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1 Introduction

The theory of additive conjoint measurement takes its roots in the papers by Debreu [8]

and Luce and Tukey [27]. It is presented in books [34, 13, 23, 26, 42, 35, 33] and excellent

surveys, of which Fishburn’s survey [17] is the most recent. The goal of the present paper

is twofold: we would like to describe some recent developments that took place after

Fishburn’s survey was published, and to attract attention to several questions posed by

Fishburn that remain unanswered.

The main object of this theory is a Cartesian product of finitely many mutually disjoint

sets Ai

A = A1 × A2 × . . . × An (1)

equipped with an order �. This product is usually interpreted as the set of alternatives

under the consideration of a decision maker, or the set of outcomes that may result from

her actions. We may also think that there are n criteria in place and each set Ai is

identified with the set of levels of the ith criterion. The order represents the decision

maker’s preference on the set of alternatives.

A decision maker often faces some kind of optimization problem. A solution of this

problem would be made feasible if it were possible to find an additive utility representa-

tion over criteria of the decision maker’s preference order � on A. The central theme of

the theory of additive conjoint measurement is finding conditions which imply the exis-

tence of such a representation. Another important question is about uniqueness of this

representation. It appeared that, in many aspects, the most difficult case to study is the

case of finite measurement structures, i.e., when A is finite. The main focus of this paper

is on this case. In addition to that we restrict ourselves with � being a (strict) linear

order, in which case the uniqueness question does not emerge.

Kraft, Pratt and Seidenberg [24] established (see also Scott [37]) that additive utility

representation of � is equivalent to a denumerable set of conditions, called cancellation

conditions, which is not equivalent to any finite subset of them. However, for a finite

Cartesian product of a particular size we need to check only finitely many cancellation

conditions for � to establish its additive representability. Fishburn (see, e.g. his motiva-

tion of this in [17, 18]) considered that it is extremely important to know the exact number

of cancellation conditions needed as a function of the size of the product, or at least a

good lower and upper bounds for this number. He saw the absence of such bounds as a

serious gap in understanding of additive representability of preferences on finite measure-

ment structures. Fishburn made a significant contribution to this theory and formulated
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a large number of open problems, which have guided and undoubtedly will continue to

guide investigators in this area. And although some recent progress has been made, only

a few of the great many questions posed by Fishburn have been answered to date.

Let us briefly outline what will be covered in the subsequent sections. In Section 2 we

introduce the main types of finite measurement structures considered in the literature to

date. They are Cartesian product structure, power set structure, power multiset structure.

Section 3 surveys the most general case, the Cartesian product structure. In this case no

significant progress has been recently made, and we highlight a number of open questions.

Comparative probability orders, which represent one of the main cases of the power

set structure, are surveyed in Section 4. This measurement structure emerges when

Ai = {0, 1} for i = 1, 2, . . . , n, in which case any n-tuple of the Cartesian product can be

identified with a subset of the set of atoms [n] = {1, 2, . . . , n}. Here we reformulate the

cancellation conditions for comparative probability orders in terms of portfolios of desir-

able gambles. This framework allows for a better understanding of Fishburn’s function

f(n), the main object of his investigations in [14, 15]. We show that f(n) can be inter-

preted as a measure of rationality of a player required to correctly evaluate any portfolio

of gambles with n states of the world. We report on the recent progress in estimation of

f(n) and the related function g(n), which was introduced by Conder and Slinko [6]. The

reason for introducing this new function is as follows. It is known that for comparative

probability orders the absence of arbitrage does not imply additive representation and

some cancellation conditions may still be violated. However the absence of arbitrage is a

very important condition and g(n) is a complete analogue of f(n) in the situation of no

arbitrage.

Fishburn showed by way of a sophisticated combinatorial construction that f(n) ≥

n − 1, which together with the bound f(n) ≤ n + 1 of Kraft-Pratt-Seidenberg [24] gave

quite a narrow range for this function. Fishburn conjectured that f(n) = n− 1. Recently

however Conder and Slinko [6] showed that f(7) ≥ 7 and Marshall [30, 31] showed that

f(p) ≥ p for a large number of prime numbers p ≥ 131. Conder showed that f(n) ≥ n

for all 7 ≤ n ≤ 13. Fishburn [14, 15] also paid attention to minimal violations of the

cancellation conditions which he called irreducible patterns. Here we present a theorem

of Matthew Auger [1] which says that there are only finitely many of them.

In Section 5, devoted to power multiset structure, sets are generalised to multisets

which allow multiple entry of identical elements. If Ai = {0, 1, . . . , mi} and if the ith co-

ordinate of an n-tuple from the Cartesian product is j, then we may think that the multiset

associated with this tuple has j copies of atom i. We see great advantages in describing
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this measurement structure in multiset terms, because of the emerging analogies with

comparative probability orders. Orders on submultisets of a multiset were first used in

the computer science literature by Dershowitz [9] to prove termination of rewrite systems.

Sertel and Slinko [39] showed some important applications of multisets in Economics and

Political Science. In Economics ranking multisets can be used for ranking income streams

and investment projects. In Political Science they can be used for ranking committees or

parliaments.

Additive conjoint measurement on subsets of Cartesian products containing rank-

ordered n-tuples was considered by Wakker in [45, 46]. He established that, contrary

to what has often been thought, additive conjoint measurement on subsets of Cartesian

products has characteristics different from additive conjoint measurement on full Cartesian

products.

