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Abstract

We investigate two systems of fully proportional representation suggested by Chamberlin
& Courant (1983) and Monroe (1995). Both systems assign a representative to each voter so
that the “sum of misrepresentations” is minimized. The winner determination problem for
both systems is known to be NP-hard, hence this work aims at investigating whether there are
variants of the proposed rules and/or specific electorates for which these problems can be solved
efficiently. As a variation of these rules, instead of minimizing the sum of misrepresentations,
we considered minimizing the maximal misrepresentation introducing effectively two new rules.
In the general case these “minimax” versions of classical rules appeared to be still NP-hard.

We investigated the parameterized complexity of winner determination of the two classical
and two new rules with respect to several parameters. Here we have a mixture of positive and
negative results: e.g. we proved fixed-parameter tractability for the parameter the number of
candidates but fixed-parameter intractability for the number of winners.

For single-peaked electorates our results are overwhelmingly positive: we provide polynomial-
time algorithms for most of the considered problems. The only rule that remains NP-hard for
single-peaked electorates is the classical Monroe rule.

Key words: multi-winner elections, single-peaked electorate, parameterized complexity, NP-
hardness, dynamic programming.
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1 Introduction

There is a significant difference in the purpose of single-winner and multi-winner elections. Single-
winner social choice rules are used to make final decisions, e.g., to elect a president or to choose
a certain course of action. The multi-winner election rules are used to elect an assembly whose
members will be authorized to take final decisions on behalf of the society. As a result the main
property that multi-winner rules have to satisfy is that the elected assembly represents the society
adequately. This, in particular, means that when a final decision is taken all opinions existing in
the society are heard and taken into consideration. As Black powerfully expressed it:

A scheme of proportional representation attempts to secure an assembly whose mem-
bership will, so far as possible, be proportionate to the volume of the different shades
of political opinion held throughout the country; the microcosm is to be a true reflexion
of the macrocosm. [6, p. 75].

And although any single-winner social choice rule can be easily extended to select an assembly—
e.g., by taking candidates with best scores or applying the rule repeatedly until the required quantity
of representatives is elected—this is a wrong approach to the problem [9] (see also [40] for some
experimental evidence). The reason is that the majoritarian logic which dominates the design of
single-winner social choice rules cannot provide for a balanced assembly membership.

The standard solution to the problem of electing an assembly has been the division of the
election into single-member districts with approximately equal population. Each district elects
one member of the assembly using a single-winner rule, normally the plurality. And although one
might question whether districting should be instead based on the total adult population or on the
number of registered voters, the current practice is well established and entrenched by law in many
countries, including the United States [8]. However the main problem with this approach is not
the districting but the fact that it also fails to give a representation to minorities; the minority can
comprise 49% of the population and be not represented in the assembly.

What can be an alternative? An important idea was suggested by Charles Dodgson (Lewis
Carrol) [16] and considered in a different form by Black [6]. Then the idea was further developed
by Chamberlin & Courant [12] and later by Monroe [43] (relative advantages of both methods from
political science point of view have been extensively discussed by Brams [8]). Dodgson asserted
that “a representation system should find the coalitions in the election that would have formed if
the voters had the necessary time and information” and allow each of the coalitions to elect their
representative. If this is adopted, then the minority can form a coalition and be represented.

The realization of this idea required a new concept which is the misrepresentation. It is as-
sumed that voters form individual preferences over the candidates based on their political ideology
and “their judgement about the abilities of candidates to participate in deliberations and decision
making consistent with how the individuals would wish to act were they present” [12]. This was in
a way a revolution.

Indeed, in the “single-winner” literature on voting rules it is widely accepted that voter’s polit-
ical preferences are more complex than their first choices alone. However in “multi-winner” voting
literature fixation on first preferences led researchers to think about proportional representation
exclusively in terms of first preferences. In list systems of proportional representation, parties are
assigned a number of seats in parliament that is proportional to the number of votes (first prefer-
ences) they received. The systems like Single Non-Transferable Vote, Block Voting and Cumulative
Voting all also do not take second preferences in account [39]. Only the Single Transferable Vote

2



(STV) is a system of proportional representation (in fact a family of voting methods according
to [52]) that allows voters to express the order of preference of candidates [39]. Voters rank the
candidates in order of preference; first preference votes are the first to be looked at, and the votes
are then transferred, if necessary, from candidates who have either been comfortably elected or who
have done so badly that they have been eliminated from the election.1

So, if a voter is represented by a candidate who is her first preference it is reasonable to say that
he is represented optimally or that the misrepresentation in this case is zero. In general, if a voter is
represented by a candidate who is her ith preference we may assume that she is misrepresented to
the degree si. Of course, it is reasonable to assume that 0 = s1 ≤ s2 ≤ . . . ≤ sm. So in this case the
rule for measuring the total misrepresentation is fully defined by the vector s = (s1, . . . , sm), where
m is the number of candidates. Using the analogy with positional scoring rules for single-winner
elections we may say that this misrepresentation function is positional. In general, the problem
of choosing a proper misrepresentation function is far from being trivial. Levin and Nalebuff [39]
illustrate the difficulty vividly: “if the electorate is uniformly distributed on the segment between
0 and 1, and we are to choose three representatives, should they be equally spaced [0.25, 0.5, 0.75],
or should they be selected so as to minimize the average distance traveled to the nearest legislator
[0.16, 0.5, 0.83]?” In the broadest possible framework the misrepresentation function may be even
voter-dependent.

