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Abstract This paper contributes to the program of numerical characterization and
classification of simple games outlined in the classic monograph of von Neumann
and Morgenstern. We suggest three possible ways to classify simple games beyond
the classes of weighted and roughly weighted games. To this end we introduce three
hierarchies of games and prove some relations between their classes. We prove that
our hierarchies are true (i.e., infinite) hierarchies. In particular, they are strict in the
sense that more of the key “resource” (which may, for example, be the size or struc-
ture of the “tie-breaking” region where the weights of the different coalitions are con-
sidered so close that we are allowed to specify either winningness or nonwinningness
of the coalition), yields the flexibility to capture strictly more games.
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1 Introduction

A simple game is a mathematical object that is used in economics and political sci-
ence to describe the distribution of power among coalitions of players [13,10]. Re-
cently simple games have been studied as access structures of secret sharing schemes
[2]. They have also appeared, in some cases under others names, in a variety of math-
ematical and computer science contexts, e.g., in threshold logic [8]. Simple games
are closely related to hypergraphs, coherent structures, Sperner systems, clutters, and
abstract simplicial complexes. The term “simple” was introduced by von Neumann
and Morgenstern [13], because in this type of games players strive not for mone-
tary rewards but for power, and each coalition is either all-powerful or completely
ineffectual. However these games are far from being simple.

An important class of simple games—well studied in economics—is the weigh-
ted majority game [13,10]. In such a game every player is assigned a real number,
his weight. The winning coalitions are the sets of players whose weights total at least
q, a certain threshold. However, it is well known that not every simple game has a
representation as a weighted majority game [13]. The first step in attempting to char-
acterize nonweighted games was the introduction of the class of roughly weighted
games [12]. Formally, a simple game G on the player set P = [n] = {1,2, . . . ,n} is
roughly weighted if there exist nonnegative real numbers w1, . . . ,wn and a real num-
ber q, called the quota, not all equal to zero, such that for X ∈ 2P the condition
∑i∈X wi > q implies X is winning, and ∑i∈X wi < q implies X is losing. This concept
realizes a very common idea in social choice that sometimes a rule needs an addi-
tional “tie-breaking” procedure that helps to decide the outcome if the result falls
on a certain “threshold.” Taylor and Zwicker [12] demonstrated the usefulness of
this concept. Rough weightedness was studied by Gvozdeva and Slinko [6], where
it was characterized in terms of trading transforms, similar to the characterization of
weightedness by Elgot [3] and Taylor and Zwicker [11].

Before moving on, it is worth mentioning in passing the notion of complete
games. In a simple game player i is said to be at least as desirable as player j (as
a coalition partner) if replacing i in a winning coalition with j never makes that
coalition losing. This desirability relation was introduced and studied by Isbell [7].
Weighted majority games have the property that players are totally ordered by the
desirability relation. Thus another natural extension of the class of weighted majority
games is the class of complete games, for which the desirability relation is a total or-
der. This class is significantly larger than the class of weighted majority games since
it contains simple games of any dimension [5] while the dimension of a weighted
game is always 1. Extensive theoretical and computational results on complete sim-
ple games have been obtained by Freixas and Molinero [4]. The strictness of our
hierarchies for that important class of simple games is an interesting open question.

It might seem that nonweighted games and even games without rough weights
are somewhat strange. However, an important observation of von Neumann and Mor-
genstern [14, Section 53.2.6] states that they “correspond to a different organizational
principle that deserves closer study.” In some of these games, as von Neumann and
Morgenstern noted, all the minimal winning coalitions are minorities and at the same
time “no player has any advantage over any other” (e.g., the Fano game introduced
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later). This is an attractive feature for secret sharing as in the case of large number
of users it is advantageous to keep minimal authorized coalitions relatively small.
This may be why weighted threshold secret sharing schemes were largely ignored
and were characterized only recently [1].

The parameter of the first of the three hierarchies we will discuss reflects the
balance of power between small and large coalitions; the larger this parameter the
more powerful some of the small coalitions are. Gvozdeva and Slinko [6] proved that
for a game G that is not roughly weighted there exists a certificate of nonweightedness
(see the definition in Section 2) of the form

T = (X1, . . . ,X j,P;Y1, . . . ,Yj, /0), (1)

where X1, . . . ,X j are winning coalitions of G, P is the grand coalition, and Y1, . . . ,Yj
are losing coalitions. However, sometimes it is possible to have more than one grand
coalition in the certificate. This may occur when coalitions X1, . . . ,X j are small but
nonetheless winning.