Fishburn himself did not work with this preference structure but many of his ideas

work in this case too. An analogue of de Finetti’s axiom here is Independence of Equal

Submultisets (IES) introduced in [39, 40]. The analogues of functions f(n) and g(n) can

be introduced and those analogues will have k as an additional parameter, i.e. we obtain

functions f(n, k) and g(n, k). It is rather surprising that in this case better progress

can be achieved in describing these functions than in the case of comparative probability

orders [5]. The function g(n, k) is determined exactly: we have g(n, k) = n − 1 for

(n, k) 6= (5, 2) and g(5, 2) = 3. We also have n ≥ f(n, k) ≥ g(n, k) and we conjecture that

f(n, k) = g(n, k).

2 Types of Finite Measurement Structures

In this paper we assume that the Cartesian product (1) is finite. Let mi denote the

cardinality of Ai and in this case the cardinality of the Cartesian product will be |A| =

m1m2 . . .mn. We interpret � as a nonstrict preference relation on A, i.e. a � b means a

is not preferred to b. The corresponding strict preference relation ≺ and indifference ∼

are defined in the usual way.

Sometimes Ai (i = 1, . . . , n) are sets without any additional structure. This happens,

when elements in each Ai belong to the same class but cannot be compared and measured

in units of something, e.g., A1 = {apple, banana} and A2 = {pepsi, coca cola}. Here the

Cartesian product consists of pairs

A = {(apple, pepsi), (apple, coca cola), (banana, pepsi), (banana, coca cola)}.
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We say that we have a Cartesian product structure. The additive utility representation in

this case will then take the following form.

Definition 1. A binary relation � on a Cartesian product structure (1) is said to be

additively representable if there are n non-negative real-valued functions ui : Ai → R such

that for all a = (a1, . . . , an) and b = (b1, . . . , bn) in A

a � b ⇐⇒
n
∑

i=1

ui(ai) ≤
n
∑

i=1

ui(bi). (2)

An important case emerges when we have n types of goods which are divisible to a

certain extent but not infinitely divisible (such as money, cars, houses, etc.). These goods

can be measured only in whole units of some quantity which is further indivisible. If the

total number of available units of the good of type i is mi, then each Ai can be identified

with the set {0, 1, . . . , mi} which has the structure of the truncated monoid of nonnegative

integers Nmi
. A truncated monoid Nk = ({0, 1, . . . , k − 1},⊕) of positive integers is an

algebraic system on the base set {0, 1, . . . , k − 1}, where the addition ⊕ is defined as

m ⊕ n =

{

m + n if m + n < k,

undefined if m + n ≥ k.

The representability of linear orders on such a Cartesian product must respect the struc-

ture on the Ai’s, which means that for the ith utility function we must have

ui(k) = kui(1)

and, in particular, ui(0) = 0.

When m1 = . . . = mn = 2, and each Ai has the structure of N2, this is the case of

goods which are indivisible. A 1 in the ith position of an n-tuple a = (a1, . . . , an) ∈ A

means that the ith good is present in this bundle. The Cartesian product A thus can

be identified with the set of all indicator functions on [n] or with the set of all subsets

of [n]. Then the order � becomes an order on subsets of [n]. We call it the power set

structure. We will deal only with linear, i.e. antisymmetric orders on subsets, since the

general theory has not been developed yet. One obvious necessary condition for additive

representability of the power set structure is the famous axiom introduced by de Finetti.

Definition 2. An order � on 2[n] is said to satisfy the de Finetti axiom if for any

A, B ∈ 2[n] and any C ∈ 2[n] such that C ∩ (A ∪ B) = ∅

A � B ⇐⇒ A ∪ C � B ∪ C. (3)
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If a linear order � satisfies de Finetti’s axiom and ∅ ≺ X for any non-empty subset

X ⊆ [n], then it is called a comparative probability order. Some significant progress

has been recently achieved in understanding of additive representability of comparative

probability orders. We report it in Section 4.

A multiset M on a base set X is a collection of elements of X, where multiple entries

of the same element of X are possible [41]. In general, if X = {x1, . . . , xk} is a set, then a

multiset on X is denoted as M = {xq1

1 , xq2

2 , . . . , xqk

k }, where qj is the number of occurrences

of xj in M , respectively. The number qj is normally referred to as the multiplicity of xj

in M . As some qj may be zero, not all elements of the base set may be present. The

number of unique elements of X in M we call the width of M and the sum
∑k

j=1 qj we

call the cardinality of M .

When the Cartesian product (1) is such that every Ai has a structure of Nmi
, then A

can be identified with all submultisets of the multiset {1mi , 2m2, . . . , nmn} on [n]. In the

language of bundles of goods, we have n types of goods, denoted 1, 2, . . . , n, and exactly

mi copies of good i are available. We call it the power multiset structure. The power

multiset model has numerous useful interpretations (see e.g., [40, 5]). We report results

on the power multiset structure in Section 5.

In some applications not all alternatives of the Cartesian product (1) are actually

available for choice. In this case we have to consider orders on a subset of this Cartesian

product. Section 6.5.5 of [23] points out the importance of additive conjoint measurement

on subsets of Cartesian products. Interest in this topic has increased during the last decade

because of new developments in the literature on decision making under risk/uncertainty

where conditions like independence are often required to hold only within certain subsets.