Staying with classical positional misrepresentation functions for the time being suppose now
that every voter is assigned to a representative in some way. Measuring the total misrepresentation
for the whole society we may adopt either the Harsanyi approach [37] or the Rawlsian one (assuming
that the utility of being represented by your ith best candidate is −si). By Harsanyi we will have
to measure the total misrepresentation as

MH =

m
∑

i=1

nisi,

where ni is the number of voters represented by their ith most preferred candidate. According to
Rawls [50] “welfare is maximized when the utility of those society members that have the least is
the greatest.” This leads us to the total misrepresentation function

MR =
m

max
i=1

si.

Both Chamberlin & Courant [12], and Monroe [43] consider that the best set of representatives
must minimize the total misrepresentation which they both calculate using the Borda vector of
scores, that is, (0, 1, 2, . . . ,m − 1) and Harsanyi misrepresentation function. Their methods are
however different and the difference is very important. Chamberlin & Courant [12] did not impose
any restriction on the function that assigns candidates to voters. This may potentially lead to
different number of voters whom each candidate represents. To remedy this Chamberlin & Courant
suggested to use weighted voting in the assembly where each elected candidate has the weight equal
to the number of voters she represents. Monroe rejected this approach and insisted on the principle
’one member of assembly one vote’. For this reason he insisted that the difference between the
number of voters assigned to any two representatives is at most one.

1In Northern Ireland this is the voting system used for elections to local councils, the Assembly, and the Euro-
pean Parliament. It is used for all elections in the Irish Republic, Malta, and Australia (although single-member
constituencies are prevalent in Australia, apart from state level elections in Tasmania and the ACT). Several other
countries have recently debated adopting it.
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The computational problems corresponding to the Harsanyi approach are known to be NP-
hard [40, 49] for classical misrepresentation functions such as Borda and approval. In this paper
we ask whether or not the problem of finding an optimal fully proportional representation becomes
easier for this classical misrepresentation functions if we adopt the Rawlsian approach for measure-
ment of total misrepresentation. The second goal is to find the parameterized complexity of the
considered problems for some natural choices of parameters. The third is to develop efficient algo-
rithms for achieving an optimal fully proportional representation in single-peaked elections. In the
remainder of this section, we formally introduce the considered computational problems, summarize
previous results, and describe our approaches and results.

1.1 Computational problems considered

An election is a pair E = (C, V ) where C is the set of candidates (or alternatives) and V is an
ordered list of voters. Each voter is represented by her vote, i.e., a strict, linear order over the set
of candidates (also called this voter’s preference order). We will refer to the list V as a preference
profile, and we denote the number of voters in V by n. The number of alternatives will be denoted
by m. If the order of voters is not important (the election is anonymous), then V can be considered
as a multiset2 of votes. In this paper we will consider only anonymous elections.

By posv(c) we will denote the position of the alternative c in the ranking of voter v; the top-
ranked alternative has position 1, the second best has position 2, etc.

Definition 1. Given a profile V over C, a mapping r : V × C → Q+
0 will be called a misrepresen-

tation function if for any v ∈ V and any two candidates c, c′ ∈ C the condition posv(c) < posv(c
′)

implies r(v, c) ≤ r(v, c′).

That is to say that if c is preferred to c′ in v’s ranking, then the misrepresentation of v, when
she is represented by c′ will be at least as large as her misrepresentation, when she is represented
by c. In the classical framework the positional misrepresentation function given by s = (s1, . . . , sm)
the misrepresentation function is given by the formula

r(v, c) = spos
v
(c).

In the general framework the misrepresentation function may be arbitrary. By w : V → C we
denote the function that assigns voters to representatives (or the other way around), i.e., under this
assignment voter v is represented by candidate w(v). The total misrepresentation of the election
under w is then given by

∑

v∈V

r(v, w(v)) or max
v∈V

r(v, w(v))

in Harsanyis classical and Rawls minimax versions, respectively. We say that a mapping w respects
the M -criterion if |w(V )| = k and w assigns at least ⌊n/k⌋ and at most ⌈n/k⌉ voters to every
candidate from w(V ), where k denotes the number of representatives.

Based on the previous discussion, in this work we investigate the computational complexity of
the following four combinatorial problems. The two classical ones described above are named after
Chamberlin and Courant (CC), for the case when a winner candidate can represent an arbitrary
number of voters (and this number of voters will be his weight in the elected assembly), and
Monroe (M), for the case when every candidate represents roughly the same number of voters (and

2This is not a set since two different voters may have the same preference order.
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each representative has one vote in the assembly). The two previously unstudied versions which
adopt the Rawlsian approach for measuring the total misrepresentation are called the minimax
versions of the classical ones.

CC-Multiwinner (CC-MW)
Given: A set C of candidates, a multiset V of voters, a misrepresentation function r,
a misrepresentation bound R ∈ Q+

0 and a positive integer k.

Task: Find a subset C′ ⊆ C of size k and an assignment of votersw such that w(V ) = C′

and
∑

v∈V r(v, w(v)) ≤ R.

Minimax CC-Multiwinner (Minimax CC-MW)
Given: A set C of candidates, a multiset V of voters, a misrepresentation function r,
a misrepresentation bound R ∈ Q+

0 and a positive integer k.

Task: Find a subset C′ ⊆ C of size k and an assignment of votersw such that w(V ) = C′

and for every v ∈ V one has r(v, w(v)) ≤ R.

