [n] is the set of all non-empty subsets of

[n]. For A ∈ P[n], |A| ∈ N is the cardinality of A. We label the elements in A such that

A = {a1, . . . , a|A|} with a1 < . . . < a|A| if |A| ≥ 2 and A = {a1} = {a|A|} if |A| = 1. Thus,

for any A ∈ P[n], the best element in A is a1 and the worst element in A is a|A|.

R is an ordering on P [n] and its asymmetric and symmetric parts are denoted by P

and I. Kannai and Peleg (1984) show that some plausible properties imposed on the

ordering R imply that any set A ∈ P[n] must be indifferent to the set consisting of the

best element and the worst element in A. Related results appear, for instance, in Barberà,

Barrett and Pattanaik (1984) and in Bossert, Pattanaik and Xu (2000); see also Arrow

and Hurwicz (1972) for an analogous implication in a more traditional decision-theoretic

context. Nehring and Puppe (1996) characterize all rankings that depend on best and

worst elements only in a model where the universal set is uncountable and endowed with
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some topological structure. In this paper, we weaken one of the Kannai-Peleg axioms

because their properties result in an impossibility.

Our first axiom is a dominance property which requires that the addition of an object

that is better (worse) than all objects in a given set A ∈ P[n] leads to a set that is better

(worse) than A.

Dominance. For all A ∈ P[n] and for all i ∈ [n],

(i) if i < j for all j ∈ A, then A ∪ {i}PA;

(ii) if i > j for all j ∈ A, then APA ∪ {i}.

In recognition of the use of this axiom in Gärdenfors (1976), dominance is referred to as

the Gärdenfors principle in Kannai and Peleg (1984). See also Kim and Roush (1980) for

a discussion.

The next axiom is a weakening of Kannai and Peleg’s (1984) independence condition

(which they call monotonicity). Their axiom requires that if there exists a strict preference

between two sets A and B, adding the same alternative to both sets does not reverse this

strict ranking. We weaken this requirement considerably by limiting the scope of its

conclusion to cases where the worst (best) element is the same in both sets and the object

to be added to both sets is better (worse) than all elements in the union of the two sets.

By considering additions of better (worse) elements only and by restricting attention to

additions where the two initial sets have a common worst (best) element, we weaken the

Kannai-Peleg axiom in a way that is consistent with the idea of reducing the complexity

involved in a decision problem. Thus, this weakening is in line with one of the features of

the set-based model alluded to in the introduction, namely, the reduction in complexity

when assessing changes in the sets of possible outcomes. Moreover, our version of the

axiom can be shown to be, together with the dominance axiom, a minimal requirement

(in a sense made precise in Theorem 2 below) to obtain the result that any set is indifferent

to the set consisting of its best element and its worst element.

Conditional independence. For all A, B ∈ P[n] and for all i ∈ [n],

(i) if APB, a|A| = b|B| and i < j for all j ∈ A ∪ B, then A ∪ {i}RB ∪ {i};

(ii) if APB, a1 = b1 and i > j for all j ∈ A ∪ B, then A ∪ {i}RB ∪ {i}.

Dominance and conditional independence are natural axioms to impose if R is interpreted

as a ranking of sets of possible outcomes under complete uncertainty.
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The following theorem strengthens one of Kannai and Peleg’s (1984) results by weak-

ening their independence axiom to conditional independence. As noted in Bossert (1989),

the transitivity of R assumed in the Kannai-Peleg result can be weakened to transitivity

of the asymmetric part P of R. This is the case for our formulation as well.

Theorem 1. If an ordering R on P [n] satisfies dominance and conditional independence,

then AI{a1, a|A|} for all A ∈ P[n].

Proof. Let A ∈ P[n]. If A contains less than three elements, the claim follows immedi-

ately from the reflexivity of R. Now suppose |A| ≥ 3. By repeated application of part (i)

of dominance and transitivity, it follows that {a2, . . . , a|A|}P{a|A|} and, using part (i) of

conditional independence, we obtain

AR{a1, a|A|}. (1)

Repeated application of part (ii) of dominance and transitivity yields {a1}P{a1, . . . , a|A|−1},
and part (ii) of conditional independence implies

{a1, a|A|}RA. (2)

Combining (1) and (2), we obtain AI{a1, a|A|}.

As is clear from the proof of this theorem, its conclusion is valid not only for orderings

but for any reflexive relation whose asymmetric part is transitive.