Sertel and Slinko [39] showed that sometimes from the applications point of view it is

necessary to restrict ourselves to the submultisets {1ki, 2k2, . . . , nkn} of {1mi , 2m2, . . . , nmn}

of fixed cardinality k, i.e. those for which
∑n

i=1 ki = k. The set of all submultisets of

cardinality k we will denote as Pk([n]). They gave several important examples of such

applications (see also [5]).

3 Cartesian Product Structure

When we deal with sequences of elements of the Cartesian product A, we will index them

with superscripts, while leaving subscripts to numerate the coordinates of elements of A.

For example, if a1, . . . , as is the sequence of elements of A, then a7
9 is the ninth coordinate

5



of the seventh vector.

If � is a binary relation on the Cartesian product A and a � b is true, then, using

the preference elicitation terminology [16], we will say that a � b is a valid comparison

of the two tuples a and b.

Definition 3. Let � be a relation on the Cartesian product A and

a1 � b1, a2 � b2, . . . , aq � bq (4)

be a sequence of valid comparisons of pairs of elements of A such that ai ≺ bi for at least

one i. We say that this sequence has the cancellation property if, for each coordinate

i = 1, 2, . . . , n, the sequence b1
i , b

2
i , . . . , b

q
i is a permutation of the sequence a1

i , a
2
i , . . . , a

q
i .

The number q of comparisons in the sequence (4) will be called its cardinality and the

number of unique comparisons in (4) will be called the width of this sequence. Note that

this is consistent with the multiset terminology. This is because, if we drop the order of

elements in any sequence, it becomes a multiset.

Example 1. The following two sequences of comparisons

(1, 2) ≺ (3, 4)

(3, 4) ≺ (1, 2)

(1, 2) ≺ (2, 3)

(2, 3) ≺ (3, 4)

(3, 4) ≺ (1, 2)

the first one, in the left column, of cardinality two, and the second, in the right column,

of cardinality three, both have the cancellation property. If all the comparisons of the first

sequence are valid for �, then � is not antisymmetric, If all the comparisons of the second

sequence are valid, then � is not transitive.

From the previous example we get a feeling that having a sequence of valid comparisons

with the cancellation property is some kind of a pathology.

Definition 4. We say that a binary relation � on a Cartesian product (1) satisfies the

cancellation condition Ck if every sequence of comparisons which satisfies the cancellation

property has width greater than k. We say that a binary relation � satisfies the can-

cellation condition C†
k if every sequence of comparisons which satisfies the cancellation

property has cardinality greater than k

The following example is taken from Fishburn [17].
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Example 2. Let A = {1, 2, 3} × {a, b, c}. Then the linear order

1a ≺ 1b ≺ 2a ≺ 2b ≺ 3a ≺ 1c ≺ 2c ≺ 3b ≺ 3c

satisfies C2 and C†
2 but fails both C3 and C†

3 since the sequence of valid comparisons

1b ≺ 2a, 3a ≺ 1c, 2c ≺ 3b

has the cancellation property.

As the width of a multiset is not greater than its cardinality, Ck always implies C†
k.

Both Ck and C†
k group together a large number of conditions but they do it differently.

Both are introduced to help us better comprehend the great many cancellation conditions

necessary for additive representability.

It is obvious that an additively representable binary relation does not have sequences

of valid comparisons that satisfy the cancellation property and, hence, satisfies all cancel-

lation conditions. The converse is also true [23]. The basic rationality assumption for a

preference relation on A is called Independence of Equal Subalternatives. It says that for

four n-tuples x,y, z,w ∈ A

x � y ⇐⇒ z � w

whenever there exists a proper subset S ⊆ [n] such that xi = zi and yi = wi for all

i ∈ S, and xi = yi and zi = wi for all i /∈ S. We take this terminology from Wakker

[44]; Fishburn calls it the first order independence [18]; in [23] this is called coordinate

independence. Independence of Equal Subalternatives, being a consequence of C2, is not

generally sufficient for additive representability. However, as we shall see later, for a

limited set of sizes it is true.

Given a relation � on A, we may associate the following two numbers with it. Let

f(�) be the smallest k such that � violates the cancellation condition Ck and f †(�) be

the smallest k such that � violates the cancellation condition C†
k. An obvious relation

between these two functions is, of course, f(�) ≤ f †(�). However the minimal violation

of C†
k hypothetically may not have the smallest possible width. Knowing only f(�), we

know only half of the story and knowing f(�) and f †(�) gives us the full picture.

Now we will introduce two functions that were of primary interest to Fishburn. We

set

f(m1, m2, . . . , mn) = max f(�), f †(m1, m2, . . . , mn) = max f †(�), (5)
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where the maximum both times is taken over all binary relations on A. In other words, any

relation � on A, which satisfies cancellation conditions Ck with k ≤ f(m1, m2, . . . , mn)

is additively representable and f(m1, m2, . . . , mn) is the smallest number with this prop-

erty. The second function f †(m1, m2, . . . , mn) can be similarly characterised. Fishburn

concentrated his attention on the first function leaving the second for future research. In

this section we will not consider the important case of (m1, m2, . . . , mn) = (2, 2, . . . , 2)

since we will devote the whole next section to it.

Krantz et al. [23] (see pp. 427–428), who made the initial contribution to this topic,

proved that f(2, m2) = 2 and that f(3, 3) ≥ 3. Little else was known about these functions

until Fishburn’s papers [18, 19]. One of the most significant results of [18] was the general

upper bound for f(m1, m2, . . . , mn).