M-Multiwinner (M-MW)
Given: A set C of candidates, a multiset V of voters, a misrepresentation function r,
a misrepresentation bound R ∈ Q+

0 and a positive integer k.

Task: Find a subset C′ ⊆ C of size k and an assignment of voters w, which respects
the M -criterion, w(V ) = C′ and such that

∑

v∈V r(v, w(v)) ≤ R.

Minimax M-Multiwinner (Minimax M-MW)
Given: A set C of candidates, a multiset V of voters, a misrepresentation function r,
a misrepresentation bound R ∈ Q+

0 and a positive integer k.

Task: Find a subset C′ ⊆ C of size k and an assignment of voters w, which respects
the M -criterion, w(V ) = C′ and such that r(v, w(v)) ≤ R.

We assume that k < m and k < n in what follows.

The four problems above are stated for general misrepresentation functions (since some of our
algorithmic results hold even for this case) but the main focus of this work is on the following two
important misrepresentation functions. We denote the positional misrepresentation function defined
by the vector (0, 1, . . . ,m−1) as Borda misrepresentation function. In Approval Voting framework,
if a voter is represented by her approved alternative, then her misrepresentation is considered to be
zero, alternatively it is equal to one. This function is called the approval misrepresentation function.
Note that some misrepresentation functions, like Borda, can be derived from the preference lists
of the voters. In contrast, an approval misrepresentation function cannot be obtained from a
preference list without further information about the threshold that separates approved candidates
from disapproved ones. Another meaningful positional misrepresentation function would be the
k-Approval one, defined by the vector s = (1, . . . , 1, 0, . . . , 0) (k ones), but we do not consider it
here.

1.2 Previous computational complexity results

The study of the computational complexity of problems in the context of voting was initiated by
Bartholdi et al. [2] about 20 years ago but has became an active area of research only recently [14,
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27, 24, 26]. While there is a large number of papers dealing with single-winner elections or multi-
winner elections whose final goal is still to choose a single winner after a tiebreaking, only few
articles [47, 49, 40] deal with the computational complexity of multiwinner elections aimed at
achieving a proportional representation. In particular, these works contain NP-hardness proofs for
CC-Multiwinner and M-Multiwinner for approval misrepresentation function [49] and for CC-
Multiwinner for Borda misrepresentation function [40]. Algorithmic approaches comprise Integer
Linear Programming [47, 8] for CC-MW and M-MW, approximation algorithms based on greedy
strategies [40] for CC-MW, and polynomial-time algorithms for CC-MW and M-MW for instances
where the number of candidates is constant [49]. In contrast, to the best of our knowledge, the
computational complexity of the minimax versions of the problems remained unstudied.

We are only aware of one further work explicitly studying computational complexity issues in
the context of multiwinner elections. Meir et al. [41] investigate the computational complexity of
strategic voting for several multiwinner elections for which a winner can be determined in polynomial
time. The systems considered in [41] do not lead to any kind of proportional representation.

1.3 Our approach and results for general elections

The first result of this work is that the minimax versions of the classical Chamberlin-Courant and
Monroe problems are also NP-complete. In other words, adopting Rawlsian approach does not
make computation of the problems easier in general (but we will see that the situation changes
completely for single-peaked elections where the minimax version becomes indeed easier). Based on
these negative results, this work aims at extending the previous algorithmic approaches described
above by an analysis whether or not there are settings in which the problems becomes tractable.
To this end, parameterized algorithmics is an appropriate tool as it aims at identifying tractable
special cases of NP-hard problems. The cornerstone of this approach is the idea that the complexity
of a problem is not only measured in the total size of an input instance I but additionally in a
parameter p, usually a nonnegative integer (but it can be a pair of integers or virtually anything).
A problem is called fixed-parameter tractable if there is an algorithm solving any instance of it
in f(p)·poly(|I|) time, where f denotes a computable function [19, 30, 46]. For small values of p an
algorithm with such running time might represent an efficient algorithm for the NP-hard problem
under consideration. Parameterized complexity also provides a tool of “parameterized reductions”
by which one can show that a problem is presumably not fixed-parameter tractable. One of the
most important parameterized complexity classes for this purpose is W [2] (see Section 2 for more
details). We remark in passing that a parameterized complexity analysis has been employed for
several other voting problems, e.g., [11, 4, 5, 13, 18, 21, 25] (see [3, Chapter 2.3] for an overview).

In the context of multiwinner elections, a parameter that immediately attracts attention is the
number k of winners, which in many settings might be much smaller than the number of candidates
or the number of voters. Another reasonable parameter is the misrepresentation bound R since
in an ideal (or fully personalizable as in [40]) situation R is equal to zero, that is, every voter
is represented by one of her most preferred candidates. We provide a parameterized complexity
analysis of all four considered problems for the Borda and approval misrepresentation functions
with respect to the parameters k and R. In addition, we also investigate the combined parameter
(k,R) consisting of the number of winners and the misrepresentation bound.

An overview of the results is provided in Table 1. While, when the number of winners k is
a parameter, all considered problems turn out to be W[2]-hard, for the parameterization by the
total misrepresentation bound R the results are more varied. For the case R = 0, for the approval
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Table 1: Parameterized complexity of the considered multiwinner problems for instances where the
misrepresentation function r is either approval (A), Borda (B) or unrestricted (U). The entry “FPT
for R = 1” in the row for the parameter (R, k) stands for fixed-parameter tractability with respect
to k when R = 1.

