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Abstract. In voting theory, bribery is a form of manipulative behavior in which
an external actor (the briber) offers to pay the voters to change their votes in order
to get her preferred candidate elected. We investigate a model of bribery where
the price of each vote depends on the amount of change that the voter is asked to
implement. Specifically, in our model the briber can change a voter’s preference
list by paying for a sequence of swaps of consecutive candidates. Each swap may
have a different price; the price of a bribery is the sum of the prices of all swaps
that it involves. We prove complexity results for this model, which we call swap
bribery, for a broad class of voting rules, including variants of approval and k-
approval, Borda, Copeland, and maximin.

1 Introduction

There is a range of situations in social choice where an external actor may alter some of
the already submitted votes, or the votes that the voters intend to submit. For example, a
candidate can attempt to change the voters’ preferences by running a campaign, which
may be targeted at a particular group of voters. A more extreme (and illegal) version of
this strategy involves paying voters to change their votes, or bribing election officials
to get access to already submitted ballots in order to modify them. Alternatively, one
can assume that the submitted votes can be contaminated with random mistakes, and a
central authority should be allowed to correct the votes (preferably, by changing them
as little as possible) to reveal the true winner. Indeed, this scenario is, in fact, one of the
original motivations behind Dodgson’s voting rule. (See also papers [16, 6].)

All of these activities can be interpreted as changing the voters’ preferences sub-
ject to a budget constraint, and can therefore be studied using the notion of bribery in
elections introduced by Faliszewski, Hemaspaandra, and Hemaspaandra [10]. In their
model of bribery, we are given an election (i.e., a set of candidates and a list of votes),
a preferred candidate p, a price of each vote, and a budget B. We ask if there is a way
to pick a group of voters whose total price is at most B so that via changing their votes
we can make p a winner.

In the model of Faliszewski, Hemaspaandra, and Hemaspaandra [10] each voter
may have a different price, but this price is fixed and does not depend on the nature of
the requested change: upon paying a voter, the briber can modify her vote in any way.
While there are natural scenarios captured by this model, it fails to express the fact that
voters may be more willing to make a small change to their vote (e.g., swap their 2nd



and 3rd most favorite candidates) than to change it completely. To account for such
settings, Faliszewski [9] proposed a new notion of bribery, which he called nonuniform
bribery. Under nonuniform bribery, a voter’s price may depend on the nature of changes
she is asked to implement. A similar notion called microbribery was considered in [11].
However, none of these papers considers the standard model of elections, in which votes
are preference orders over the set of candidates. Specifically, Faliszewski [9] focused
on the so-called utility-based voting, while Faliszewski et al. [11] used the irrational
voter model, in which voters’ preferences may contain cycles.

The goal of this paper is to study a notion of nonuniform bribery that can be used
within the standard model of elections. Our framework, which we call swap bribery,
is inspired by Dodgson voting rule (see Fellows, Rosamond, and Slinko [12] for a re-
lated discussion). We use the name “swap bribery” as it precisely captures the nature
of our framework. Specifically, in swap bribery, the briber can ask a voter to perform
a sequence of swaps; each swap changes the relative order of two candidates that are
currently adjacent in this voter’s preference list. For example, if a voter prefers a to b
and b to c (we write this as a � b � c), she can be asked to swap a and b, then a and
c, then b and c, resulting in the vote c � b � a. Each swap has an associated price, and
the total price is simply the sum of the prices of individual swaps. When preferences
are viewed as orderings, a swap of adjacent candidates is a natural “atomic” operation
on a vote. Moreover, one can transform any vote into any other vote by a sequence
of such swaps. Hence, attaching prices to such operations provides a good model for
nonuniform bribery in the standard setting.

We also study a special case of swap bribery, which we call shift bribery. Under this
model of bribery the only allowable swaps are the ones that involve the preferred can-
didate. Thus, in effect, a shift bribery amounts to asking a voter to move the preferred
candidate up by a certain number of positions in her preference order. As argued above,
bribery can be used to model a legitimate approach to influencing elections, namely,
campaigning: the “briber” simply invests money into trying to convince a particular
group of voters that one candidate is better than another. The message and costs of the
campaign can vary from one group of voters to another, which is captured by different
bribery prices. In this context, shift bribery corresponds to campaigning for the pre-
ferred candidate (as opposed to discussing relative merits of other candidates), and is
therefore particularly appealing.