A certificate of nonweightedness of the form

T = (X1, . . . ,X j,P`;Y1, . . . ,Yj, /0
`) (2)

will be called `-potent of length j + `. Each game that possesses such a certificate
will be said to belong to the class of games Aq, where q = `/( j+`). The parameter q
can take values in the open interval (0, 1

2 ). We will show that Ap ⊇ Aq for any p and
q such that 0 < p≤ q < 1

2 and that the inclusion Ap ⊇ Aq is strict as soon as p < q.
Another hierarchy emerges when we allow several thresholds instead of just one

in the case of roughly weighted games. We say that a simple game G belongs to the
class Bk,k ∈ {1,2,3, . . .}, if there are k thresholds 0 < q1 ≤ q2 ≤ ·· · ≤ qk and any
coalition with total weight of players smaller than q1 is losing, any coalition with
total weight greater than qk is winning . We also impose an additional condition that,
if a coalition X has total weight w(X) which satisfies q1 ≤w(X)≤ qk, then w(X) = qi
for some i. All games of the class B1 are roughly weighted. In fact, as we’ll prove
in Section 4 almost all roughly weighted games belong to this class: B1 is exactly
the class of roughly weighted games with nonzero quota. We will show that the Fano
game [6] belongs to B2 but does not belong to B1. We prove that B-hierarchy is strict,
that is,

B1 ( B2 ( · · ·( B` ( · · · ,
with the union of these classes being the class of all simple games.

Yet another way to capture more games is by making the threshold “thicker.” We
here will not use a point but rather an interval [a,b] for the threshold, a≤ b. That is,
all coalitions with total weight less than a will be losing and all coalitions whose total
weight is greater than b winning. This time—in contrast with the k limit of Bk—we
do not care how many different values weights of coalitions falling in [a,b] may take
on. A good example of this situation would be a faculty vote, where if neither side
controls a 2/3 majority (calculated in faculty members or their grant dollars), then
the Dean would decide the outcome as he wished. We can keep weights normalized
so that the lower end of the interval is fixed at 1. Then the right end of the interval α

becomes a “resource” parameter. Formally, a simple game G belongs to class Cα if
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all coalitions in G with total weight less than 1 are losing and every coalition whose
total weight is greater than α is winning. We show that the class of all simple games
is split into a hierarchy of classes of games {Cα}α∈[1,∞) defined by this parameter. We
show that as α increases we get strictly greater descriptive power, i.e., strictly more
games can be described, that is, if α < β, then Cα ( Cβ. In this sense the hierarchy
is strict. This strict hierarchy result, and our strict hierarchy results for hierarchies
A and B , have very much the general flavor of hierarchy results found in computer
science: more resources yield more power (whether computational power to accept
languages as in a deterministic or nondeterministic time hierarchy theorem, or as is
the case here, description flexibility to capture more games).

The strictness of the latter hierarchy was achieved because we allowed games
with arbitrary (but finite) numbers of players. The situation will be different if we
keep the number of players n fixed. Then there is an interval [1,s(n)] such that all
games with n players belong to Cs(n) and s(n) is minimal with this property. There
will be also finitely many numbers q ∈ [1,s(n)] such that the interval [1,q] represents
more n-player games than any interval [1,q′] with q′ < q. We call the set of such
numbers the nth spectrum and denote it Spec(n). We also call a game with n players
critical if it belongs to Cα with α∈ Spec(n) but does not belong to any Cβ with β<α.
We calculate the spectrum for n < 7 and also produce a set of critical games, one for
each element of the spectrum. We also try to give a reasonably tight upper bound for
s(n).

All three of our hierarchies provide measures of how close a given game is to be-
ing a simple weighted voting game. That is, they each quantify the nearness to being a
simple weighted voting game (e.g., hierarchies B and C quantify based on the extent
and structure of a “flexible tie-breaking” region). And the main theme and contribu-
tion of this paper is that we prove for each of the three hierarchies that allowing more
quantitative distance from simple weighted voting games yields strictly more games,
i.e., the hierarchies are proper hierarchies.

2 Preliminaries

Definition 1 A simple game is a pair G = (P,W ), where W is a subset of the power
set 2P satisfying the monotonicity condition:

if X ∈W and X ( Y ⊆ P, then Y ∈W ,

and W /∈ { /0,2P} (nontriviality assumption).

Elements of the set W are called winning coalitions. We also define the set L =
2P \W and call elements of this set losing coalitions. A winning coalition is said to
be minimal if every its proper subset is a losing coalition. Due to monotonicity, every
simple game is fully determined by the set of its minimal winning coalitions. A player
which does not belong to any minimal winning coalitions is called dummy (or null).

For X ⊆ P we will denote its complement P−X as Xc.

Definition 2 A simple game is called proper if X ∈W implies that Xc ∈ L and is
called strong if X ∈ L implies that Xc ∈W . A simple game that is proper and strong
is called a constant-sum game.
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The following definition is given as it has appeared in [6].

Definition 3 A simple game G = (P,W ) is called roughly weighted if there exist
nonnegative real numbers w1, . . . ,wn and a nonnegative real number q, not all equal
to zero, such that for X ∈ 2P the condition ∑i∈X wi < q implies X ∈ L and ∑i∈X wi > q
implies X ∈W . We say that [q;w1, . . . ,wn] is a rough voting representation for G; the
number q is called the quota.

Example 1 (The Fano game) This important example first appeared in [14, Sec-
tion 53.2.6]. Let P = [7] be identified with the set of seven points of the projective
plane of order two, called the Fano plane. Let us take the seven lines of this projective
plane as minimal winning coalitions:

{1,2,3}, {3,4,5}, {1,5,6}, {1,4,7}, {2,5,7}, {3,6,7}, {2,4,6}. (3)

We will denote them by X1, . . . ,X7, respectively. This, as is easy to check, defines a
constant-sum game the Fano. As we will see later, it has no rough voting representa-
tion. As we can see from the list of minimal winning coalitions they are all minorities,
yet symmetry makes all players equal in this example.