Parameter r CC-MW Minimax CC-MW M-MW Minimax M-MW

# winner k A W[2]-hard W[2]-hard W[2]-hard W[2]-hard
# winner k B W[2]-hard W[2]-hard W[2]-hard W[2]-hard

misr. R A NP-h for R = 0 NP-h for R = 0 NP-h for R = 0 NP-h for R = 0
misr. R B XP NP-h for R ≥ 1 XP NP-h for R ≥ 1

P for R = 0 P for R = 0

(R, k) A W[2]-hard W[2]-hard W[2]-hard W[2]-hard
(R, k) B FPT FPT FPT FPT for R = 1

# cand. U FPT FPT FPT FPT
# voters U FPT FPT FPT FPT

misrepresentation function all four problems are NP-hard while they are solvable in polynomial
time for the Borda misrepresentation function. However, Minimax CC-MW and Minimax M-
MW become NP-hard for every R ≥ 1. In contrast, the sum-minimization variants CC-MW and
M-MW for the Borda misrepresentation function are solvable in polynomial time for constantR (the
corresponding parameterized complexity class is called XP). Note that the provided algorithm shows
the containment in XP with respect to R but not fixed-parameter tractability, this problem remains
open. This inspired our analysis of the combined parameter (R, k), covering scenarios in which there
is a small set of winners that can represent all voters with a small total misrepresentation. While
for the approval misrepresentation function, this still leads to parameterized intractability, for the
Borda misrepresentation function, we show fixed-parameter tractability for all problems except
Minimax M-MW. For this problem, we obtain fixed-parameter tractability with respect to k when
R = 1 and discuss why the analogous approach does not lead to fixed-parameter tractability with
respect to k for R = 2.

1.4 Results for single-peaked elections

Single-peakedness is one of the central notions in social choice and political science alike [6, 44,
51]. The preferences of voters are single-peaked when a single issue dominates their formation.
This could be their ideological position on the Left-Right or Liberal-Conservative spectra, level
of taxation, immigration quota, etc. Tideman [51] compares single-peakedness with convexity of
preferences and discusses when it is reasonable to assume this. He has access to a data collection
containing 87 ranked-ballot real-life elections and claims that most of them are single-peaked [51].

This dominating single issue are normally represented by an axis and each voter is characterized
by a single point on this axis (see an example on Figure 1, page 21. The misrepresentation function
for a fixed voter is then a function of single variable defined on that axis. The single-peakedness of
preferences implies that this function has exactly one local minimum. We refer to Section 5 for a
formal proof of this statement.

We note that for votes in form of approval ballots as well as linear orders, single-peakedness of
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Table 2: Overview of the computational complexity for singled-peaked elections. In case of
polynomial-time solvability, the table provides the running times depending on the number n of
voters, the number m of candidates, and the number k of winners. If not stated otherwise, the
result holds for an arbitrary misrepresentation function.

CC-MW Minimax CC-MW M-MW Minimax M-MW

O(nm3) O(nm) O(n5mk3) for approval O(n2m2(n+m))
NP-hard for integer mis. func.

the profile can be checked in linear time [7, 22] with the reconstruction of the order of the candidates
on the axis.

The study of the computational complexity of voting rules with NP-hard winner-determination
problem shows that for all Condorcet-consistent ones—and these include Dodgson, Kemeny, and
Young rules—the winner-determination problem becomes polynomial-time solvable if we restrict
ourselves with single-peaked profiles [10]. The obvious reason for this is that single-peakedness
eliminates the possibility of Condorcet cycles in the election.

It is not that obvious that single-peakedness must also simplify the winner-determination prob-
lem for methods of proportional representation. However, it seems natural to investigate this
possibility. Our results show that, indeed, in many instances the winner-determination problem for
methods of proportional representation does become easier too.

Our results are summarized in Table 2. For CC-MW and Minimax CC-MW the problems are
solvable in polynomial time for an arbitrary (rational-valued) misrepresentation function. More
specifically, for CC-MW we provide a dynamic programming algorithm running in O(nm3) time for
n voters and m candidates, and Minimax CC-MW can be solved in O(nm) time by a greedy algo-
rithm. For the Monroe system and its variants, the results become more diverse. While Minimax
M-MW for the general misrepresentation function is still solvable in polynomial time, M-MW is
NP-hard. However, on the positive side, we can still show polynomial-time solvability for M-MW
for the approval misrepresentation function. Basically, the results are obtained as follows. For Min-
imax M-MW we establish a close connection to a “one-dimensional rectangle stabbing” problem
with capacities which allows to directly employ a known polynomial-time algorithm [23]. Moreover,
for M-MW for the approval misrepresentation function, we show how to extend this dynamic pro-
gramming algorithm. The NP-hardness of M-MW is established by a many-one reduction from a
restricted version of the Exact 3-Cover problem. The NP-hardness holds for an integer-valued
misrepresentation function for which the maximum misrepresentation value is still polynomial in
the number of candidates. However, we allow that a voter may assign the same misrepresentation
value to several candidates. Hence, it is not obvious how to transfer the corresponding many-one
reduction to M-MW for the Borda misrepresentation function. For this problem the computational
complexity thus is left open.