Theorem 1 (Fishburn, 1997). f(m1, m2, . . . , mn) ≤
∑n

i=1 mi − (n − 1).

As f(2, m2) is known, the case n = 2 with min(m1, m2) ≥ 3 naturally attracted much

attention [14, 15].

Theorem 2 (Fishburn, 1997 & 2001).

1. f(3, 3) = 3, f(3, 4) = f(4, 4) = 4.

2. f(3, m2) ≥ m2 for all even m2 ≥ 4, and f(3, m2) ≥ m2 − 1 for all odd m2 ≥ 5.

3. f(m1, m2) ≥ m1 + m2 − 10.

4. f(5, m2) ≥ m2 + 1 for all odd m2 ≥ 5.

We note that Theorem 1 gives us f(3, m2) ≤ m2 + 2 so the bounds for f(3, m2) given

by Theorem 2 are rather tight. Apart from obvious questions that these results prompt,

Fishburn [18, 19] formulated the following interesting ones.

Problem 1. What can be said about f †(m1, m2, . . . , mn)?

Problem 2. We can narrow the class of relations and define the functions f(m1, m2, . . . , mn)

and f †(m1, m2, . . . , mn) for strict linear orders. Will the values of these functions remain

the same? Fishburn conjectured that they would (see Conjecture 1 in [18]).

An important paper by Fishburn and Roberts [20] studied the uniqueness question,

which we do not survey here due to lack of space.
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4 Comparative Probability Orders

As we already noticed, in the case when m1 = . . . = mn = 2, the Cartesian product A

can be identified with the power set of n-element set [n]. Here we adopt de Finnetti’s

point of view and consider [n] as the set of the states of the world in which case we can

identify comparisons of subsets with gambles. This approach was further developed by

Walley and Fine [47, 48, 49] who believed that there are considerable advantages of basing

the theory of comparative probability on desirability of gambles. In our case orders on

subsets and desirability of gambles provide two equivalent characterisations but there are

some nuances. The shift from preference to desirability is subtle but important. The word

“preference” has an optimality flavour while the word “desirability” is more in line with

the concept of satisficing introduced by H.A. Simon [43]. The behavioral aspect that can

be introduced to comparative probability through the introduction of gambles shed a new

light on some old concepts of the theory. In particular, as will be demonstrated below,

the functions introduced by Fishburn [14, 15] become measures of rationality of personal

comparative probability.

4.1 Discrete Cones

Let [n] = {1, 2, . . . , n} be the set of possible states of the world, one of which will materi-

alise. We suppose that agents can somehow compare probabilities of events. This is their

personal probability assessment and it is subjective. If an agent believes that B is more

likely to occur than A, she should accept the gamble which pays 1 if the state i ∈ A \ B

materialises, −1 if the state i ∈ B \ A materialises, and pays nothing in all other cases.

On the other hand, if the agent considers this gamble desirable, she must believe that B is

more likely to happen than A. Thus it is clear that comparative probability assessments

of sets and desirability of gambles provide two equivalent languages to discuss orders on

subsets. Below we will make this connection formal.

Let T = {−1, 0, 1}. Any vector of T n represents a gamble. The gamble which pays

xi ∈ T if the state i materialises will be denoted x = (x1, . . . , xn) ∈ T n. On appearance of

a nonzero gamble x ∈ T n a participating agent must be ready to accept either x or −x.

The zero gamble 0 is neutral (no loss, no profit). Let us agree that it is not desirable.

The following properties will be assumed as basic rationality assumptions that all

agents possess:

C1. ei = (0, . . . , 1, . . . , 0) is a desirable gamble for all 1 ≤ i ≤ n;
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C2. If x and y are two desirable gambles and if x + y ∈ T n, then x + y is a desirable

gamble;

C3. For every nonzero gamble x ∈ T n, either x or −x (but not both) is desirable.

Definition 5. Any subset C of T n which contains 0 and whose nonzero vectors satisfy

C1 - C3 is called a discrete cone.

To summarise: the set of desirable gambles for an agent is the set of all nonzero vectors

of a certain discrete cone.

For each subset A ⊆ [n] we define the characteristic vector χA of this subset by setting

χA(i) = 1 if i ∈ A, and χA(i) = 0 if i /∈ A. For any pair of subsets A, B ∈ 2[n] we define a

gamble:

χ(A, B) = χB − χA ∈ T n.

Given an agent whose set of desirable gambles is a discrete cone C, the agent can

compare events as follows:

A � B ⇐⇒ χ(A, B) ∈ C. (6)

Due to properties of C, � is an order (reflexive, complete and transitive relation) on 2[n].

This order satisfies de Finetti’s axiom (3) and hence is a comparative probability. This

probability assessment is, of course, specific for this particular agent only.

The study of discrete cones as algebraic objects was initiated by Kumar1 in his PhD

thesis [25]. This approach was rediscovered by Fishburn [14] who pioneered their com-

binatorial study. Further combinatorial properties of discrete cones were studied in

[10, 15, 16, 28, 6, 30, 3]. In this section we concentrate on combinatorics of rational-

ity assessment.

If p = (p1, . . . , pn) is a probability measure on [n], where pi is the probability of i,

then we know the probability of every event A, by the rule p(A) =
∑

i∈A pi. We may now

define an order �p on 2[n] by

A �p B ⇐⇒ p(A) ≤ p(B).

Suppose the probabilities of all events are different. Then �p is a comparative probability

order on [n].