We remind the reader that a sequence of coalitions

T = (X1, . . . ,X j;Y1, . . . ,Yj) (4)

is a trading transform [12] if the coalitions X1, . . . ,X j can be converted into the coali-
tions Y1, . . . ,Yj by rearranging players. This can also be expressed as

|{i : a ∈ Xi}|= |{i : a ∈ Yi}| for all a ∈ P.

We say that the length of T is j.

Definition 4 A trading transform (X1, . . . ,X j;Y1, . . . ,Yj) with all coalitions X1, . . . ,X j
winning and all coalitions Y1, . . . ,Yj losing is called a certificate of nonweightedness.
This certificate is said to be potent if the grand coalition P is among X1, . . . ,X j and
the empty coalition is among Y1, . . . ,Yj.

Elgot proved (using a different terminology) that the existence of a certificate of
nonweightedness implies that the game is not weighted and that every nonweighted
game has one. Taylor and Zwicker [12] showed that for a nonweighted game with n
players this certificate can be found of length at most 22n

; Gvozdeva and Slinko [6]
lowered this bound to (n+1)2

1
2 n log2 n.

Theorem 1 (Criterion of rough weightedness [6]) A simple game G with n players
is roughly weighted iff for no positive integer j ≤ (n+ 1)2

1
2 n log2 n does there exist a

potent certificate of nonweightedness of length j.
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In Example 1 the following eight winning coalitions X1, . . . ,X7,P of the Fano
game can be transformed into the following eight losing coalitions: Xc

1 , . . . ,X
c
7 , /0. So

the sequence
(X1, . . . ,X7,P;Xc

1 , . . . ,X
c
7 , /0) (5)

is a potent certificate of nonweightedness for this game. So the game is not roughly
weighted, thanks to Theorem 1.

As one might expect, games with a very small number of players, or a slightly
less small number of players but certain additional properties, are roughly weighted.

Theorem 2 ([6])

(a) Each game with 4 or fewer players is roughly weighted.
(b) Each strong or proper game with 5 or fewer players is roughly weighted.
(c) Each constant sum game with 6 or fewer players is roughly weighted.

Definition 5 ([12], p. 6) We say that a player p in a game is a dictator if p belongs to
every winning coalition and to no losing coalition. If all coalitions containing player
p are winning, this player is called a passer. A player p is called a vetoer if p is
contained in the intersection of all winning coalitions.

Proposition 1 ([6]) Suppose G is a simple game with n players. Then G is roughly
weighted if any one of the following three conditions holds:

(a) G has a passer.
(b) G has a vetoer.
(c) G has a losing coalition that consists of n−1 players.

Due to Proposition 1(a) there is one trivial way to make any game roughly
weighted. This can be done by adding an additional player and making her a passer.
Then we can introduce rough weights by assigning weight 1 to the passer and weight
0 to every other player and setting the quota equal to 0. Note, that if the original game
is not roughly weighted, then such rough representation is unique. In our view, adding
a passer trivializes the game but does not make it closer to a weighted majority game;
this is why in definitions of our hierarchies B and C we do not allow 0 as a threshold
value.

As in [6] we would like to represent trading transforms algebraically. {−1,0,1}n

denotes the Cartesian product of n copies of {−1,0,1}. For any pair (X ,Y ) of subsets
X ,Y ∈ [n] we define

vX ,Y = χ(X)−χ(Y ) ∈ {−1,0,1}n,

where χ(X) and χ(Y ) are the characteristic vectors of subsets X and Y , respectively.
Let now G = (P,W ) be a simple game. We will associate an algebraic object

with G. For any pair (X ,Y ), where X is winning and Y is losing, we put the pair
in correspondence with the vector vX ,Y . The set of all such vectors we will de-
note I(G) and will call the ideal of the game. Saying that (X1, . . . ,X j;Y1, . . . ,Yj)
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is a certificate of nonweightedness is equivalent to saying that the following vec-
tor sum of the ideal is 0: vX1,Y1 + vX2,Y2 + · · ·+ vX j ,Y j = 0. An `-potent certificate
(X1, . . . ,X j,P`;Y1, . . . ,Yj, /0`) will be represented as

vX1,Y1 +vX2,Y2 + · · ·+vX j ,Y j + ` ·1 = 0,

where 1 is a vector whose entries are each 1.

3 The A-Hierarchy

This hierarchy of classes Aα tries to capture the richness of the class of games that
do not have rough weights, and does so by introducing a parameter α ∈ (0, 1

2 ). Our
method of classification is based on the existence of potent certificates of nonweight-
edness for such games [6]. We will now show that potent certificates can be further
classified. We will extract a very important parameter from this classification.

Definition 6 A certificate of nonweightedness

T = (X1, . . . ,Xm;Y1, . . . ,Ym)

is called an `-potent certificate of length m if it contains at least ` grand coalitions
among X1, . . . ,Xm and at least ` empty sets among Y1, . . . ,Ym.

Obviously, every `-potent certificate of length m is also an `′-potent certificate of
the same length for any `′ < `.