Theorem 1 can be used to characterize all orderings satisfying our two axioms. It

reduces an ordering satisfying dominance and conditional independence to the ordering

of one-element and two-element subsets satisfying the same properties. We identify two-

element subsets of [n] with the elements of the set of all pairs {(i, j) | i < j}. Furthermore,

we identify a singleton {i} with the pair (i, i). Thus, all one-element and two-element

subsets of [n] are identified with the elements of the set

S[n] = {(i, j) | i, j ∈ [n] and i ≤ j}.

An ordering on S[n] is denoted by � with asymmetric and symmetric parts � and ∼. As

shown in the following theorem, an ordering on P [n] satisfies dominance and conditional

independence if and only if there exists a corresponding ordering on S[n] (in the sense

that will be explained below) which possesses the following monotonicity property.
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Monotonicity. For all i, j, k ∈ [n],

(i) if i < j ≤ k, then (i, k) � (j, k);

(ii) if i ≤ j < k, then (i, j) � (i, k).

The following theorem characterizes all orderings on P [n] satisfying dominance and

conditional independence.

Theorem 2. An ordering R on P [n] satisfies dominance and conditional independence

if and only if there exists a monotonic ordering � on S[n] such that, for all A, B ∈ P[n],

ARB ⇔ (a1, a|A|) � (b1, b|B|). (3)

Proof. It is straightforward to verify that if there exists a monotonic ordering � on

S[n] such that (3) is satisfied, then R satisfies dominance and conditional independence.

Conversely, suppose R satisfies the two axioms. By Theorem 1 and because R is an

ordering, � is a well-defined ordering satisfying (3). To show that � satisfies part (i)

of monotonicity, suppose i, j, k ∈ [n] are such that i < j ≤ k. If j = k, (i, k) � (j, k)

follows from part (i) of dominance. If j < k, Theorem 1 implies {i, k}I{i, j, k} and

part (i) of dominance implies {i, j, k}P{j, k}. By transitivity, {i, k}P{j, k} and, by (3),

(i, k) � (j, k). The proof of part (ii) is analogous.

3 Translation neutrality

As established in the previous section, the set of orderings on P [n] that satisfy dominance

and conditional independence is quite diverse. To introduce a class of orderings for which

relative uncertainty aversion may be defined in an unambiguous manner, we have to

narrow down this class. We do so by introducing another axiom which is similar in

spirit to the neutrality axiom familiar from the literature. In our definition of relative

uncertainty aversion, we make use of the relative differences in position of the objects

and, as a consequence, the classical neutrality axiom is not suitable. Indeed, neutrality

requires that the relation R is insensitive with respect to changes in two sets A and B that

leave the relative rankings of all elements in A∪B unchanged (see, for instance, Barberà,

Bossert and Pattanaik, 2004, for a formal definition and discussion). This rules out any

utilization of the relative differences in position of the objects. Instead of neutrality,
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we introduce an alternative axiom that allows relative differences between positions to

matter. Our axiom requires that if the best (worst) elements of two sets are translated by

one position, the relative ranking of the resulting sets is the same as that of the originals.

For A ∈ P[n] with a1 
= 1, define

A− =

{
{a1 − 1, a1} if |A| = 1;

{a1 − 1, a2, . . . , a|A|} if |A| ≥ 2

and, for A ∈ P[n] with a|A| 
= n, define

A+ =

{
{a|A|, a|A| + 1} if |A| = 1;

{a1, . . . , a|A|−1, a|A| + 1} if |A| ≥ 2.

Our translation-neutrality axiom is defined as follows.

Translation neutrality. For all A, B, C, D ∈ P[n],

(i) if C = A− and D = B−, then ARB ⇔ CRD;

(ii) if C = A+ and D = B+, then ARB ⇔ CRD.

To illustrate how this axiom differs from the usual neutrality condition, consider the

following example. Suppose that n = 5 and {2, 5}P{4}. Translation neutrality and

neutrality both require {1, 4}P{3}. Neutrality also demands, for example, {1, 3}P{2}
whereas translation neutrality does not. Conversely, translation neutrality requires, in

addition, {1, 5}P{3, 4} but neutrality does not.

Given the axioms of Theorem 2, it is easily seen that translation neutrality of R on

P [n] is equivalent to the following property of � on S[n]. The choice of terminology for

this axiom will become clear after introducing a geometric interpretation.