1I am grateful to Terry Fine for this reference.

10



Definition 6. Any comparative probability order � on [n] is called additively repre-

sentable by a measure or simply representable if there exists a probability measure p

on [n] such that �=�p. A comparative probability order � on [n] is said to be almost

representable by a measure p if

A � B =⇒ p(A) ≤ p(B).

In this case we will also say that � is almost representable without specifying the mea-

sure p.

If an order � is almost representable but not representable, then at least for one pair

of subsets A and B we must have A ≺ B and at the same time p(A) = p(B).

4.2 Portfolios of Acceptable Gambles

Our way to measure rationality of an agent is to look at how consistent she was in accepting

and rejecting various gambles. We need the following concept.

Definition 7. Let C be a discrete cone. A multiset

P = {xa1

1 ,xa2

2 , . . . ,xam

m },

where xi ∈ C and ai ∈ N, is called a portfolio of desirable gambles.

Gambles are like risky securities. You may own different number of shares of the same

company. Similarly, a portfolio can contain several identical gambles. If the personal

comparative probability of an agent is representable by a measure, then all portfolios of

desirable gambles are (in the long run) profitable.

Definition 8. The portfolio P is said to be neutral if

a1x1 + a2x2 + · · · + amxm = 0. (7)

The portfolio P is said to be a sure loss if

a1x1 + a2x2 + · · ·+ amxm =

n
∑

i=1

biei (8)

with bi < 0 for all i = 1, . . . , n.

If a sure-loss portfolio exists, an agent is said to provide an arbitrage. A fully rational

agent cannot accept a neutral portfolio and, of course, cannot provide an arbitrage. Here

is an example of a comparative probability order that has a neutral portfolio of desirable

gambles.
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Example 3. Let n = 5 and consider the following comparative probability order:

∅ ≺ 1 ≺ 2 ≺ 3 ≺ 12 ≺ 13 ≺ 4 ≺ 14 ≺ 23 ≺

5 ≺ 123 ≺ 24 ≺ 34 ≺ 15 ≺ 124 ≺ 25 ≺ 134 . . . .

(further continuation is unique). The following four desirable gambles

x1 = (−1, 0,−1, 1, 0), x2 = (−1, 1, 1,−1, 0),

x3 = (1, 0,−1,−1, 1), x4 = (1,−1, 1, 1,−1)

(they correspond to the underlined comparisons) form a neutral portfolio since x1 + x2 +

x3 + x4 = 0.

For an example of arbitrage we must have |Ω| ≥ 6. Such an example is given in [24].

Conder and Slinko [6] used a computer program to help them find that for n = 6 there

are 5202 such comparative probability orders.

Definition 9. A comparative probability order satisfies cancellation condition Ck when

no neutral portfolio (7) of desirable gambles of width k exist, and satisfies the cancellation

condition C†
k when no neutral portfolio (7) of desirable gambles of cardinality k exist.

The criterion of representability given by Kraft et al. [24] can be reformulated as

follows.

Theorem 3. Suppose � is the agent’s comparative probability order on 2[n] and C be the

corresponding discrete cone. Then

1. � is representable iff C has no neutral portfolios of desirable gambles;

2. � is almost representable iff there is no arbitrage.

4.3 Fishburn’s functions as measures of rationality

Let � be the agent’s comparative probability order. Let f(�) be the smallest width of a

neutral portfolio of desirable gambles and f †(�) be the smallest cardinality of a neutral

portfolio of desirable gambles, if such portfolios exist. Otherwise set f(�) = f †(�) = ∞.

The idea is to measure the agent’s rationality by the minimum “size” of the portfolio

that she cannot handle properly with accepting a neutral portfolio being the early sign

of non-rationality. We have two measures for the size of a portfolio: its width and its

cardinality. Each measure gives us a measure of an agent’s rationality. They are f(�)
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and f †(�), respectively. The larger these functions are the more rational is the agent.

Fishburn defined these functions in terms of cancellation conditions of two types [14].

He and his coauthors used their combinatorial interpretations in terms of multilists [16].

Conder and Slinko [6] used their algebraic reformulation of cancellation conditions in

terms of linear dependencies of vectors of discrete cones. However in both cases the

real meaning of cancellation conditions is hard to grasp due to the intricacies of those

definitions. Portfolios clarify the real meaning of cancellation conditions.

Let Ln be the set of all comparative probability orders on 2[n], and let Rn be the set

of all almost representable comparative probability orders on 2[n]. Define

f(n) = max
�∈Ln

f(�), f †(n) = max
�∈Ln

f †(�),

These two functions were introduced and studied by Fishburn [14, 15]. Also we define

g(n) = max
�∈Rn

f(�), g†(n) = max
�∈Rn

f †(�).

These functions were introduced by Conder and Slinko [6]. They are defined similarly

to Fishburn’s functions, but only for comparative probability orders which do not admit

arbitrage. By temporarily setting all orders with arbitrage aside, Conder and Slinko

showed that it is possible to achieve some progress and to answer some questions of

Fishburn about f(�) and f †(�). The relationships between f(�) and f †(�) and their

no arbitrage analogues g(�) and g†(�) are not completely clear. All we can state is that

g(n) ≤ f(n) and g†(n) ≤ f †(n).

Some initial values for these functions are known [24, 14, 15, 6]:

f(n) = f †(n) = ∞, (n ≤ 4),

g(5) = g†(5) = f(5) = f †(5) = 4,

g(6) = g†(6) = f(6) = f †(6) = 5.