Definition 7 Let q be a rational number. A game G belongs to the class Aq of the
A-hierarchy if G possesses an `-potent certificate of nonweightedness of length m,
such that q = `/m. If α is irrational, we set Aα =

⋂
{q:q<α∧q is rational}Aq.

It is easy to see that, if q≥ 1
2 , then Aq is empty. Indeed, suppose q≥ 1

2 and Aq is
not empty. Then there is a game G with a certificate of nonweightedness

T = (X1, . . . ,Xk,Pm;Y1, . . . ,Yk, /0
m) (6)

with m ≥ k. This is not possible since m copies of P contain more elements than are
contained in the sets Y1, . . . ,Yk taken together and so (6) is not a trading transform. So
our hierarchy consists of a family of classes {Aα}α∈(0, 1

2 )
. We would like to show that

this hierarchy is strict, that is, a smaller parameter captures more games.

Proposition 2 If 0 < α≤ β < 1
2 , then Aα ⊇ Aβ.

Proof It is sufficient to prove this statement when α and β are rational. Suppose
that we have a game G in Aβ that possesses a certificate of length n1 with k1 grand
coalitions and β = k1/n1. Let α = k2/n2. We can then represent these numbers as
β = m1/n and α = m2/n, where n = lcm (n1,n2). Since α ≤ β, we have m2 ≤ m1.
Since n = n1h and m1 = k1h for some integer h, we can now combine h certificates
for G to obtain one with length n and m1 grand coalitions. As m1 ≥ m2 we will get a
certificate for G of length n with m2 grand coalitions. So G ∈ Aα. ut
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We say that a game G is critical for Aα if it belongs to Aα but does not belong to
any Aβ with β > α.

Theorem 3 For every rational α ∈ (0, 1
2 ) there exists a critical game G ∈ Aα.

Proof First, we will construct a two-parameter family of simple games. For any in-
tegers a ≥ 2 and b ≥ 2 let G = ([a2 + a+ b+ 1],W ) be a simple game for which a
coalition X is winning, exactly if |X | > a2 +1 or X contains a subset whose charac-
teristic vector is a cyclic permutation of (1, . . . ,1︸ ︷︷ ︸

a+1

,0, . . . ,0︸ ︷︷ ︸
a2+b

).

Let X1, . . . ,Xa2+a+b+1 be winning coalitions, whose characteristic vectors are
cyclic permutations of (1, . . . ,1︸ ︷︷ ︸

a+1

,0, . . . ,0︸ ︷︷ ︸
a2+b

). Also let Y1, . . . ,Ya2+a+b+1 be losing coali-

tions, whose characteristic vectors are cyclic permutations of

(1, . . . ,1︸ ︷︷ ︸
a

,0, | 1, . . . ,1︸ ︷︷ ︸
a

,0, | 1, . . . ,1︸ ︷︷ ︸
a

,0, | . . . , | 1, . . . ,1︸ ︷︷ ︸
a

,0, | 0,1,0, . . . ,0︸ ︷︷ ︸
b−1

),

where there are a groups of symbols 1, . . . ,1︸ ︷︷ ︸
a

,0. Regarding the b−1 of the rightmost

part, it is important to keep in mind that b−1≥ 1.
This game possesses the following potent certificate of nonweightedness

T = (X1, . . . ,Xa2+a+b+1,P
a2−a;Y1, . . . ,Ya2+a+b+1, /0

a2−a). (7)

One can see that T is a valid potent certificate. By symmetry losing coalitions in T
each contain a2 +1 copies of every player and winning coalitions X1, . . . ,Xa2+a+b+1
have only a+1 copies of every player. Hence we need to add a2−a grand coalitions
to make it a trading transform. Clearly the condition a ≥ 2 is necessary, because
otherwise the certificate T will not be potent.

So G ∈ A a2−a
2a2+b+1

. Let us prove that G is critical for this class, that is, it does not

belong to any Aq′ for q′ > q. Note that the vectors vi = vXi,Yi belong to the ideal of
this game. Note also that the sum of all coefficients of vi is vi ·1 = a−a2 and that for
any other vector v ∈ I(G) from the ideal of this game we have v ·1≥ a−a2.

Suppose G also has a potent certificate of nonweightedness

(A1, . . . ,As,Pt ;B1, . . . ,Bs, /0
t). (8)

with q′ = t
t+s > a2−a

2a2+b+1 = q. The latter is equivalent to a2+a+b+1
a2−a > s

t . Let ui =

vAi,Bi ∈ I(G), then (8) can be written as

u1 +u2 + · · ·+us + t ·1 = 0.

As ui ·1≥ a−a2, taking the dot product of both sides with 1 we get t(a2+a+b+1)≤
s(a2−a), which is equivalent to a2+a+b+1

a2−a ≤ s
t , so we have reached a contradiction.
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We will now show that any rational number between 0 and 1
2 is representable as

a2−a
2a2+1+b for some positive integers a≥ 2 and b≥ 2. Let p

q ∈ (0, 1
2 ). Then q−2p > 0

and it is possible to choose a positive integer k such that k2 p(q− 2p)− kq− 3 > 0.
By the choice of k one can see that kp > 1 + 3+2pk

k(q−2p) ≥ 2. Take a = kp and b =

k2 p(q−2p)− kq−1. Substituting these values we get a2−a
2a2+1+b = p

q . ut

Corollary 1 If 0 < α < β < 1
2 , then Aα ) Aβ.