Parallel-displacement invariance. For all (i, j), (k, �) ∈ S[n],

(i) if (i − 1, j), (k − 1, �) ∈ S[n], then (i, j) � (k, �) ⇔ (i − 1, j) � (k − 1, �);

(ii) if (i, j + 1), (k, � + 1) ∈ S[n], then (i, j) � (k, �) ⇔ (i, j + 1) � (k, � + 1).

In the remainder of the paper, we use the ordering � rather than R. In the pres-

ence of dominance and conditional independence, this involves no loss of generality; see

Theorem 2.

Clearly, the case n = 1 is degenerate. If n = 2, monotonicity determines a unique

ordering. Furthermore, parallel-displacement invariance is implied by monotonicity if
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n = 3. Therefore, from now on, we assume that n is greater than or equal to four, in

which case the two axioms are independent.

An ordering � on S[n] can be represented diagrammatically in a convenient manner.

For a pair of distinct points (i, j), (k, �) ∈ S[n], an arrow from (i, j) to (k, �) indicates that

(i, j) � (k, �). Consequently, if there is an arrow pointing from (i, j) to (k, �) only (and

no arrow pointing from (k, �) to (i, j)), we say that there is a single-arrow from (i, j) to

(k, �) corresponding to (i, j) � (k, �). If there is an arrow pointing from (i, j) to (k, �) and

an arrow pointing from (k, �) to (i, j), in which case we speak of a double-arrow between

these two points, we have (i, j) ∼ (k, �). Clearly, monotonicity implies that all horizontal

arrows are single-arrows pointing right, all vertical arrows are single-arrows pointing up

and all arrows with positive slope are single-arrows pointing north-east. Loosely speaking

(we will be more precise below), parallel-displacement invariance requires that all parallel

single-arrows point in the same direction and if there exists a double-arrow, then all arrows

parallel to it are double-arrows. As an example, suppose that n = 4. Figure 1 illustrates

the ordering � on S[4] defined by

(1, 1) � (1, 2) � (2, 2) � (1, 3) � (2, 3) � (1, 4) � (3, 3) � (2, 4) � (3, 4) � (4, 4)

(all other arrows are determined by transitivity). Clearly, this ordering satisfies mono-

tonicity and parallel-displacement invariance.

1 2 3 4

Figure 1: An ordering on S[4].
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We now provide a diagrammatic description of all orderings � on S[n] satisfying mono-

tonicity and parallel-displacement invariance. Given Theorem 2, this also characterizes

the class of all decision rules under complete uncertainty satisfying dominance, conditional
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independence and translation neutrality. The idea is to use monotonicity and parallel-

displacement invariance to reduce the information needed to identify an ordering on S[n].

We know that all positively-sloped arrows are single-arrows pointing north-east as an

immediate consequence of monotonicity. Therefore, it is sufficient to include negatively-

sloped, vertical and horizontal arrows (the direction of vertical and horizontal arrows is

determined by monotonicity as well but we include them in order to obtain a more con-

venient representation; the reason for this choice will become clear later on). Because

parallel-displacement invariance implies that all parallel arrows point in the same direc-

tion, we can without loss of generality restrict attention to arrows that connect points in

S[n] with (1, n) and, for each slope, have maximal length. To characterize the resulting

geometrical figure, we need the following definition.

A quiver in S[n] is a collection of negatively-sloped, vertical and horizontal arrows of

maximal length for each slope connecting points in S[n] with (1, n) such that:

1. the vertical arrow is a single-arrow that points up;

2. the horizontal arrow is a single-arrow that points right;

3. if a single-arrow or a double-arrow points south-east, then any negatively-sloped

arrow whose slope has a smaller absolute value is a single-arrow that points south-

east.

The last property in the definition of a quiver implies that if an arrow (single or double)

points north-west, then any negatively-sloped arrow whose slope has a larger absolute

value is a single-arrow that points north-west. Clearly, there can be no more than one

double-arrow in any quiver.

Any quiver in S[n] uniquely determines an ordering � on S[n] satisfying monotonicity

and parallel-displacement invariance in the following way. We draw all horizontal arrows

as single-arrows pointing right, all vertical arrows as single-arrows pointing up and all

positively-sloped arrows as single-arrows pointing north-east. Finally, we choose the di-

rection of any negatively-sloped arrow in accordance with the parallel negatively-sloped

arrow in the quiver. It is clear that the so-defined ordering � satisfies monotonicity and

parallel-displacement invariance. As we show in the following theorem, the reverse impli-

cation is also true: any ordering on S[n] satisfying the two axioms must be determined by

a quiver. We therefore obtain the following characterization result. As mentioned above,

we assume that n ≥ 4 to rule out degenerate cases and to ensure that the axioms are

independent.
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Theorem 3. Suppose n ≥ 4. An ordering � on S[n] satisfies monotonicity and parallel-

displacement invariance if and only if � is determined by a quiver.