1.5 Organization of the paper

The paper is organized as follows. In Section 2 we introduce the main concepts of parameterized
complexity and some graph algorithms. Section 3 contains basic observations about the relations
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of the four problems under consideration and some fixed-parameter tractability results with respect
to the number of voters and the number of candidates. The two main contributions are proved
in Section 4, where most important parameterized complexity results as well as the NP-hardness
results for the minimax versions are proved, and in Section 5, where the special case of single-
peaked elections is handled. Finally, in Section 6 we conclude with a discussion of the relevance of
our results and some related problems and settings.

2 Preliminaries

We briefly introduce the framework of parameterized complexity followed by some basic graph
algorithms that are used in this paper. For basic notions regarding classical complexity theory we
refer to [32].

2.1 Parameterized Complexity

The concept of parameterized complexity was pioneered by Downey and Fellows [19] (see also [30, 46]
for text books). The fundamental goal is to find out whether the seemingly unavoidable combi-
natorial explosion occurring in algorithms to decide NP-hard problems can be confined to certain
problem-specific parameters. The idea is that when such a parameter assumes only small values in
applications, then an algorithm with a running time that is exponential exclusively with respect to
the parameter may be efficient and practical. We now provide the formal definitions.

Definition 2. A parameterized problem is a language L ⊆ Σ∗ × Σ∗, where Σ is a finite alphabet.
The second component is called the parameter of the problem.

We consider parameters which are positive integers or “combined” parameters which are tuples
of positive integers.

Definition 3. A parameterized problem L is fixed-parameter tractable if there is an algorithm
that decides in f(p) · |x|O(1) time whether (x, p) ∈ L, where f is an arbitrary computable function
depending only on p. The complexity class of all fixed-parameter tractable problems is called FPT.

We stress that the concept of fixed-parameter tractability is different from the notion of “poly-
nomial-time solvability for constant p” since an algorithm running in O(|x|p) time does not show
fixed-parameter tractability. All problems that can be solved in the running time O(|x|f(p)) for a
computable function f form the complexity class XP. Unfortunately, not all parameterized prob-
lems are fixed-parameter tractable. To this end, Downey and Fellows [19] developed a theory of
parameterized intractability by means of a completeness program with complexity classes. More
specifically, the so-called W-hierarchy is defined by using Boolean circuits and consists of the fol-
lowing classes and interrelations:

FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[Sat] ⊆ W[P] ⊆ XP.

In this work, we only provide results regarding the second level of (presumable) parameterized
intractability captured by the complexity class W[2]. The containment W[1] ⊆ FPT would not
imply P = NP but the failure of the Exponential Time Hypothesis [38]. Hence, it is commonly
believed that W[1]-hard problems are not fixed-parameter tractable. To show W[t]-hardness for
any positive integer t, the following reduction concept was introduced.
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Definition 4. Let L,L′ ⊆ Σ∗ × Σ∗ be two parameterized problems. We say that L reduces to L′

by a parameterized reduction if there are two computable functions h1 : Σ
∗ → Σ∗ and h2 : Σ

∗ → Σ∗

and a function f : Σ∗ × Σ∗ → Σ∗ × Σ∗ such that for each (x, p) ∈ Σ∗ × Σ∗

1. (x, p) ∈ L ⇐⇒ f(x, p) ∈ L′ and f is computable in time |x|O(1) · h2(|p|) and

2. p′ = h1(p) for (x
′, p′) := f(x, p).

Analogously to the case of NP-hardness, for any positive integer t, it suffices to give a parame-
terized reduction from one W[t]-hard parameterized problem X to a parameterized problem Y to
show the W[t]-hardness of Y . For more details about parameterized complexity theory we refer to
the textbooks [19, 30, 46].

Several parameterized reductions in this work are from the W[2]-complete Hitting Set (HS)
problem: Given a set family F = {F1, . . . , Fn} over a universe U = {u1, . . . , um} and an integer k ≥
0, decide whether there is a hitting set U ′ ⊆ U of size at most k by which we understand a set U ′

such that Fi ∩ U ′ 6= ∅ for every 1 ≤ i ≤ m. HS is NP-hard [32] and W[2]-hard with respect to
parameter k [19].

2.2 Graph algorithms

Some of our algorithmic results employ basic graph algorithms. An undirected graph is a pair G =
(U,E), consisting of the set U of vertices and the set E of edges, where an edge is an unordered pair
(size-two set) of vertices. Two vertices u, v ∈ U are called adjacent if {u, v} ∈ E. For an undirected
graph G = (U,E) and a vertex u ∈ U , the neighborhood N(u) of u is the set of vertices adjacent
to u.

An undirected graph G = (U,E) is called bipartite if the vertex set U can be partitioned into
two subsets U1 and U2 (U = U1 ∪ U2, U1 ∩ U2 = ∅) such that for every edge {u, v} ∈ E it holds
that U1 ∩ {u, v} 6= ∅ and U2 ∩ {u, v} 6= ∅. A matching is an edge set E′ ⊆ E such that e ∩ e′ = ∅
for every two e, e′ ∈ E′, e 6= e′. A maximum matching is a matching with maximum cardinality.
A maximum-weight matching in an undirected graph where each edge {u, v} is associated with a
weight w({u, v}) is a matching E′ such that

∑

{u,v}∈E′ w({u, v}) is maximal.