After introducing our model of bribery, we proceed to study it from the algorithmic
perspective. Our goal here is threefold. First, as argued above, despite its negative con-
notations, bribery may correspond to perfectly legal and even desirable behavior, and
therefore we are interested in developing efficient algorithms that a potential “briber”
(that is, a campaign manager) can use. Second, from a more technical perspective, we
would like to pinpoint the source of computational hardness in nonuniform bribery. In-
deed, when the number of candidates is unbounded, the general bribery of Faliszewski,
Hemaspaandra, and Hemaspaandra [10] appears to be hard for all but the simplest vot-
ing rules. In contrast, there is a number of polynomial-time algorithms for nonuniform
bribery in non-standard models, such as utility-based voting or irrational voters. We
would like to know whether these easiness results are tied to the increased flexibility
of pricing in nonuniform bribery, or to the increased flexibility of the alternative voter



models. The results of this paper, most of which are NP-completeness results, suggest
that the latter is true. We are also motivated by the “computational hardness as a bar-
rier against manipulation” line of work, pioneered by Bartholdi, Tovey, and Trick [1].
While it has since been argued that NP-hardness might not provide sufficient protection
against dishonest behavior and that more robust notions of hardness are needed (see,
e.g., [21, 13, 19, 20]), identifying settings in which bribery is NP-hard is a useful first
step towards finding a voting rule that is truly resistant to dishonest behavior.

This paper is organized as follows. After providing the necessary background in
Section 2, in Section 3 we formally define our model of bribery, and prove some general
results about swap bribery. Section 4 contains a detailed study of bribery in approval
voting. In Section 5, we consider other popular voting rules, such as Borda, Copeland,
and maximin. We conclude with several directions for further research in Section 6. We
omit most of the proofs due to space constraints; these proofs appear in the full version
of the paper [7].

2 Preliminaries

Elections. An election is a pair E = (C, V ), where C = {c1, . . . , cm} is a set of
candidates and V = (v1, . . . , vn) is a list of voters. Each voter vi is represented via
her preference order �i, which is a strict linear order over the candidates in C (in
the context of the possible-winner problem we also allow partial orders). For example,
given C = {c1, c2, c3} and V = (v1, v2), we write c2 �2 c1 �2 c3 to denote that the
second voter, v2, prefers c2 to c1 to c3. For any C ′ ⊆ C, by writing C ′ in a preference
order we mean listing all the elements of C ′ in an arbitrary but fixed order. Similarly,
←−
C ′ means listing members of C ′ in the reverse of this fixed order.

A voting rule E maps an election E = (C, V ) to a set W ⊆ C of winners. We
assume the nonunique-winner model: all members of E(E) are considered to be win-
ning. All voting rules considered in this paper are point-based: they assign, via some
algorithm, points to candidates, and declare as winners the ones with most points. For
an election E = (C, V ), we denote by scoreE(ci) the number of points that a candidate
ci ∈ C receives in E according to a given voting rule. Sometimes, to disambiguate,
we will indicate in the superscript the particular voting rule used. We will provide the
definitions of the relevant rules as we discuss them in further sections.
Manipulation, Possible Winners, and Bribery. In this paper we take manipulation to
mean unweighted constructive coalitional manipulation as defined by Conitzer, Lang,
and Sandholm [5]. That is, in E-manipulation we are given an election E = (C, V ), a
preferred candidate p, and a list of “manipulative” voters V ′, and we ask if it is possi-
ble to set the preferences of voters in V ′ so that p is an E-winner of (C, V ∪ V ′). In
the E-possible-winner problem we are given an election E = (C, V ), where the vot-
ers’ preference are (possibly) partial, i.e., are given by partial orders over C, and we
ask if it is possible to complete the votes so that a given candidate p is an E-winner of
the resulting election. It is not hard to see that E-manipulation is a special case of E-
possible-winner where some votes are completely specified and some (i.e., those of the
manipulative voters) are completely unspecified . The study of possible-winner prob-
lems was initiated by Konczak and Lang [15] and then continued by multiple other



authors (see, e.g., Walsh’s overview paper [17] and the work of Xia and Conitzer [18]).
Finally, in E-bribery [10], we are given an election E = (C, V ), a preferred candidate
p, a list of voters’ prices and a nonnegative integer B, and we ask if it is possible to
modify votes at a total cost of at most B so that p becomes an E-winner of the resulting
election. (In [10] “bribery” refers to the case where all voters have unit prices, and the
more general setting described above is called $bribery.)