Proof. It is straightforward to verify that any ordering determined by a quiver satisfies

the axioms. Suppose � is monotonic and satisfies parallel-displacement invariance. Mono-

tonicity and transitivity imply that all horizontal arrows must be single-arrows pointing

right, all vertical arrows must be single-arrows pointing up, and all positively-sloped ar-

rows must be single-arrows pointing north-east. Moreover, as an immediate consequence

of parallel-displacement invariance, any negatively-sloped arrow points south-east (north-

west) if and only if all arrows that are parallel to it point in the same direction. To

complete the proof that � is determined by a quiver, it remains to show that, if a single-

arrow or a double-arrow points south-east, then any negatively-sloped arrow whose slope

has a smaller absolute value is a single-arrow that points south-east.

By way of contradiction, suppose there exists a negatively-sloped arrow (single or

double) that points south-east and a negatively-sloped arrow (single or double), whose

slope has a smaller absolute value, that points north-west. Because all parallel arrows

must point in the same direction, we can without loss of generality assume that each

of the two arrows connects (1, n) with another element of S[n]. Suppose that the first

arrow connects (1, n) and (k, l) and the second arrow connects (i, j) and (1, n). So we

have (i, j) � (1, n) and (1, n) � (k, �) where, by monotonicity, i, j, k, � ∈ [n] \ {1, n}.
Furthermore, we assume that the angle enclosed by these two arrows is maximal among

all the pairs of arrows with the stated properties. By transitivity, we obtain

(i, j) � (k, �). (4)

Since the slope of the second arrow is smaller in absolute value, we have i > k or j > �.

There are three possible cases.

Case 1. i ≥ k and j ≥ � with at least one strict inequality. In this case, monotonicity

implies (k, �) � (i, j), a contradiction to (4). See Figure 2 for an illustration.
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Figure 2: Proof of Theorem 3, case 1.

Case 2. i < k and j > �. In this case, (4) and parallel-displacement invariance together

imply that (1, n) � (i′, j′), where (i′, j′) = (k + 1− i, � + n− j). The absolute value of the

slope of the arrow (1, n) → (i′, j′) is larger than that of (1, n) → (k, �) since it is equal

to the absolute value of the slope of (i, j) → (k, l). But, as illustrated in Figure 3, this

contradicts our assumption that the angle enclosed by the original two arrows is maximal.

Indeed, the angle between the arrows (i, j) → (1, n) and (1, n) → (i′, j′) is larger than the

angle between the arrows (i, j) → (1, n) and (1, n) → (k, �).
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Figure 3: Proof of Theorem 3, case 2.

Case 3. i > k and j < �. In this case, (4) and parallel-displacement invariance together

imply that (i′, j′) � (1, n), where (i′, j′) = (i + 1− k, j + n− �). But the existence of this

arrow contradicts the maximality of the angle enclosed by the original two arrows in a

way similar to Case 2. See Figure 4.
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Figure 4: Proof of Theorem 3, case 3.

This exhausts all possibilities and the proof is complete.
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4 Relative uncertainty aversion

Theorem 3 suggests a natural way to rank the orderings satisfying our axioms with respect

to their degree of uncertainty aversion. For a given negative slope, a single-arrow pointing

north-west can be interpreted as representing a more uncertainty averse attitude than a

single-arrow with the same slope pointing south-east, and a double-arrow with that slope

represents an intermediate attitude towards uncertainty. As an illustration, consider, for

example, a quiver in S[4] and the relative ranking of (1, 4) and (2, 3). Clearly, if (2, 3)

is considered better than (1, 4), this reflects a higher degree of uncertainty aversion than

a ranking that declares (1, 4) better than (2, 3) because, in the first case, an agent with

that preference is willing to forgo the possibility of receiving the best alternative 1 rather

than 2 in exchange for being guaranteed the alternative 3 at worst as compared to the

worse alternative 4. Indifference corresponds to an attitude towards uncertainty that is

intermediate compared to the two others. A quiver (and, therefore, any of the orderings

characterized in Theorem 3) has the convenient property that there is at most one switch

from arrows pointing north-west to arrows pointing south-east.