A directed graph or directed network is a pair G = (U,A), consisting of the set U of vertices
and the set A ⊆ U ×U of directed edges (or arcs). A flow network is a directed network G = (U,A)
with two distinguished vertices s ∈ U (the source) and t ∈ U (the sink or target) where each
arc (u, v) ∈ A is associated with a nonnegative capacity c(u, v). Roughly speaking, a flow is a
function f that assigns a real value f(u, v) with 0 ≤ f(u, v) ≤ c(u, v) to every arc (u, v) ∈ A and
fulfills the constraints that for every vertex v except for the source and the sink the total flow into v
equals the total flow out of v. See [15] for details. A maximum flow is a flow such that the total
flow into the sink is maximal.

3 Basic results and observations

In this section, we shed light on the combinatorial relations between the problems and investigate
the parameterized complexity of the considered problems with respect to the parameters “number of
voters” and “number of candidates”. These results will also be useful for the following sections. In
particular, some of the fixed-parameter tractability results will be used as “subroutines” in Section 4
to obtain fixed-parameter tractability for other parameterizations.
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3.1 Relations between the problems

Although all four problems come with different properties in general, for some special cases, some
of them coincide. One such example is the so-called fully personalizable setting [40], that is, the
case that the misrepresentation bound R = 0 and hence every voter is represented optimally.
Clearly, asking for a set of winners with where the sum of misrepresentations is zero is equivalent to
asking for a set of winners with maximum misrepresentation value zero. This leads to the following
observation.

Observation 1. For R = 0, Minimax M-Multiwinner coincides with M-Multiwinner and
Minimax CC-Multiwinner coincides with CC-Multiwinner.

Moreover, for the two minimax versions of the problems, it only matters whether a particu-
lar misrepresentation value exceeds the threshold R or not. Hence, an instance with an arbitrary
misrepresentation function r can be reduced to an equivalent instance with the approval misrepre-
sentation function r′; for every voter v and every candidate c, set r′(v, c) = 1 if r(v, c) > R, and
r′(v, c) = 0 if r(v, c) ≤ R and, finally, set R′ := 0.

Observation 2. For a Minimax M-/CC-Multiwinner instance (C, V, r, R, k) with misrepre-
sentation function r, there is an instance (C, V, r′, 0, k) with the new misrepresentation function r′

taking values 0 and 1 such that the new instance is a yes-instance if and only if the original instance
is a yes-instance.

As a direct consequence, for the minimax versions every algorithm for the approval misrepre-
sentation function also applies to instances with the general misrepresentation function. Moreover,
hardness results for an arbitrary misrepresentation function transfer to the approval misrepresenta-
tion function. Combining Observations 1 and 2, conclude that an algorithm for M-MW (CC-MW)
for instances with R = 0 also solves the corresponding minimax version for the general misrepre-
sentation function.

Finally, observe that for the minimax versions in a similar style hardness results given for the
approval misrepresentation function directly transfer to misrepresentation functions in which a voter
is allowed to give an arbitrary number of candidates a misrepresentation value at most R. Note
that this does not hold for the Borda misrepresentation function where every voter v must specify
exactly R+ 1 candidates that can represent v with misrepresentation at most R.

3.2 Number of voters and candidates as parameter

We argue that all four considered problems are fixed-parameter tractable with respect to the number
of candidates as well as the number of voters. Our algorithms are based on brute-force search
combined with maximum flow and matching techniques. First, we consider the parameterization
by the number of voters. Then, we focus on the parameterization by the number of candidates.

3.2.1 Parameter number of voters

We show that all considered multiwinner problems are fixed-parameter tractable when parameter-
ized by the number n of voters. The basic idea to establish fixed-parameter tractability is to try
all O(nk) ⊆ O(nn) partitions of the voters into k sets in order to find a partition such that for each
subset the voters are represented by the same candidate in a solution. Then, a set of candidates
can be found by the computation of a matching in a bipartite auxiliary graph.
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Proposition 1. (Minimax) CC-Multiwinner and (Minimax) M-Multiwinner can be solved
in nn · poly(n,m) time for an instance with n voters and m candidates.

Proof. First, we present a solving strategy for Minimax CC-Multiwinner. To find a set of k
winners for Minimax CC-Multiwinner, try all O(nk) partitions of the voters into k sets. Since
all partitions are tested, there must be one such partition V1, . . . , Vk such that all voters from Vi are
assigned to the same candidate c of an optimal set of k winners and no other voter is assigned to c.
Hence, for every partition, it remains to select k candidates, one candidate ci for every subset Vi,
such that by assigning the voters in Vi to ci the total misrepresentation of a voter is at most R. For
Minimax CC-Multiwinner the set of candidates can be determined by computing a maximum-
cardinality matching in the following bipartite graph. One partition of the graph represents the
candidates and the other partition the sets V1, . . . , Vk. Moreover, there is an edge between a vertex
representing a candidate c and a vertex representing a set Vi if and only if r(v, c) ≤ R for all v ∈ Vi.
It is straightforward to verify that all voters can be represented with maximal misrepresentation
bound R if and only if there is a maximum-cardinality matching of size k (all vertices representing
the subsets are “matched”) in the constructed graph.

Next, we focus on CC-Multiwinner. Again, we try all partitions of the voters into k sets.
For every such partition, we compute a maximum-weight matching in the following edge-weighted
bipartite graph. Again, one partition consists of one vertex wc for every candidate c and the
other partition consists of a vertex wVi

for every set of a partition V1, . . . , Vk of the multiset of
voters. Moreover, there is an edge between every vertex wc and every vertex wVi

with weight T −
∑

v∈Vi
r(v, c), where T is a positive integer that is large enough to ensure that all weights are

positive. The crucial observation is that in a maximum-weight matching all vertices representing
a subset are matched since the edge weights are positive (here we assume that k ≤ m). With this
observation it is easy to verify that the computation of a maximum-weight matching yields a set
of k candidates “representing” the subsets of voters as good as possible. More specifically, let W
denote the weight of the maximum-weight matching. Then, kT −W is the total misrepresentation
of the corresponding assignment.