Example 2 Let us illustrate this proof by an example. Suppose a game G is defined
on the set of players P = [10] with a = 2 and b = 3. Let us include in W all sets
of cardinality greater than five and all coalitions with three consecutive players (we
think of players as situated on the circle so that 10 and 1 are neighbors). The 3-player
minimal winning coalitions, denoted X1, . . . ,X10, are

{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},
{6,7,8},{7,8,9},{8,9,10},{9,10,1},{10,1,2}.

Let Y1, . . . ,Y10 be the losing coalitions, whose characteristic vectors are cyclic per-
mutations of (1,1,0,1,1,0,0,1,0,0), respectively. For example, Y1 = {1,2,4,5,8},
Y2 = {2,3,5,6,9} and Y10 = {10,1,3,4,7}.

Then the potent certificate of nonweightedness

T = (X1, . . . ,X10,P2;Y1, . . . ,Y10, /0
2)

shows that this game belongs to A1/6. As we saw in the proof of Theorem 3, for no β

satisfying 1/6 < β < 1/2 does G belong to Aβ.

As was mentioned before, the larger parameter α is the more relatively “small” win-
ning coalitions and relatively “large” losing coalitions the game has. To see this,
consider a simple game G = ([n],W ) with an `-potent certificate of length j+ `,

T = (X1, . . . ,X j,P`;Y1, . . . ,Yj, /0
`).

Then G ∈ Aα,α = `/(`+ j) and the average number of players in winning coalitions
X1, . . . ,X j is σ/ j where σ = ∑i∈[ j] |Xi|. At the same time the average number of play-
ers in losing coalitions Y1, . . . ,Yj is (σ+ n`)/ j. On average a losing coalition in T
contains n`/ j more players than a winning coalition in T . From above we know that
j > `. The bigger `/(`+ j) is the bigger the ratio `/ j is and hence the bigger n`/ j is.
This means that when α is increasing some winning coalitions become smaller and
some losing coalitions become larger.



10

4 B-Hierarchy

The B-hierarchy generalizes the idea behind rough weightedness to allow more
“points of (decision) flexibility.”

Definition 8 A simple game G = (P,W ) belongs to Bk if there exist real numbers
0 < q1 ≤ q2 ≤ ·· · ≤ qk, called thresholds, and a weight function w : P→ R≥0 such
that

(a) if ∑i∈X w(i)> qk, then X is winning,
(b) if ∑i∈X w(i)< q1, then X is losing,
(c) if q1 ≤ ∑i∈X w(i)≤ qk, then w(X) = ∑i∈X w(i) ∈ {q1, . . . ,qk}.

Games from Bk will be sometimes called k-rough.

The condition 0 < q1 in Definition 8 is essential. If we allow the first threshold
q1 be zero, then every simple game can be represented as a 2-rough game. To do this
we assign weight 1 to the first player and 0 to everyone else. It is also worthwhile
to note that adding a passer does not change the class of the game, that is, a game
G belongs to Bk iff the game G′ obtained from G by adding a passer belongs to Bk.
This is because a passer can be assigned a very large weight. Thus B1 consists of the
roughly weighted simple games with nonzero quota.

Example 3 We know that the Fano game is not roughly weighted. Let us assign
weight 1 to every player of this game and select two thresholds q1 = 3 and q2 = 4.
Then each coalition whose weight falls below the first threshold is in L, and each
coalition whose total weight exceeds the second threshold is in W . If a coalition has
total weight of three or four, i.e., its weight is equal to one of the thresholds, it can be
either winning or losing. Thus the Fano is a 2-rough game.

Example 4 Let n = 8 and assume we have four types of players with players
2i − 1 and 2i forming the ith type. Let us include in W all sets that contain
two elements from the same type. Minimal winning coalitions for this game are
{1,2},{3,4},{5,6},{7,8}. The trading transform

T = ({1,2}2,{3,4}2,{5,6}2,{7,8}2,P;{1,3,5,7}3,{2,4,6,8}3, /0
3)

is the potent certificate of nonweightedness. So by Theorem 1 G is not roughly
weighted.

On the other hand, if we assign weight 1 to every player, then G is a 3-rough
game with thresholds 2, 3, and 4. Let us show that G is not 2-rough. Assume, to the
contrary, that we have weights w1, . . . ,w8 and two positive thresholds q1 and q2 that
make this game 2-rough. Without loss of generality we can assume that w2i−1 ≥ w2i
for every type i. Two players of the same type form a winning coalition. This means
that the weight of this coalition is at least q1. Moreover the players w1,w3,w5,w7 with
the biggest weight in each type have weight not smaller than q1

2 each. Let us consider
the following three losing coalitions with strictly increasing weights

{1,3}( {1,3,5}( {1,3,5,7}.
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The coalition {1,3} has weight at least q1
2 + q1

2 = q1. In the worst-case scenario this
coalition lies exactly on the first threshold q1. So the weight of coalition {1,3,5}
is greater than or equal to q2. We can see that in every possible scenario the losing
coalition {1,3,5,7} has weight strictly greater than q2, a contradiction.