To each arrow connecting (1, n) and (i, j) in a given quiver in S[n], we attach the

fraction (n − j)/(n − j + i − 1), expressed in the lowest possible terms. The possible

fractions that can be assigned to the arrows in a quiver are those in the set F[n − 1] of

elements in a Farey sequence. This set consists of all fractions, expressed in the lowest

terms, between zero and one whose denominators do not exceed n − 1 (see, for instance,

Dickson, 1971, or Hardy and Wright, 1960). For example, the set F[6] is given by

F[6] =

{
0

1
,
1

6
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
5

6
,
1

1

}
.

It is easy to see that the set of fractions assigned to the arrows of a quiver in S[7] is F[6].

By definition, a quiver can contain at most one slope to which a double-arrow is

assigned. If there exists a double-arrow in a quiver, this quiver is uniquely identified by

the Farey fraction associated with the slope of this double-arrow. Each quiver that does

not contain a double-arrow can be identified uniquely by a point in the open interval

between the largest Farey fraction associated with a single-arrow that points south-east

and the smallest Farey fraction associated with a single-arrow that points north-west.

For convenience, we choose the mid-point of the interval for this representation. Let

F1/2[n− 1] be the set of all arithmetic means of any two consecutive elements in F[n− 1]

and Γ[n] = F[n−1]∪F1/2[n−1]\{0, 1}. Any quiver now is characterized by a parameter

γ ∈ Γ[n]. We denote the corresponding ordering on S[n] by �γ. As an example, Figure 5

12



illustrates the quiver of the ordering �5/12 in S[5] (note that 5/12 is the mid-point of the

interval (1/3, 1/2)).
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Figure 5: The quiver of the ordering �5/12 on S[5].

We can now rank all of the orderings characterized in Theorem 3 with respect to the

degree of uncertainty aversion they represent. Given the assignment of Farey fractions

to the slopes in a quiver, the lower the value of γ at which the switch occurs, the more

uncertainty averse is the ordering. Thus, a natural way of classifying these orderings is

to declare an ordering �γ to be more uncertainty averse than an ordering �γ′ if and only

if γ < γ′. That is, the parameter γ is a very natural indicator of relative uncertainty

appeal. As an illustration, consider the case n = 4. We have

Γ[4] = F[3] ∪ F1/2[3] \ {0, 1} =

{
1

6
,
1

3
,

5

12
,
1

2
,

7

12
,
2

3
,
5

6

}
.

According to all of the orderings �γ for γ ∈ Γ[4], (1, 1) is best, (1, 2) is second-best,

(3, 4) is second-worst and (4, 4) is worst. The remaining rankings are given, in order of

decreasing uncertainty aversion, by

(2, 2) �1/6 (1, 3) �1/6 (2, 3) �1/6 (3, 3) �1/6 (1, 4) �1/6 (2, 4);

(2, 2) �1/3 (1, 3) �1/3 (2, 3) �1/3 (3, 3) ∼1/3 (1, 4) �1/3 (2, 4);

(2, 2) �5/12 (1, 3) �5/12 (2, 3) �5/12 (1, 4) �5/12 (3, 3) �5/12 (2, 4);

(2, 2) ∼1/2 (1, 3) �1/2 (2, 3) ∼1/2 (1, 4) �1/2 (3, 3) ∼1/2 (2, 4);

(1, 3) �7/12 (2, 2) �7/12 (1, 4) �7/12 (2, 3) �7/12 (2, 4) �7/12 (3, 3);

(1, 3) �2/3 (2, 2) ∼2/3 (1, 4) �2/3 (2, 3) �2/3 (2, 4) �2/3 (3, 3);

(1, 3) �5/6 (1, 4) �5/6 (2, 2) �5/6 (2, 3) �5/6 (2, 4) �5/6 (3, 3).
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Due to the decreasing degree of uncertainty aversion as measured by γ, the pair (1, 4)

moves up in the ranking as γ increases. See Figure 6 for a graphical illustration.
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Figure 6: Orderings on S[4] which satisfy the conditions of Theorem 3.
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The parameterization in terms of Farey fractions also allows us to address an interest-

ing combinatorial issue. The number of orderings satisfying our axioms is given by the

number of possible values the parameter γ can assume. As is straightforward to verify,

this number is given by |Γ[n]| = 2|F[n − 1]| − 3.