Computational Complexity. We assume familiarity with standard notions of compu-
tational complexity such as the classes P and NP, NP-completeness, and (polynomial-
time) many-one reductions. Many of our hardness proofs rely on reductions from the
NP-complete problem EXACT COVER BY 3-SETS (X3C) [14].

Definition 1 ([14]). An instance (B,S) of EXACT COVER BY 3-SETS (X3C) is given
by a ground set B = {b1, . . . , b3K}, and a family S = {S1, . . . , SM} of subsets of B,
where |Si| = 3 for each i = 1, . . . ,M . It is a “yes”-instance if there is a subfamily
S ′ ⊆ S, |S ′| = K, such that for each bi ∈ B there is an Sj ∈ S ′ such that bi ∈ Sj , and
a “no”-instance otherwise.

3 Swap Bribery

In any reasonable model of nonuniform bribery, one should be able to specify the price
for getting a given voter to submit any preference ordering (some of these orderings
may be unacceptable to the voter, in which case the corresponding price should be
set to +∞). However, in elections with m candidates, there are m! possible votes,
so listing the prices of these votes explicitly is not practical. Alternatively, one could
specify the bribery prices via an oracle, i.e., via a polynomial-time algorithm that, given
a voter i and a preference order �, outputs the price for getting i to vote according to
�. However, without any restrictions on the oracle, even finding a cheapest way to
affect a given vote will require exponentially many queries, and providing appropriate
restrictions would be challenging.

Against this background, we will now present a model of bribery that allows for easy
specification of bribery prices, and yet is expressive enough to capture many interesting
scenarios. Our model is based on the following idea. Intuitively, an atomic operation on
a given vote is a swap of two consecutive candidates. Moreover, one can transform any
vote into any other vote by a sequence of such steps. It is therefore natural to assume
that the price for such transformation is reasonably well approximated by the sum of
the prices of individual swaps. We now proceed to formalize this approach.

Let E = (C, V ) be an election, where C = {c1, . . . , cm} and V = (v1, . . . vn). A
swap-bribery price function is a mapping π : C × C → N, which for any ordered pair
of candidates (ci, cj) specifies a number π(ci, cj), Intuitively, this number is the price
of swapping ci and cj in a given voter’s preference order. More precisely, for a voter vk

with a swap-bribery price function πk, a unit swap is a triple (vk, ci, cj). A unit swap is
admissible if ci immediately precedes cj in vk’s preference order; its price is πk(ci, cj).
Executing an admissible unit swap (vk, ci, cj) means changing vk’s preference order
from . . . � ci � cj � . . . to . . . � cj � ci � . . . .



Note that we do not allow swapping non-adjacent candidates in a single step (though,
of course, such a swap could be simulated by a sequence of swaps of adjacent candi-
dates). Indeed, such a swap would change these candidates’ order relative to all candi-
dates that appear between them in the vote.

Definition 2. For any voting rule E , an instance of E-swap-bribery is given by an
election E = (C, V ) with C = {c1, . . . , cm}, p = c1 and V = (v1, . . . , vn), a list
of voters’ swap-bribery price functions (π1, . . . , πn), and a nonnegative integer B (the
budget). We ask if there exists a sequence (s1, . . . , st) of unit swaps such that (1) when
executed in order, each unit swap is admissible at the time of its execution, (2) executing
s1, . . . , st ensures that p is a winner of the resulting E-election, and (3) the sum of the
prices of executing s1, . . . , st is at most B.

As argued above, swap bribery can be used to transform any vote into any other
vote. It is natural to ask if one can efficiently compute an optimal way of doing so. It
turns out that the answer to this question is “yes”.