Finally, observe that for the two problems where the assignment of the voters to the winners
must fulfill the M -criterion we can proceed in the same way with the single exception that we need
only to consider partitions such that every subset contains at most ⌈n/k⌉ voters.

Regarding the running time, the computation of a maximum-weight matching in a bipartite
graph with nv vertices and ne edges can be accomplished in O(nv(ne+nv · lognv)) time [31]. Since
the number of edges and vertices in the constructed bipartite graph are polynomial in the number
of candidates and k ≤ n, the claimed running time follows.

3.2.2 Parameter number of candidates

We show that for a fixed number of candidates all four considered multiwinner problems can be
solved efficiently. For (Minimax) CC-Multiwinner parameterized by the numberm of candidates
fixed-parameter tractability is trivial: We can test all

(

m
k

)

≤ 2m subsets of candidates and report a
set of candidates with minimum total misrepresentation. To this end, one assigns every voter v to
the candidate of the considered subset with represents v best and then directly obtains the sum or
maximum misrepresentation.

Clearly, such an assignment of the voters does not have to fulfill the M -criterion. However, for
(Minimax) M-Multiwinner, one can apply network flow algorithms for an optimal assignment of
the voters to a size-k set C′ of candidates (see the Preliminaries in Subsection 2.2 for basic definitions
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regarding network flows). For Minimax M-Multiwinner, construct a directed network with a
vertex for every candidate from C′, one vertex for every voter, a source, and a sink vertex. There is
an arc with capacity ⌈n/k⌉ from the source to every “candidate-vertex” and a capacity-one arc from
a “candidate-vertex” to a “voter-vertex” if and only if the corresponding candidate can represent
the corresponding voter with misrepresentation at most R. Finally, there is an arc with capacity
one from every “voter-vertex” to the sink vertex. It is straightforward to verify that there is a
network flow of size n if and only there is an assignment from the voters to C′ that fulfills the
M -criterion and every voter is represented with misrepresentation at most R.

For M-Multiwinner, the construction given for the minimax version can be further extended.
More specifically, it follows from [49, Theorem 2], that finding an M -criterion fulfilling assignment
from V to C′ with minimum total misrepresentation can be accomplished in polynomial time by the
computation of a transportation problem or, equivalently, by the computation of a minimum-weight
maximum flow.

Proposition 2. (Minimax) CC-Multiwinner and (Minimax) M-Multiwinner can be solved
in O(2m · nm) and O(2m · poly(n,m)) time, respectively, for instances with m candidates.

4 Parameters number of winners and misrepresentation bound

In this section, we show that all four problems for approval as well as for the Borda misrepresen-
tation functions are W[2]-hard with respect to the number of winners. For both misrepresentation
functions we provide one parameterized reduction that works for all four problems. Moreover, we
investigate the parameter misrepresentation bound R. While for the approval misrepresentation
function NP-hardness for R = 0 directly follows from the parameterized reduction with respect
to the number of winners, for the Borda misrepresentation function, this parameter needs to be
investigated separately. In particular, we show that CC-MW and M-MW are in XP with respect
to R, that is, they are solvable in polynomial time for constant R. For CC-MW and M-MW with
the Borda misrepresentation function, the question of fixed-parameter tractability with respect to
the single parameter R is left open but we present some fixed-parameter tractability results with
respect to the combined parameter (R, k) at the end of this section. An overview of the results can
be found in Table 1.

4.1 The approval misrepresentation function

We provide a reduction from the W[2]-complete Hitting Set problem to establish W[2]-hardness
for all four problems. First, we discuss related results. In the conference version [48], Procaccia
et al. stated that the NP-hardness for CC-Multiwinner and M-Multiwinner follows from a
reduction from Max k-Cover (omitting the problem definition and the construction) but the
reduction from the corresponding journal version [49] is given from Exact 3-Cover. Although
this is sufficient to show NP-hardness, a reduction from Exact 3-Cover does not imply W[2]-
hardness. The reduction given here is conceptually similar but requires some additional voters to
deal with the fact that the sets of a Hitting Set instnace might come with different/unbounded
size.

Theorem 1. For the approval misrepresentation function, (Minimax) CC-Multiwinner and
(Minimax) M-Multiwinner are W[2]-hard with respect to the number k of winners even if R = 0.
Minimax CC-Multiwinner and Minimax M-Multiwinner are NP-complete.
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Proof. First, we show W[2]-hardness for M-Multiwinner. Then, we argue that the presented
reduction works for the other three problems as well.

Given an HS-instance (F = {F1, . . . , Fn}, U = {u1, . . . , um}, k), build an instance of M-Multi-
winner with set C of candidates as follows. There is a candidate ci ∈ C for every element ui ∈ U .
The multiset of voters is VF ⊎D, where VF := {vF | F ∈ F} and |D| = n(k − 1). Furthermore, for
every F ∈ F and every ui ∈ U , let r(vF , ci) := 0 if ui ∈ F and r(vF , ci) := 1, otherwise. Finally,
for each d ∈ D and ui ∈ U , set r(d, ci) := 0. This completes the construction. For the correctness
we show the following.