We can invoke some number-theoretic concepts and known results regarding sets of

Farey fractions in analyzing the cardinality of the set Γ[n]. The Euler function φ : N → N

is defined by letting φ(1) = 1 and, for all m ≥ 2, by letting φ(m) be the number of positive

integers not exceeding m and relatively prime to m. It is easy to see that, in moving from

F[m] to F[m+1], there are φ(m+1) new Farey fractions added. Therefore, for all m ∈ N,

the cardinality of F[m] is Φ(m) + 1, where Φ(m) =
∑m

h=1 φ(h). The sets composed of

the elements of Farey sequences have been studied extensively and, although there is no

explicit formula to calculate the cardinality of F[n − 1] for arbitrary n, an asymptotic

result is available.

Theorem 4. Asymptotically, |Γ[n]| = 6n2/π2 + O(n log n).

Proof. Attributing this result to Mertens, Hardy and Wright (1960, p. 268, p. 272) estab-

lish in Theorem 330 that, asymptotically, Φ(m) = 3m2/π2 + O(m log m). The conclusion

of Theorem 4 now follows immediately from the observation that |Γ[n]| = 2|F[n− 1]| − 3

and the fact that |F[m]| = Φ(m) + 1 for all m ∈ N.

5 Additive representability

An interesting property of an ordering of sets is additive representability (see, for example,

Fishburn, 1970, Chapter 4). The standard concept of additive representability for the

ordering R on P [n], stipulates the existence of a function U : [n] → R such that the

ranking of any two sets A and B is determined by comparing the sums
∑|A|

i=1 U(ai) and∑|B|
i=1 U(bi) representing the total utilities of these sets. In view of Theorem 1, it is

clear that this axiom is not compatible with dominance and conditional independence

if n ≥ 3. To see this, suppose U is such a function. By Theorem 1, we must have

U(1) + U(2) + U(3) = U(1) + U(3) and thus U(2) = 0. But dominance requires U(1) >

U(1) + U(2), a contradiction. However, Theorem 1 suggests another concept of additive

representability presented below.

Additive representability for orderings on P [n]. There exists a function U : [n] → R

such that, for all A, B ∈ P[n],

ARB ⇔ U(a1) + U(a|A|) ≥ U(b1) + U(b|B|).
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Unlike in the classical case, the total utilities of the two extremes (the best and the worst

elements) are compared here, not the total utilities of the sets. This translates into the

following property of an ordering on S[n].

Additive representability for orderings on S[n]. There exists a function U : [n] → R

such that, for all (i, j), (k, �) ∈ S[n],

(i, j) � (k, �) ⇔ U(i) + U(j) ≥ U(k) + U(�).

We focus on the latter axiom and we prove that additive representability is guaranteed for

all orderings �γ with γ ∈ F1/2[n− 1], that is, for those orderings satisfying monotonicity

and parallel-displacement invariance that are antisymmetric.

Theorem 5. Suppose n ≥ 4. If γ ∈ F1/2[n], then �γ satisfies additive representability.

Proof. Let N = n(n + 1)/2 be the number of elements in S[n] and suppose γ ∈ F1/2[n]

is such that

(i1, j1) �γ (i2, j2) �γ . . . �γ (iN , jN). (5)

To each t ∈ [N − 1], we assign a linear function ft : R
n → R such that, for all x ∈ R

n,

ft(x) = xit + xjt .

If the order (5) is additively representable, then the following system of N − 1 linear

inequalities

f1(x) − f2(x) > 0

f2(x) − f3(x) > 0
...

fN−1(x) − fN(x) > 0

is consistent with xi = U(i), where U is the corresponding utility function. The reverse

is also true, hence this system is consistent if and only if �γ is additively representable.

To show that the system is consistent, note first that the tth inequality

ft(x) − ft+1(x) > 0

defines an open half-space Ht in R
n determined by the corresponding hyperplane ft(x)−

ft+1(x) = 0. For each t ∈ [N − 1], we define the vector

vt = eit + ejt − eit+1 − ejt+1 ,

16



where, for all i ∈ [n], ei = (0, . . . , 1, . . . , 0)T is the ith unit vector in the standard basis

of R
n. The vector vt is an inner normal vector of Ht, that is, x ∈ Ht if and only if the

dot product of vt and x is positive. The inconsistency of the system above is equivalent

to the existence of a non-trivial linear combination

a1v1 + a2v2 + · · · + aN−1vN−1 = 0 (6)

of v1, . . . ,vN−1 with non-negative coefficients a1, . . . , aN−1 (see, for example, Theorem 2.9

in Gale, 1960, p. 48). Because the coordinates of v1, . . . ,vN−1 are integers, the coefficients

of this linear combination can be chosen to be integers as well.