Proposition 1. Given two votes v1 = ci1 �1 . . . �1 cim and v2 = cj1 �2 . . . �2 cjm ,
and a swap-bribery price function π, one can compute in polynomial time the cheapest
(with respect to π) sequence of swaps converting v1 into v2.

Proof. Set I(v1, v2) = {(ci, cj) | ci �1 cj , cj �2 ci}; we say that a pair of can-
didates (ci, cj) ∈ I(v1, v2) is inverted. Clearly, to obtain v2 from v1, it is neces-
sary to swap each inverted pair, so the total cost of an optimal bribery is at least
s =

∑
(ci,cj)∈I(v1,v2)

π(ci, cj). We will now argue that one never needs to swap a
pair not in I(v1, v2), or to swap a pair in I(v1, v2) more than once; this implies that the
cost of an optimal bribery is exactly s.

Our argument is by induction on the size of I(v1, v2). If |I(v1, v2)| = 0, then
v1 = v2 and the statement is obvious. Now, suppose that the statement has been proved
for all v′1, v

′
2 with |I(v′1, v′2)| < k, and consider a pair (v1, v2) with |I(v1, v2)| = k.

We claim that there is a pair of candidates (ci, cj) ∈ I(v1, v2) that is adjacent in v1.
Indeed, suppose otherwise, and let (ci, cj) be a pair in I(v1, v2) that is the closest in v1.
By our assumption, there exists at least one c ∈ C such that ci �1 c �1 cj , yet (ci, c) 6∈
I(v1, v2), (c, cj) 6∈ I(v1, v2). Hence, we have ci �2 c, c �2 cj , so by transitivity of
�2 we conclude ci �2 cj , a contradiction with (ci, cj) ∈ I(v1, v2). Hence, I(v1, v2)
always contains an adjacent pair (ci, cj). By swapping ci and cj , we obtain a vote v′1
that satisfies |I(v′1, v2)| = k − 1. Note also that I(v′1, v2) = I(v1, v2) \ {(ci, cj)}, as
the relative order of all other candidates with respect to ci and cj did not change. We can
now apply our inductive hypothesis. Note that this argument implies a polynomial-time
algorithm for transforming v1 into v2 in s steps. ut

Proposition 1 shows how to optimally convert one vote into another using swaps.
We can also compute in polynomial time the cheapest way of transforming a collection
of votes into any other collection of votes of the same cardinality.

Proposition 2. Given a list of votes V = (v1, . . . , vn), a corresponding list of price
functions (π1, . . . , πn), and a multiset of votes V ′ = {v′1, . . . , v′n}, one can find in
polynomial time an optimal swap bribery that transforms V into V ′.



The idea of the proof is to find a minimum-cost perfect matching between V and V ′,
where the cost of each edge (v, v′) is given by the price of transforming v into v′ via
swap bribery.

A voting rule is called anonymous if its outcome does not depend on the order of
votes in V . Typical voting rules are anonymous. For such rules, Proposition 2 suggests a
polynomial-time algorithm for finding an optimal swap bribery in the important special
case where the number of candidates is fixed.

Theorem 1. For any anonymous voting rule with a polynomial-time winner determi-
nation procedure, one can compute an optimal swap bribery in polynomial time if the
number of candidates is bounded by a constant.

The idea of the proof is to consider all possible multisets of votes that the briber might
request to obtain and apply Proposition 2 to each of them. Observe that when |C| is
constant, the number of different multisets of votes is polynomial in |V |, but the number
of different lists of votes is exponential in |V |. This is why Proposition 2 is phrased in
terms of multisets of votes rather than lists of votes.

The next result allows us to quickly derive swap-bribery hardness results from
possible-winner hardness results.

Theorem 2. For any voting rule E , E-possible-winner many-one reduces to E-swap-
bribery.

Proof. An instance of the E-possible-winner problem is a pair 〈(C, V ), p〉, where V
may contain partial orders and p ∈ C. We will now describe a polynomial-time al-
gorithm that transforms 〈(C, V ), p〉 into an instance of E-swap-bribery in which p can
become a winner via swap bribery of cost 0 if and only if the votes in V can be com-
pleted in such a way that p is a winner of the resulting election.