It is also known that g(n) ≤ n [6] and we will see later that g(7) = 7. The following

bounds are known for f(n), where the upper bound was established by Kraft et al. [24]

and the lower by Fishburn [14, 15].

Theorem 4 (Kraft et al., 1959, Fishburn 1997). n − 1 ≤ f(n) ≤ n + 1.

The upper bound here is a rather trivial fact, the lower bound was obtained by a

non-trivial construction. Fishburn [14, 15] conjectured that f(n) = n− 1. However, since

f(n) ≥ g(n), the first part of the following theorem refutes Fishburn’s conjecture.
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Theorem 5 (Conder and Slinko, 2004). g(7) = 7 and g†(7) ≥ 8.

This result is based on the following construction theorem.

Theorem 6 (Conder and Slinko, 2004)). Let X = {x1, . . . ,xm} ∈ T n (m ≥ 4), such that
∑m

i=1 aixi = 0 for some positive integers ai, and either

no proper subsystem X ′ ⊂ X is linearly dependent with positive coefficients

or

the sum
∑m

i=1 ai is minimal possible.

Suppose further that the m × n matrix A having the vectors x1, . . . ,xm as its rows has

the property that Ab = 0 for some positive integer-valued vector b = (b1, . . . , bn) with

b1 > b2 > . . . > bn > 0, and that

b⊥ ∩ T n = {±x1, . . . ,±xm}.

Let p = (b1 + . . . + bn)−1b and C = {x ∈ T n | (x,p) ≥ 0}. Then the discrete cone

C ′ = C \ {−x1, . . . ,−xm}

corresponds to an almost representable comparative probability order � which almost

agrees with p, with either

f(�) = m or f †(�) =

m
∑

i=1

ai,

respectively.

To prove the second part of Theorem 5 one may take the following 7 × 7 matrix:

A =



























1 −1 −1 1 0 1 −1

1 0 −1 −1 1 −1 −1

1 0 −1 −1 −1 0 1

−1 1 −1 1 1 0 1

0 −1 1 1 0 −1 1

0 −1 1 −1 1 1 1

−1 1 1 0 −1 0 −1



























,

and let x1, . . . ,x7 denote its rows. It is easy to check that rank(A) = 6,

x1 + x2 + x3 + x4 + x5 + x6 + 2x7 = 0,
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Span{x1, . . . ,x7} ∩ T 7 = {±x1, . . . ,±x7},

and Ap = 0 for the probability measure

p =
1

148
(48, 40, 27, 16, 12, 10, 7).

4.4 Extremal Cones and Comparative Probability Orders. Mar-

shall’s Theorem

In the previous section we saw that discrete cones and comparative probability orders

with the property g(n) = n do exist. Since this is the maximal possible value of g(n),

Marshall [30] calls such objects extremal. He constructed a great many other extremal

comparative probability orders by using some clever algebra and number theory. Before

formulating Marshall’s theorem we remind the reader that, given a prime p, an integer a

is called a quadratic residue if there exists a b such that a = b2 (mod p); otherwise it is

called a quadratic non-residue. The Legendre symbol
(

a
p

)

is 0 if a is a multiple of p, 1 if

a is a quadratic residue mod p, and −1 if a is a quadratic non-residue.

Theorem 7 (Marshall, 2005). Let p be a prime greater than 131. If

(

1 +

√

(

−1

p

)

p

)p

− 1 = a + b

√

(

−1

p

)

p,

where gcd(a, b) = p, then there exists an almost representable discrete cone in T p with

g(p) = p.

The odd primes satisfying the above equation he calls optimus primes. The first few

non-optimus primes are

3, 23, 31, 137, 191, 239, 277, 359, . . . .

Calculations that he and McCall conducted showed that 1725 of the 1842 primes between

132 and 16000 are optimus primes.

Problem 3. Is the number of optimus primes infinite?

The idea of Marshall’s construction is as follows. He uses the construction of Theorem 6

(changing rows into columns) and constructs the matrix needed there by altering the

vector of Legendre quadratic residue symbols in the first two co-ordinates as follows:

q =

(

1,

(

1

p

)

− 1,

(

2

p

)

, . . . ,

(

p − 1

p

))T

.
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Then he forms a circulant matrix

Q =
[

q, Sq, S2q, . . . , Sp−1q
]

from q, where S is the standard matrix of the circular shift operator. Finally he forms

A = Q − E11 + E1p which is Marshall’s matrix for prime p.

Theorem 8 (Conder, 2005). g(n) = n for 7 ≤ n ≤ 13.

This result was proved with the help of the Magma system [2] and announced in [30].

In the course of achieving it, Conder found that Marshall’s matrices work not just for

primes p satisfying the conditions given in Theorem 7, but also for some others, including

all primes p in the range 5 ≤ p ≤ 23.

A number of questions remain open. The most important ones are:

Problem 4.

1. Is f(7) = 7 or is f(7) = 8?

2. What is g(14)?

3. Is g(n) = n for n ≥ 7?

4. Is it true that f(n) = g(n)?

5. Does Marshall’s construction work for all primes p ≥ 5?

4.5 Patterns of Minimal Neutral Portfolios

Definition 10. Let � be a comparative probability order on 2[n] and C be the corresponding

discrete cone. Let

P = {xa1

1 ,xa2

2 , . . . ,xan

n }, (9)

be a neutral portfolio of desirable gambles satisfying

1. width(P ) = m is minimal possible for a neutral portfolio,

2. for neutral portfolios of desirable gambles of width m the cardinality card(P ) =
∑m

i=1 ai is minimal.
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In this case we say that (a1, . . . , am) is an irreducible pattern. The set of all irreducible

patterns of width m in 2[n] is denoted as Am,n. Let us denote

Am =

∞
⋃

n=4

Am,n.