Now we start compiling a system of linear inequalities in the following way. For each

k ∈ [N−1] we include the inequality (i1, j1) �γ (i2, j2), corresponding to vector vk, exactly

ak times. Some of them will be listed several times, some (for which the corresponding

coefficient of vk is zero) will not be listed at all. We obtain a system of comparisons

a1




(i1, j1) �γ (i2, j2)
...

(i1, j1) �γ (i2, j2)
...

aN−1




(iN−1, jN−1) �γ (iN , jN)
...

(iN−1, jN−1) �γ (iN , jN)

The characteristic feature of this sytem is that, for each integer t ∈ [n], the number of

times t occurs on the left side of the system is the same as the number of times it occurs

on the right side. This follows from the fact that all positive occurrences of et in (6) are

cancelled by the negative occurrences of et.

Since, by assumption, γ is such that �γ is antisymmetric, we have either γ > 1/2 or

γ < 1/2. In the former case, we have it + jt > it+1 + jt+1 for all t ∈ [N − 1] and in the

latter, it follows that it + jt < it+1 + jt+1 for all t ∈ [N − 1]. Both possibilities contradict

the property of the above system of comparisons that the number of times an element of

[n] occurs is the same on both sides.

Scott (1964) shows that for the classical additive-representability property to hold,

it is necessary and sufficient that the so-called cancellation conditions are satisfied. For

our version of additive representability, an analogous set of cancellation conditions can be

formulated. We do not present these conditions explicitly but the reader familiar with the
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aforementioned paper by Scott will notice that the previous proof proceeds by showing

that these cancellation conditions are satisfied by any antisymmetric ordering on S[n].

For n ≤ 5, additive representability is satisfied even for orderings that allow for indiffer-

ence, that is, for all orderings �γ with γ ∈ Γ[n]. This is no longer the case if n ≥ 6. For ex-

ample, if n = 6, the ordering �2/3 is not additively representable. By way of contradiction,

suppose that �2/3 is additively representable. For notational convenience, let xi = U(i)

for all i ∈ [6]. Since (1, 4) ∼2/3 (2, 2), (2, 5) ∼2/3 (3, 3), (3, 6) ∼2/3 (4, 4), (1, 5) ∼2/3 (2, 3),

(2, 6) ∼2/3 (3, 4), and (1, 6) ∼2/3 (2, 4), we have x1+x4 = 2x2, x2+x5 = 2x3, x3+x6 = 2x4,

x1 + x5 = x2 + x3, x2 + x6 = x3 + x4, and x1 + x6 = x2 + x4. Thus, x = (x1, . . . , x6)
T

must satisfy Mx = 0, where

M =




1 −2 0 1 0 0

0 1 −2 0 1 0

0 0 1 −2 0 1

1 −1 −1 0 1 0

0 1 −1 −1 0 1

1 −1 0 −1 0 1




.

However, any solution x to this system of equations is such that xi = xj for all i, j ∈ [6] as

its null space is spanned by the vector (1, 1, 1, 1, 1, 1)T . But dominance requires xi > xi+1

for all i ∈ [5], a contradiction.

6 Concluding remarks

This paper provides an intuitively appealing notion of uncertainty aversion in set-based

models of choice under uncertainty. It turns out that an unambiguous ranking of decision

rules with respect to their relative uncertainty aversion can be established for a large

class of rules characterized by a small set of plausible axioms. A new concept of additive

representability of orderings is defined and it is shown that all antisymmetric orderings

in our class are additively representable.

An interesting further direction of research would be to explore the notion of relative

uncertainty aversion in models where the underlying relation on the set of objects X has

different properties. Implicitly, our definition of relative uncertainty aversion is distance-

based with the simplest distance d(i, j) = |i−j| on X = [n] being employed, which reflects

the assumption that the underlying preference relation on X is an antisymmetric ordering.

One important alternative is obtained when the underlying preference relation on X is
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single-peaked. Another interesting case arises if it is assumed that the set X consists

of the vertices of the k-dimensional unit cube and to employ the Hamming distance.

An analysis of relative uncertainty aversion in this setting would clarify some important

behavioral aspects of the fallback-bargaining procedure studied by Brams, Kilgour and

Sanver (2003).
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Barberà, S. and P.K. Pattanaik (1984), “Extending an order on a set to the power

set: some remarks on Kannai and Peleg’s approach,” Journal of Economic Theory 32,

185–191.

Barrett, C.R. and P.K. Pattanaik (1993), “Decision-making under complete uncer-

tainty,” in: S. Sen (ed.), Uncertainty and Risk in Economic Life, Edward Elgar, Aldershof,

20–38.