Let us generalize the idea of Example 4.

Theorem 4 For every natural number k ∈ N+, there exists a game in Bk+1 \Bk.

Proof We will construct a simple game that is a (k+ 1)-rough but not k-rough. Let
Gk+1,n = ([n],W ) be a simple game with n = 2k+4 players. We have k+2 types of
players with the ith type consisting of two elements 2i−1 and 2i. The set of minimal
winning coalitions of this game is W m = {{2i−1,2i} | i = 1,2, . . . ,k+2}.

If we assign weight 1 to every player, then Gk+1,n is (k + 1)-rough game with
thresholds q1 = 2, q2 = 3, . . . , qk+1 = k + 2. Let us assume that this game is j-
rough for some j < k + 1, and let w be the new weight function. Without loss of
generality we may assume that the players are ordered so that w(2i−1) ≥ w(2i).
Since the coalition {2i− 1,2i} is winning we have w(2i−1) ≥ q1/2 > 0 for any
i = 1,2, . . . ,k+ 2. The coalitions L j = {2i− 1 | 1 ≤ i ≤ j} are losing, their weights
are different, and each of them has weight of at least jq1/2 for all 2≤ j≤ k+2. Thus
at least k+ 1 coalitions of different weights lie in the tie-breaking region. This is a
contradiction. Thus Gk+1,n is not j-rough for any j < k+1. ut

An obvious upper bound on the number of thresholds is K−k+1, where K is the
cardinality of the largest losing coalition and k the cardinality of the smallest winning
coalition. Indeed, it can be made (K−k+1)-rough by choosing weights w(i) = 1 for
all i ∈ [n] and setting thresholds k,k+1, . . . ,K. However this bound is not tight as is
seen from the following example.

Example 5 Let G = ([7],W ) be a simple game with minimal winning coalitions
{1,2},{6,7},{3,4,5} and all coalitions of four players except {2,3,4,6}. This game
is not roughly weighted, because we have the following potent certificate of non-
weightedness

T ={{1,2}7,{3,4,5}9,P;{2,3,5}3,{2,3,4}3,

{2,3,6},{2,3,7},{1,3,4},{1,3,5},{1,4,5}6, /0}.

Let us assign weight 0 to the third player and 1
2 to everyone else. Then the following

four statements hold:

– w({1,2}) = w({6,7}) = w({3,4,5}) = 1 and w({2,3,4,6}) = 3
2 .

– If X is winning coalition with four or more players, then w(X)≥ 3
2 .

– If X is losing coalition with three players, then w(X) ∈ {1, 3
2}.

– If X is losing coalition with fewer than three players, then w(X)≤ 1.

Thus G is a 2-rough game with thresholds 1 and 3
2 . Note that the third player has

weight zero but he is not a dummy.
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5 C -hierarchy

Let us consider another extension of the idea of rough weightedness. This time we
will use a threshold interval instead of a single threshold or (as in B-hierarchy) a
collection of threshold points. It is convenient to “normalize” the weights so that the
left end of our threshold interval is 1. We do not lose any generality by doing this.

Definition 9 We say that a simple game G = (P,W ) is in the class Cα, α ∈ R≥1,
if there exists a weight function w : P→ R≥0 such that for X ∈ 2P the condition
w(X)> α implies that X is winning, and w(X)< 1 implies X is losing. Games from
Cα will sometimes be called roughα.

The roughly weighted games with nonzero quota form the class C1. From Exam-
ple 3 we can conclude that the Fano game is in C4/3 (by giving each player weight
1/3). We also note that adding or deleting a passer does not change the class of the
game.

Definition 10 We say that a game G is critical for Cα if it belongs to Cα but does not
belong to any Cβ with β < α.

It is clear that if α≤ β, then Cα ⊆ Cβ. However, we can show more.

Proposition 3 Let c and d be natural numbers with 1 < d < c. Then there is a simple
game G that is roughc/d , but that for each α < c/d is not roughα.

Proof Define a game G=(P,W ), where P= [cd]. Similarly to the proof of Theorem 4
we have c types of players with d players in each type and the different types do not
intersect. Winning coalitions are sets with at least c+1 players and also sets having
all d players from the same type. By i j we will denote the ith player of jth type.

If we assign weight 1/d to each player, then the lightest winning coalition (d
players from the same type) has weight 1 and the heaviest losing coalition has weight
c/d. Thus G belongs to Cc/d .

Let us show that G is not roughα for any α < c/d. Suppose G is roughα relative
to a weight function w. Let max{1 j, . . . ,d j} be the element of the set {1 j, . . . ,d j} that
has the biggest weight relative to w.

For any type j we know that w(max{1 j,2 j, . . . ,d j})≥ 1
d . The coalition

Y = {max{11, . . . ,d1}, . . . ,max{1c, . . . ,dc}}

is losing by definition. Moreover, it has weight w(Y ) ≥ c/d. So c/d is the smallest
number that can be taken as α so that G is roughα. ut

Theorem 5 For each 1≤ α < β, it holds that Cα ( Cβ.