Our construction works as follows. First, for each (possibly) partial vote �k in V
we compute a complete vote �′k that agrees with �k wherever �k is defined. This can
easily be done via, e.g., topological sorting. Next, for each vote�′k we construct a price
function πk as follows. For any pair of candidates ci, cj ∈ C, we set πk(ci, cj) = 1
if ci �k cj and πk(ci, cj) = 0 otherwise. We output an instance of swap bribery with
budget 0, preferred candidate p and an election E′ which is identical to E except that
each vote �k is replaced by vote �′k associated with price function πk.

Clearly, this reduction works in polynomial time. To prove its correctness, fix an
index k and consider a vote �′k and an arbitrary vote �′′k . We claim that �′k can be
transformed into �′′k via a swap bribery of cost 0 (with respect to πk) if and only if �′′k
agrees with �k on all pairs of candidates comparable under �k. Indeed, as shown in
the proof of Proposition 1, the optimal swap bribery that transforms �′k into �′′k swaps
each pair of candidates ci, cj such that ci �′k cj and cj �′′k ci exactly once. Clearly,
the cost of these swaps is 0 if and only if �′′k agrees with �k on all pairs of candidates
comparable under �k. Consequently, the votes in E can be completed so as to make p
a winner if and only if there is a swap bribery of cost 0 that makes p a winner in E′. ut

Since E-manipulation is a special case of E-possible-winner, as a corollary we immedi-
ately obtain that E-manipulation many-one reduces to E-swap-bribery.



Shift bribery. In some settings, the briber may be unable to ask voters to make a swap
that does not involve the preferred candidate. For example, in an election campaign
investing money to support another candidate may be viewed as unethical. In such cases,
the only action available to the briber is to ask a voter to move the preferred candidate
up in her preference order. We will refer to this type of bribery as shift bribery.

Fix an election E = (C, V ) with C = {c1, . . . , cm}, p = c1, and a voter v ∈ V
with a preference order �. Suppose that p appears in the jth position in �. We say that
a mapping ρ : N → N is a shift-bribery price function for v if it satisfies (1) ρ(0) = 0;
(2) ρ(i) ≤ ρ(i′) for i < i′ < j; and (3) ρ(i) = +∞ for i ≥ j. We interpret ρ(i) as the
price of moving p up by i positions in �.

Definition 3. For any voting rule E , an instance of E-shift-bribery is given by an elec-
tion E = (C, V ) with C = {c1, . . . , cm}, p = c1 and V = (v1, . . . , vn), a list of
voters’ shift-bribery price functions (ρ1, . . . , ρn), and a nonnegative integer B (the
budget). We ask if there is a sequence (k1, . . . , kn) of nonnegative integers such that∑n

i=1 ρi(ki) ≤ B and bribing each voter vi to shift p up by ki places ensures that p is
a E-winner of the resulting election.

It is not hard to see that E-shift-bribery is a special case of E-swap-bribery.

Proposition 3. For any voting rule E , any election E = (C, V ) with C = {c1, . . . , cm},
p = c1 and V = (v1, . . . , vn), and any list (ρ1, . . . , ρn) of shift-bribery price functions
for V , we can efficiently construct a list (π1, . . . , πn) of swap-bribery price functions
for V so that the problem of E-shift-bribery with respect to (ρ1, . . . , ρn) is equivalent
to the problem of E-swap bribery with respect to (π1, . . . , πn).

Proof. The general idea of the proof is as follows. We set the budget in the swap bribery
problem to be the same as in the input shift bribery problem. To construct a swap-
bribery price function πi for a voter vi, we renumber the candidates in C so that c1 = p
and vi’s preference order is ck �i ck−1 �i · · · �i c2 �i p �i · · · . Now set

πi(x, y) =


ρi(1) if x = p and y = c2

ρi(`− 1)− ρi(`− 2) if x = p and y = c`, ` = 3, . . . , k

+∞ in all other cases.

A simple inductive proof shows that setting all πi in this way proves the theorem. ut

The analog of Theorem 2 does not seem to hold for shift bribery. Hence, unlike in the
case of swap bribery, it is of interest to explore the complexity of shift bribery even
when the corresponding possible-winner problem is known to be hard. Another natural
question in this context is whether there are voting rules for which shift bribery is strictly
easier than swap bribery. As our subsequent results show, the answer to this question is
“yes” (assuming P 6= NP).