Bossert, W. (1989), “On the extension of preferences over a set to the power set: an

axiomatic characterization of a quasi-ordering,” Journal of Economic Theory 49, 84–92.

Bossert, W. (1997), “Uncertainty aversion in nonprobabilistic decision models,” Math-

ematical Social Sciences 34, 191–203.

Bossert, W., P.K. Pattanaik and Y. Xu (2000), “Choice under complete uncer-

tainty: axiomatic characterizations of some decision rules,” Economic Theory 16, 295–

312.

Brams, S.J, D.M. Kilgour, and M.R. Sanver (2003), “A minimax procedure for

negotiating multilateral treaties,” Working Paper, New York University, Department of

Politics.

Chew, S.H., E. Karni and Z. Safra (1987), “Risk aversion in the theory of expected

utility with rank-dependent probabilities,” Journal of Economic Theory 42, 370–381.

20



Cohen, M. and J.Y. Jaffray (1980), “Rational behavior under complete ignorance,”

Econometrica 48, 1281–1299.

Dickson, L.E. (1971), History of the Theory of Numbers, Chelsea, New York.

Epstein, L.G. (1999), “A definition of uncertainty aversion,” Review of Economic Stud-

ies 66, 579–608.

Fishburn, P.C. (1970), Utility Theory for Decision Making, Wiley, New York.

Fishburn, P.C. (1984), “Comment on the Kannai-Peleg impossibility theorem for ex-

tending orders,” Journal of Economic Theory 32, 176–179.

Gale, D. (1960), The Theory of Linear Economic Models, McGraw-Hill, New York.

Gärdenfors, P. (1976), “Manipulation of social choice functions,” Journal of Economic

Theory 13, 217–228.

Hardy, G.H. and E.M. Wright (1960), An Introduction to the Theory of Numbers,

Oxford University Press, Oxford.

Heiner, R.A. and D.J. Packard (1984), “A uniqueness result for extending orders;

with applications to collective choice as inconsistency resolution,” Journal of Economic

Theory 32, 180–184.

Holzman, R. (1984a), “An extension of Fishburn’s theorem on extending orders,” Jour-

nal of Economic Theory 32, 192–196.

Holzman, R. (1984b), “A note on the redundancy of an axiom in the Pattanaik-Peleg

characterization of the lexicographic maximin extension,” Social Choice and Welfare 1,

123–125.

Kannai, Y. and B. Peleg (1984), “A note on the extension of an order on a set to the

power set,” Journal of Economic Theory 32, 172–175.

Kim, K.H. and F.R. Roush (1980), “Preferences on subsets,” Journal of Mathematical

Psychology 21, 279–282.

Luce, R.D. and H. Raiffa (1957), Games and Decisions, Wiley, New York.

Maskin, E. (1979), “Decision-making under ignorance with implications for social choice,”

Theory and Decision 11, 319–337.

Milnor, J. (1954), “Games against nature,” in: R. Thrall, C. Coombs and R. Davis

(eds.), Decision Processes, Wiley, New York, 49–59.

21



Nehring, K. and C. Puppe (1996), “Continuous extensions of an order on a set to the

power set,” Journal of Economic Theory 68, 456–479.

Nitzan, S. and P.K. Pattanaik (1984), “Median-based extensions of an ordering over

a set to the power set: an axiomatic characterization,” Journal of Economic Theory 34,

252–261.

Pattanaik, P.K. and B. Peleg (1984), “An axiomatic characterization of the lexico-

graphic maximin extension of an ordering over a set to the power set,” Social Choice and

Welfare 1, 113–122.

Pratt, J. (1964), “Risk aversion in the small and in the large,” Econometrica 32, 122–

136.

Rawls, J. (1971), A Theory of Justice, Harvard University Press, Cambridge.

Savage, L.J. (1954), The Foundations of Statistics, Wiley, New York.

Schmeidler, D. (1989), “Subjective probability and expected utility without additivity,”

Econometrica 57, 571–587.

Scott, D. (1964), “Measurement structures and inequalities,” Journal of Mathematical

Psychology 1, 233–247.

von Neumann, J. and O. Morgenstern (1944; second ed. 1947), Theory of Games

and Economic Behavior, Princeton University Press, Princeton.

Wakker, P. (1990), “Characterizing optimism and pessimism directly through comono-

tonicity,” Journal of Economic Theory 52, 453–463.

22