Proof We know that Cα ⊆ Cβ. If β is a rational number, then by Proposition 3 there
exists a game G that is roughβ but is not roughα. If β is an irrational number, then
choose a rational number r, such that α < r < β. By Proposition 3 there exists a game
G that is roughr but is not roughα. So Cα ( Cr. All that remains to notice is that
Cr ⊆ Cβ. ut
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Theorem 6 Let G be a simple game that is not roughly weighted and is critical for
Ca. Suppose G also belongs to Aq for some 0 < q < 1

2 . Then

a≥ 1−q
1−2q

.

Proof Obviously we can assume that q is rational. Since G is in Aq, it possesses a
certificate of nonweightedness T of the kind

T = (X1, . . . ,Xt ,Ps;Y1, . . . ,Yt , /0
s).

Suppose we have a weight function w : P→ R≥0 instantiating G ∈ Cα. Then since
w(Xi)≥ 1 and w(P)≥ a, we have

w(X1)+ · · ·+w(Xt)+ sw(P)≥ t + sa. (9)

On the other hand, w(Yi)≤ a and

w(Y1)+ · · ·+w(Yt)≤ ta. (10)

From these two inequalities we get t + sa ≤ ta or a ≥ t
t−s . Since q = s

t+s we obtain
a≥ 1−q

1−2q , which proves the theorem. ut

6 Degrees of Roughness of Games with Small Number of Players

First, we will derive bounds on the largest number s(n) of the spectra Spec(n).

Theorem 7 For n≥ 4, 1
2

⌊ n
2

⌋
≤ s(n)≤ n−2

2 .

Proof Let G be a game with n players. Without loss of generality we can assume that
G does not contain passers. Moreover the maximal value of s(n) is achieved on games
that are not roughly weighted. By Proposition 1 the biggest losing coalition contains
at most n− 2 players and the smallest winning coalition has at least two players. If
we assign weight 1

2 to every player, then G is in C(n−2)/2.
We can use a game similar to the one from Theorem 4 to prove the lower bound.

Suppose our game has n players. If n is odd, then one player will be a dummy. The
remaining 2

⌊ n
2

⌋
players will be divided into

⌊ n
2

⌋
pairs: {1,2}, {2,3}, . . . , {m−1,m},

where m =
⌊ n

2

⌋
. These pairs are declared minimal winning coalitions. Given any

weight function w we have w(max{2i−1,2i})≥ 1
2 for each i. Then

w({max{1,2}, . . . ,max{m−1,m})≥ m
2
,

while this coalition is losing. So s(n)≥ m/2 which proves the lower bound. ut
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Now let us calculate the spectra for n ≤ 6. By Theorem 2 all games with four
players are roughly weighted. Since we may assume that the game does not have
passers we may assume that the quota is nonzero. Hence we have Spec(4) = {1}. So
the first nontrivial case is n = 5.

Let G = ([n],W ) be a simple game. The problem of finding the smallest α such
that G ∈ Cα is a linear programming question. Indeed, let W min and Lmax be the set
of minimal winning coalitions and the set of maximal losing coalitions, respectively.
We need to find the minimum α such that the following system of linear inequalities
is consistent: {

w(X)≥ 1 for X ∈W min,

w(Y )≤ α for Y ∈ Lmax.

This is equivalent to the following optimization problem:

Minimize: α.
Subject to: ∑i∈X wi ≥ 1, ∑i∈Y wi−α≤ 0, and wi ≥ 0; X ∈W min,Y ∈ Lmax.

Theorem 8 Spec(5) =
{

1, 6
5 ,

7
6 ,

8
7 ,

9
8

}
.

Proof Let G be a critical game with five players. If G has a passer, then as was noted,
the passer can be deleted without changing the class of G, hence G ∈ C1. If G has
no passers and does not belong to C1, then it is not roughly weighted. By Theorem 2
each game that is not roughly weighted is not strong and is not proper. Thus we have
a winning coalition X such that Xc is also winning and a losing coalition Y such that
Y c is also losing.

By Proposition 1 we may assume that the cardinalities of both X and Y are two.
Without loss of generality we assume that X = {1,2} and Xc = {3,4,5}. Note that Y
cannot be contained in Xc as otherwise Y c contains X and is not losing. So without
loss of generality we assume that Y = {1,5},Y c = {2,3,4}.

We have two levels of as yet unclassified coalitions, which can be set either losing
or winning:

level 1 : {1,3,4},{1,3,5},{1,4,5},{2,3,5},{2,4,5},
level 2 : {1,3},{1,4},{2,5},{3,5},{4,5}.