4 Case Study: Approval Voting

In this section we investigate the complexity of swap bribery in k-approval voting.
The family of k-approval voting rules (for various values of k) is a simple but inter-
esting class of voting rules, including such well-known rules as plurality and veto. In



k-approval, a voter assigns a point to each of the top k candidates on her preference
list. Thus, 1-approval is simply the plurality rule and, for |C| = m, (m − 1)-approval
is the veto rule, where, in effect, each voter votes against her least desirable candidate.
Our first result is that swap bribery is easy for plurality and veto but hard for almost all
variants of k-approval with fixed k.

Theorem 3. Swap bribery is in P for plurality (i.e., 1-approval) and veto (i.e., (m−1)-
approval). However, for each fixed k such that k ≥ 3, swap bribery for k-approval is
NP-complete, even if all swaps have costs in the set {0, 1, 2}.

We omit the proof of this theorem due to space constraints. Note that Theorem 3 does
not say anything about the complexity of swap bribery for 2-approval. Very recently,
Betzler and Dorn [2] have shown that for 2-approval the possible winner problem is
NP-hard, and thus by Theorem 2 swap bribery for 2-approval is NP-hard as well.

In contrast to Theorem 3, shift bribery for k-approval is easy for all values of k.
Thus, shift bribery can indeed be easier than swap bribery.

Theorem 4. Shift bribery for k-approval is in P for any k < m.

The proof relies on the fact that under shift bribery, the only reasonable way to bribe a
given voter is to ask him to approve of p at the lowest possible cost.

Now, the NP-hardness proof in Theorem 3 assumes that both the number of candi-
dates and the number of voters are parts of the input (i.e., are not bounded by any fixed
constant). We have seen that the first requirement is necessary: by Theorem 1, swap
bribery becomes easy if the number of candidates is constant. It is therefore natural to
ask if the number of voters plays a similar role. It turns out that if k is bounded by a
constant, swap bribery is indeed easy for each fixed number of voters.

Theorem 5. For each fixed k, swap bribery for k-approval is in P if the number of
voters is bounded by a constant.

Proof. Consider an election E = (C, V ) with C = {c1, . . . , cm}, V = (v1, . . . , vn), a
preferred candidate p ∈ C, a budget B. and a list of price functions (π1, . . . , πn). Let
C1, . . . , CT be the list of all k-element subsets of C; note that T =

(
m
k

)
= poly(m).

For a given vote v, we can compute the cost of moving the candidates from a given k-
element subset Ct into top k positions in v. Indeed, suppose that Ct = {ci1 , . . . , cik

},
and ci1 is the first of these candidates to appear in v, ci2 is second, etc. Then this cost is
simply the cost of moving ci1 into the top position by successively swapping it with all
candidates that are above him, followed by moving ci2 into the second position, etc. To
see why this naive algorithm is optimal, note that it only swaps pairs that are inverted
in the sense of Proposition 1, i.e., ones that have to be swapped anyway.

We can now go over all lists of the form (Ci1 , . . . , Cin
), ij ∈ {1, . . . , T} for j =

1, . . . , n, and for each such list compute the cost of the optimal bribery that for j =
1, . . . , n transforms the jth input vote into a vote that lists the candidates in Cij in the
top k positions. There are at most

(
m
k

)n = poly(m) such lists; we accept if at least one
of them costs at most B and bribing the voters to implement it ensures p’s victory. ut



On the other hand, when k is unbounded, swap bribery becomes difficult even if
there is just one voter. To prove this result, we reduce from the NP-complete problem
BALANCED BICLIQUE (BB) (see [14]).

Definition 4 ([14]). An instance of BB is given by a bipartite graph G = (U,W,E),
where |U | = |W | = N and E ⊆ U × W , and a natural number K ≤ N . It is a
“yes”-instance if there are sets U ′ ⊆ U and W ′ ⊆W such that |U ′| = |W ′| = K and
for all u ∈ U ′, w ∈W ′ we have (u, w) ∈ E, and a “no”-instance otherwise.

Intuitively, the reason why swap bribery for k-approval is difficult for large values of k
is that it may be beneficial for the briber to move around some candidates other than p,
as this may enable him to promote p via swaps of lower cost.