Theorem 9 (Fishburn, 1996).

A4 = {(1, 1, 1, 1)},

A5 = {(1, 1, 1, 1, 1), (1, 1, 1, 1, 2)}.

Moreover, A5,5 = ∅, and A5 = A5,9.

Theorem 10 (Conder-Slinko, 2004).

A5,6 = {(1, 1, 1, 1, 1)},

A7,7 ⊇ {(1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 2)}.

This means that we don’t know A5,7 and A5,8. We don’t know A6 either. An unpub-

lished recent result in this direction is the following theorem by Auger [1], for which we

provide here a short proof.

Theorem 11 (Auger, 2005). For any positive integer m there are only finitely many

irreducible patterns of length m.

Proof. Let us consider the set of all vectors of R
m with non-negative integer coordinates.

Let us denote it Zm. All irreducible patterns from Am belong to Zm. For an arbitrary

a = (a1, . . . , am) ∈ Zm we denote h(a) =
∑m

i=1 ai. We also define a set

R(a) =

{

{I, J} | I, J ⊆ [m], I ∩ J = ∅,
∑

i∈I

ai =
∑

j∈J

aj

}

.

The set R(a) has a cardinality smaller than the cardinality of the set of all pairs of subsets

{I, J} with I ∩ J = ∅, which is (3m − 1)/2. Hence R(a) is finite. So it is sufficient to

prove that there are only finitely many irreducible patterns a with the same R(a).

Suppose now that we have two irreducible patterns a and b with R(a) = R(b). Let

{x1, . . . ,xm} ⊆ T n such that
∑m

i=1 aixi = 0. Then each of the n coordinates of this vector

equation will give us an element of R(a) (they will not be necessarily distinct). Hence

if another vector b = (b1, . . . , bm) ∈ Zm will satisfy R(a) = R(b), then
∑m

i=1 aixi = 0

will always imply
∑m

i=1 bixi = 0 and vice versa. Thus, if a ∈ Zm and b ∈ Zm are both
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irreducible patterns of Am, then we must have h(a) = h(b). Since there are only finitely

many vectors c in Zm with the given h(c), we see that the set of irreducible patterns a

with fixed R(a) is finite and hence Am is finite.

Problem 5. Let C be a discrete cone and P = {xa1

1 ,xa2

2 , . . . ,xam
m } be the neutral port-

folio of desirable gambles with the smallest height
∑m

i=1 ai. Is (a1, . . . , am) an irreducible

pattern? Or, in other words, will the width of P also be smallest?

Axioms for unique additive representation of a comparative probability order (which

in this case cannot be strict) were given by Fishburn and Roberts [21].

5 Orders on Submultisets of a Multiset

In this section we will consider multisets on the base set [n]. Every such multiset M =

{1mi , 2m2, . . . , nmn} is uniquely determined by its multiplicity function µ : [n] → N such

that µ(i) = mi. We say that M1 = ([n], µ1) is a submultiset of M2 = ([n], µ2), if µ1(i) ≤

µ2(i) for all i ∈ [n], and we denote this by M1 ⊆ M2. We remind the reader that the set

of all submultisets of cardinality k will be denoted as Pk([n]).

5.1 Independence of Equal Submultisets and Additive Repre-

sentability

Definition 11. An order � on Pk[n] is said to be (additively) representable if there

exist nonnegative real numbers u1, . . . , um (utilities) such that for all M1 = ([n], µ1) and

M2 = ([n], µ2) belonging to Pk[n],

M1 � M2 ⇐⇒
n
∑

i=1

µ1(i)ui ≤
n
∑

i=1

µ2(i)ui. (10)

The following basic rationality condition adopted for this situation was suggested by

Sertel and Slinko [39, 40], who called it consistency. Here we follow Conder et al. [5]

who give a slightly different (but equivalent) definition of this concept, which makes it a

close relative to the concept of the Independence of Equal Subalternatives and de Finetti’s

axiom.

Definition 12. An order � on Pk([n]) is said to satisfy the Independence of Equal

Submultisets condition (IES) if, for all 1 ≤ j ≤ k − 1, for every two multisets U, V of

cardinality j and for every two multisets W1, W2 of cardinality k − j,

U ∪ W1 � V ∪ W1 ⇐⇒ U ∪ W2 � V ∪ W2. (11)
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Certainly every additively representable order must satisfy IES. The converse as we will

see later is not true. However, it appeared that IES alone implies additive representability

on Pk([3]) for all k. The following theorem was proved first in [39] and later appeared in

[40]. We remind the reader of the definition of one of the main number-theoretic functions

φ, which is Euler’s totient function. For any positive integer n, φ(n) is the number of

positive integers which are smaller than n and relatively prime to n. Also, the famous

sequence of Farey fractions Fk is the increasing sequence of all fractions in lowest possible

terms between 0 and 1, whose denominators do not exceed k. For example, the sequence

of Farey fractions F6 will be:

0

1
,

1

6
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

5

6
,

1

1
.