We wrote Maple code using the “LPSolve” command. First we choose losing
coalitions on level 1 and delete all subsets of them from level 2. We add every un-
classified coalition from level 1 to winning coalitions. After that we choose losing
coalitions on level 2. We run through all possible combinations of losing coalitions
on both levels and solve the respective linear programming problems. The results of
these calculations are displayed in Table 1. ut

Theorem 9 The 6th spectrum Spec(6) contains Spec(5) and also the following frac-
tions:

3
2
,

4
3
,

5
4
,

9
7
,

10
9
,

11
9
,

11
10

,
12
11

,
13
10

,
13
11

,
13
12

,
14
11

,
14
13

,
15
13

,
15
14

,
16
13

,
16
15

,
17
13

,
17
14

,
17
15

,
17
16

,
18
17

.
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α Minimal winning coalitions and maximal losing coalitions Weight representation

9
8

W min = {{1,2},{1,3,5},{1,4,5},{3,4,5}}, w1 =
5
8 ,w2 =

3
8 ,w5 =

4
8 ,

Lmax = {{1,5},{1,3,4},{2,3,4},{2,3,5},{2,4,5}} w3 = w4 =
2
8

8
7

W min = {{1,2},{2,5},{1,3,4},{3,4,5}}, w1 = w5 =
3
7 ,w2 =

4
7 ,

Lmax = {{1,3,5},{1,4,5},{2,3,4}} w3 = w4 =
2
7

7
6

W min = {{1,2},{1,4,5},{3,4,5}}, w1 = w2 =
3
6 ,

Lmax = {{1,3,4},{1,3,5},{2,3,4},{2,3,5},{2,4,5}} w3 = w4 = w5 =
2
6

6
5

W min = {{1,2},{1,3},{1,4},{2,5},{3,5},{4,5}}, w1 = w5 =
3
5 ,

Lmax = {{1,5},{2,3,4}} w2 = w3 = w4 =
2
5

Table 1 Examples of critical simple games for every number of 5th spectrum

Proof Let G be a critical game with six players. If G has a passer, then G ∈Cα where
α ∈ Spec(5). In the other words Spec(5)⊆ Spec(6). If G doesn’t have a passer, then
assume it is not roughly weighted. By Theorem 2 we know that every game with
six players that is not roughly weighted is either not strong (Y,Y c ∈ L for some
Y ∈ 2P) or is not proper (X ,Xc ∈W for some X ∈ 2P). By Proposition 1 we can
restrict ourselves to the consideration of games for which every coalition with less
than two players is losing and every coalition with more that four players is win-
ning. Since G is not roughly weighted there is a potent certificate of nonweighted-
ness T = (X1, . . . ,Xk,P;Y1, . . . ,Yk, /0), where the coalitions X1, . . . ,Xk are winning and
the coalitions Y1, . . . ,Yk are losing. The latter absorb all players in X1, . . . ,Xk and the
grand coalition. Then there exists a losing coalition Yj among Y1, . . . ,Yk with more
players than in the smallest winning coalition Xi among X1, . . . ,Xk. If Xi consists of
two players, then Yj has at least three players. If Xi has three players, then Yj has four
players and any subset of it with three players is also losing. Clearly Xi cannot have
four players or more. So in any case we have a losing coalition with three players and
a winning coalition with three players. Without loss of generality we need to check
only six possible cases:

– If G is not proper:
1. {1,2},{3,4,5,6} ∈W and {1,3,4} ∈ L;
2. {1,2},{3,4,5,6} ∈W and {3,4,5} ∈ L;
3. {1,2,3},{4,5,6} ∈W and {1,4,5} ∈ L.

– If G is not strong:
4. {1,2},{3,4,5,6} ∈ L and {1,3,4} ∈W ;
5. {1,2},{3,4,5,6} ∈ L and {1,2,3} ∈W ;
6. {1,2,3},{4,5,6} ∈ L and {1,2,4} ∈W .

For each case the algorithm considers all possible assignments of the attributes
“winning” and “losing” to coalitions that are not yet classified. Let level 1 consists of
all 4-element coalitions, level 2 consists of 3-element coalitions, and level 3 consists
of 2-element coalitions. As in the code discussed in the proof of Proposition 8, first
the algorithm selects losing coalitions at level 1 (everything else at level 1 will be
winning) and classifies all subsets of these coalitions from levels 2 and 3 as losing.
Next it selects losing coalitions among coalitions of level 2, which are not yet classi-
fied, and classifies all subsets of them from level 3 as losing. Finally, it selects losing
coalitions among remaining coalitions of level 3 and solves the linear programming
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problem using “LPSolve” in Maple, which tries to assign weights to players con-
sistent with the classification of coalitions. We repeat everything for each possible
combination of losing coalitions at all levels. The code and the list of critical games
are available from the authors. ut

7 Conclusion and Further Research

Economics has studied extensively weighted majority games. This class was previ-
ously extended to the class of roughly weighted games [12,6]. However, many games
are not even roughly weighted and some of these games are important both for theory
and applications. In this paper we introduce three hierarchies, each of which partitions
the class of games without rough weights according to some parameter that can be
viewed as capturing some resource—either a measure of our flexibility on the size
and structure of the tie-breaking region or allowing certain types of certificates of
nonweightedness. It is important to look for further connections between the classes
of the three hierarchies, and we commend that direction to the interested reader.

In this paper we studied only the C -spectrum. Some interesting questons about
this spectrum still remain, especially the bounds for s(n) are of considerable interest.
It would be interesting to study both the A-spectrum and B-spectrum as well.

As we mentioned in the introduction another important generalization of a class
of weighted majority games is the class of complete games. All questions that we
investigated in this article can be reformulated for games in this class: strictness of
the three hierarchies, description of spectra etc. This is an important direction for
future research.
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