Theorem 6. When k is a part of the input, swap bribery for k-approval is NP-complete
even for a single voter.

Proof. It is easy to see that our problem is in NP. We focus on the NP-hardness proof.
We give a reduction from BB (see Definition 4 above). Suppose that we are given an
instance of BB with U = {u1, . . . , uN}, W = {w1, . . . , wN}. Our election will have
2N + 1 candidates u1, . . . , uN , w1, . . . , wN , p, where p is the preferred candidate, and
a single voter v with preference ordering U � W � p. The price function is given by
π(ui, uj) = 0, π(wi, wj) = 0 for all i, j = 1, . . . , N , π(wi, p) = 1, π(ui, p) = 0 for
all i = 1, . . . , N , π(ui, wj) = 0 if (ui, wj) ∈ E and π(ui, wj) = N−K+1 otherwise.
Finally, we set k = N + 1 and B = N −K.

Suppose that we have a “yes”-instance of BB, and let (U ′,W ′) be the corresponding
witness. Then we can first reorder U and W for free so that U \U ′ � U ′, W ′ �W \W ′,
then swap U ′ and W ′ (which is free, since (U ′,W ′) is a biclique in G), and, finally,
move p past W \W ′ and U ′, paying |W \W ′| = N −K = B.

Conversely, suppose that there is a successful bribery for v. Let U ′ be the set of
candidates from U that end up below p, and let W ′ be the set of candidates from W
that end up above p after the bribery. Observe that this means that we had to swap each
pair (u, w) ∈ U ′ ×W ′, and hence (u, w) ∈ E for all (u, w) ∈ U ′ ×W ′, as otherwise
we would have exceeded our budget. We had to pay 1 for swapping p with each of the
candidates in W \ W ′, so |W \ W ′| ≤ N − K and hence W ′ ≥ K. On the other
hand, p ended up among the top N + 1 candidates, so |W ′|+ |U \U ′| ≤ N , and hence
|U ′| ≥ K. Pick U ′′ ⊆ U ′, W ′′ ⊆W ′ so that |U ′′| = |W ′′| = K. The pair (U ′′,W ′′) is
a balanced biclique of the required size in G because we have started with a successful
bribery. ut

Bribery in SP-AV. Nonuniform bribery for approval voting has already been studied
thoroughly [10, 9]. Recently, Brams and Sanver [3] introduced a variant of approval
voting called SP-AV, whose computational study was initiated by Erdélyi, Nowak, and
Rothe [8]. In the full version of this paper [7] we discuss swap bribery for SP-AV.

5 Further Voting Rules and Shift Bribery

In this section we consider voting rules other than approval, starting with Borda. In
a Borda election with m candidates, the number of points assigned by a voter v to a



candidate c equals the number of candidates that v ranks below c. The possible winner
problem for Borda is NP-complete [18] and thus Theorem 2 implies that swap bribery
for Borda is NP-complete. Thus, we will now focus on Borda-shift bribery.

Perhaps unsurprisingly, shift bribery for Borda turns out to be computationally hard.

Theorem 7. Shift bribery for Borda is NP-complete.

However, there exists a 2-approximation algorithm for Borda-shift bribery.

Theorem 8. There exists a polynomial time algorithm that, given an instance I =
(C, V, p, (ρ1, . . . , ρn), B) of shift bribery, outputs a sequence of shifts that makes p
a Borda winner, and whose cost is at most twice the cost of an optimal Borda-shift
bribery for I .

Proof. Fix an instance I of Borda-shift bribery. Suppose that the optimal shift bribery
in I has cost c and moves p up by k positions in total. It is easy to see that any bribery
in I that shifts p up by at least 2k positions makes p a winner. Indeed, in the optimal
solution shifting p up by k positions increases p’s score by k and decreases every other
candidate’s score by at most k. Thus, altogether the advantage that p has over any other
candidate increases by at most 2k. We obtain the same effect by shifting p up by 2k
positions.