The standard reference for Farey fractions is [22].

Theorem 12 (Sertel and Slinko, 2002). Any order � on Pk([3]) satisfying IES is addi-

tively representable. There are 2Φ(k) − 1 of them, where Φ(k) =
∑k

h=1 φ(h) and φ(h) is

the Euler totient function, with exactly Φ(k) orders being strict (antisymmetric). More-

over, if utilities of 1 and 3 are normalized so that u1 = 1, u3 = 0, then the ith strict order

occurs when u2 belongs to the ith interval between consecutive Farey fractions in the kth

sequence of Farey fractions Fk.

Here we will choose a combinatorial way to introduce cancellation conditions similar

to Scott’s approach [37].

Definition 13. Let � be an order on Pk[n] and let

A1 � B1, A2 � B2, . . . , Aq � Bq (12)

be a sequence of valid set comparisons such that Ai ≺ Bi for at least one i = 1, 2, . . . , q.

We say that this sequence satisfies the cancellation property if the following two multiset

unions coincide

A1 ∪ . . . ∪ Aq = B1 ∪ . . . ∪ Bq. (13)

Definition 14. We say that an order � on Pk[n] satisfies the kth cancellation condition

Ck if no sequence of comparisons (12) of width ≤ k satisfy the cancellation property and

we say that it satisfies the kth cancellation condition C†
k if no sequence of comparisons

(12) of cardinality ≤ k satisfy the cancellation property.
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As in [24, Theorem 2] it is easy to show that for an order � on Pk([n]) to be

additively representable, it is necessary and sufficient that all cancellation conditions

C2, C3, . . . , Cℓ, . . . are satisfied or alternatively all cancellation conditions C†
2, C

†
3, . . . , C

†
ℓ , . . .

are satisfied.

Example 4 ([39]). The following linear order on P2[4]

12 ≻ 12 ≻ 13 ≻ 22 ≻ 23 ≻ 14 ≻ 24 ≻ 32 ≻ 34 ≻ 42

satisfies IES but is not representable. It does not satisfy the condition C3, since it contains

the following comparisons:

{1, 3} ≻ {22}, {2, 3} ≻ {1, 4}, {2, 4} ≻ {32}. (14)

Indeed, the union of the multisets on the right and the union of the multisets on the left

are both equal to the multiset {1, 22, 32, 4}. Thus C3 is violated with a1 = a2 = a3 = 1,

and hence C†
3 is also violated.

Definition 15. An order � on Pk[n] is said to be almost (additively) representable if

there exist nonnegative real numbers u1, . . . , um, not all of which are equal, such that for

all M1 = ([n], µ1) and M2 = ([n], µ2) belonging to Pk[n],

M1 � M2 =⇒
n
∑

i=1

µ1(i)ui ≤
n
∑

i=1

µ2(i)ui. (15)

If the only way to get u1, . . . , un which satisfy (15) is to set u1 = u2 = . . . = un, then

the order fails to be almost representable. Papers [39, 40] present such an order belonging

to P3[4].

Let Ln,k be the set of all orders on Pk[n] satisfying the IES and Rn,k be the set of all

almost representable comparative probability orders on Pk[n] satisfying the IES. As in

the case of comparative probability orders we define

f(n, k) = max
�∈Ln,k

f(�), f †(n, k) = max
�∈Ln,k

f †(�).

Also we define

g(n, k) = max
�∈Rn,k

f(�), g†(n, k) = max
�∈Rn,k

f †(�).

These functions have the same meaning as in the comparative probability orders case.

Conder, Marshall and Slinko [5] fully characterized the function g(n, k) as follows:
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Theorem 13. For all n > 3 and k ≥ 2,

g(n, k) =

{

n − 2 if (n, k) = (5, 2),

n − 1 otherwise.

This result leaves very little room for the function f(n, k), i.e., n − 1 ≤ f(n, k) ≤ n

whenever (n, k) 6= (5, 2). Computer-assisted calculations show that g(n, k) = f(n, k) for

small values of n and k (namely, for (n, k) = (4, 2), (4, 3), (5, 2), (5, 3), (6, 2) and (7, 2)),

and so Conder, Marshall, and Slinko conjecture that this is true in general.

Problem 6. Is it true that f(n, k) = g(n, k) for all n ≥ 4 and k ≥ 1?

Problem 7. What can be said about the relationship between g†(n, k) and f †(n, k)?

Orders on the infinite set P[n] of all multisets on [n] satisfying the analogue of the de

Finetti axiom (3), where the union is understood as the multiset union and the condition

C ∩ (A ∪ B) = ∅ is not assumed, were considered by Danilov [7] and Martin [32]. Both

independently prove that all orders on P [n] satisfying this axiom are additively repre-

sentable. For the set P≤k[n] of all multisets on [n] of cardinality ≤ k, Danilov gives an

example of nonrepresentable orders on P≤k[5] satisfying the modified de Finetti axiom.

Apart from the aforementioned paper by Danilov, the representability of orders on

P≤k[n] has largely escaped the attention of researchers. However some interesting things

have been observed. For example, it can be easily checked that the linear order on P≤2[3]

12 ≻ 12 ≻ 22 ≻ 13 ≻ 1 ≻ 23 ≻ 32 ≻ 2 ≻ 3 ≻ ∅

is not representable. Hence the analogue of Theorem 12 is not true.

Problem 8. Develop an additive representation theory for orders on P≤k[n].
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