Suppose that we know k. Then we can use dynamic programming to compute a
minimum-cost bribery that shifts p up by k positions as follows. For each i = 1, . . . , n
and k′ = 1, . . . , k, let f(i, k′) be the cost of a minimum-cost shift bribery that moves
p up by k′ positions in the preferences of the first i voters. We have f(1, k′) = ρi(k′)
for k′ ≤ m − k1, where k1 is the position of p in the first vote, and f(1, k′) = +∞
for k′ > m − k1. Further, we have f(i + 1, k′) = min{f(i, k′ − k′′) + ρi+1(k′′) |
k′′ = 1, . . . ,m − ki+1}, where ki+1 is the position of p in the (i + 1)st vote. Denote
the resulting bribery by B. Obviously, the cost of B is given by f(n, k), and one can
compute B itself using standard techniques. Observe that the cost of B is at most c.

The bribery B includes some j shifts, j ≤ k, that also appear in the optimal solution.
Suppose that we know the value of j, and imagine that we first execute these j shifts.
After doing so, we get an instance I ′ that still allows the remaining k − j shifts of the
optimal solution. Thus, given I ′, one can find k − j shifts that ensure p’s victory and
so, by the observation in the previous paragraph, any 2(k − j) shifts from I ′ suffice to
make p a winner. Let I ′′ be the instance obtained after executing B. Clearly, one can
transform I ′ into I ′′ using k − j shifts. Therefore, in I ′′ any bribery that shifts p by
k− j positions makes p a winner. Thus, after executing B, we pick the cheapest bribery
B′ that shifts p up by k−j positions. These k−j shifts cost at most c, because there are
the k − j unused shifts from the optimal solution, whose cost is at most c. As a result,
we ensure p’s victory via 2k − j shifts, and pay at most 2c.

Now, the algorithm above assumes that we know k and j. When solving an arbitrary
instance, we do not know them, but we can try all combinations. ut

There is an interesting connection between shift bribery for Borda and computing
the Dodgson score of a candidate. We point the reader to the full version of this paper [7]
for a discussion comparing the algorithm described above and one of the algorithms
of [4] for the Dodgson score.



We now turn to elections defined via considering majority contests between pairs
of candidates. Specifically, we consider maximin and Copelandα, where α is a rational
number, 0 ≤ α ≤ 1. These voting rules are formally defined as follows. Fix an election
E = (C, V ) where C = {c1, . . . cm} and V = (v1, . . . vn). and define

NE(ci, cj) = |{vk | ci �k cj}|.

Let α be a rational number such that 0 ≤ α ≤ 1. Then the Copelandα score of a
candidate ci, which we denote by scoreα

E(ci), is defined as

scoreα
E(ci) = |{cj | NE(ci, cj) > NE(cj , ci)}|+ α|{cj | NE(ci, cj) = NE(cj , ci)}|.

The maximin score of a candidate ci, which we denote by scorem
E (ci), is defined as

scorem
E (ci) = mini 6=j NE(ci, cj).

Theorem 9. Shift bribery is NP-complete for maximin and, for each rational α be-
tween 0 and 1, for Copelandα.

It is interesting to compare the results of this section with those of [11], where it is
shown that for irrational voters microbribery for Copeland0 and for Copeland1 is in P.
In fact, we can show that microbribery for the case of irrational voters is in P also for
Borda and maximin (though we omit these results due to limited space and our focus
on rational voters). This is a further (meta)-argument that perhaps the main source of
hardness in many voting problems stems from having to deal with preference orders
rather than the properties of particular voting rules.

6 Conclusions

We introduced two notions of nonuniform bribery—swap bribery and shift bribery—
for the standard model of elections, and analyzed their complexity for several well-
known voting rules such as plurality, k-approval, Borda, Copeland, and maximin. It
turns out that, in sharp contrast to the easiness results for microbribery [11] and nonuni-
form bribery in utility-based systems [9], swap bribery is NP-hard for many of these
rules. This is quite surprising as our swap bribery is essentially the microbribery model
adapted to the rational-voter setting.

Our work leads to several open problems. First, it would be useful to identify natural
special cases of our setting for which one can find an optimal swap bribery in polyno-
mial time. Another way to tackle computational hardness is by constructing efficient
approximation algorithms for swap bribery and shift bribery; Theorem 8 makes the first
step in this direction. Designing approximation algorithms for shift bribery under other
voting rules as well as for swap bribery is an interesting topic for future research.
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