Claim. There is a hitting set of size k for F if and only if there is a winner set of size k
for M-Multiwinner that represents all voters with total misrepresentation R = 0.

“⇒”: Let U ′ denote a size-k hitting set for F and C′ := {ci | ui ∈ U ′}. We show that one can build
a mapping w : V → C′ that respects the M -criterion and with total misrepresentation zero. First,
for every F ∈ F , set w(vF ) := ci for an arbitrary chosen element ci ∈ F ∩U ′. Clearly, r(vF , ci) = 0.
So far, the n voters from VF are assigned to the candidates from C′ and it remains to assign the
n(k − 1) voters from D. Since each candidate in C′ can represent each dummy voter in D with
misrepresentation zero, we can easily extend this assignment such that each c′ ∈ C′ is assigned to
exactly n voters.
“⇐”: Let C′ ⊆ C denote a size-k winner set and let w be a mapping from V to C′ such that
∑

v∈V r(v, w(v)) = 0. Since a voter vF ∈ VF can only be represented with cost zero by a candidate ci
if ui ∈ F , the set U ′ := {ui | ci ∈ C′} is a size-k hitting set for F .

This completes the proof for M-Multiwinner. It is straightforward to verify that the same
construction yields a parameterized reduction for CC-Multiwinner. Finally, the W[2]-hardness
for the minimax versions follows directly by Observation 1 since the reduction works for R = 0.
Moreover, NP-hardness directly follows since the reduction can clearly be carried out in polynomial
time and containment in NP is obvious.

4.2 The Borda misrepresentation function

We refine the reduction from the previous subsection to show that also for the Borda misrepresen-
tation function the considered problems are W[2]-hard with respect to the parameter number k of
winners. However, in contrast to the case of the approval misrepresentation function the reduction
does not hold for the case that R = 0. Hence, we investigate the parameter total misrepresentation
R as well as the combined parameter (R, k) subsequently.

4.2.1 Parameter Number of Winners

For the Borda misrepresentation function, we also provide a many-one reduction from Hitting
Set for M-Multiwinner and then argue that the presented reduction works for the other three
problems as well. Note that for CC-Multiwinner W[2]-hardness also directly follows from the
NP-hardness reduction (also from Hitting Set) provided by Lu and Boutilier [40]. In this sense,
the following reduction can also be considered as to extend this reduction to work for the other
problem variants; in particular, using some padding to deal with the M-criterion.

Theorem 2. (Minimax) CC-Multiwinner and (Minimax) M-Multiwinner are W[2]-hard
with respect to the number k of winners for the Borda misrepresentation function. Minimax CC-
Multiwinner and Minimax M-Multiwinner are NP-complete.
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Proof. First, we show W[2]-hardness for M-Multiwinner by a parameterized reduction from
Hitting Set. Given an HS-instance (F = {F1, . . . , Fn}, U = {u1, . . . , um}, k) build an in-
stance of M-Multiwinner as follows. Let z := nmk. The set C of candidates is CU ∪ B,
where CU := {cu | u ∈ U} and B := {b1i , . . . , b

z
i | 1 ≤ i ≤ nk}. Moreover, the multiset of

voters is VF ∪ D, where VF := {vi | Fi ∈ F} and D := {d1, . . . , dn·(k−1)}. For each voter his
misrepresentation function is given by his preference list.

Each of the n “set voters” vi ∈ VF has the following preference list:

{cu | u ∈ Fi} > b1i . . . > bzi > {cu | u ∈ U \ Fi} > {b1j , . . . , b
z
j | 1 ≤ j ≤ nk, j 6= i}.

Finally, for each i ∈ {1, . . . , n · (k − 1)}, the voter di from D has the following preference list:

c1 > c2 . . . > cm > b1n+i . . . > bzn+i > {b1j , . . . , b
z
j | 1 ≤ j ≤ nk, j 6= n+ i}.

This completes the construction. For the correctness we show the following.

Claim. There is a size-k hitting set for F if and only if there is a size-k winner set
for M-Multiwinner that represents all voters with total misrepresentation at most
z = nmk.

“⇒”: Let U ′ denote a size-k hitting set for F and C′ := {cu | u ∈ U ′}. We build a mapping w : V →
C′ as follows. First, for every F ∈ F set w(vi) := cu for an arbitrarily chosen element cu ∈ F ∩U ′.
Clearly, r(vi, (cu) ≤ m since the elements in Fi take the first positions in the preference list of vi
and |Fi| ≤ m. So far, the n voters from VF are assigned to the candidates from C′. Since each
candidate in C′ can represent each dummy voter in D with misrepresentation at most m, one can
extend the mapping such that exactly n voters are assigned to each cu ∈ C′ with misrepresentation
at most m for each voter. Thus, the total misrepresentation of this assignment is at most nmk.
“⇐”: Let C′ ⊆ C denote a size-k winner set and w be a mapping from V to C′ such that
∑

v∈V r(v, w(v)) ≤ mnk. First, we show that C′ cannot contain a candidate bji from B. Ev-
ery candidate from B can represent at most one voter with better misrepresentation value than z.
More specifically, if 1 ≤ i ≤ n, bji can at most represent the voter vi and if n < i ≤ nk, bji can at
most present the voter di with misrepresentation at most z. Since every candidate from C′ must
be assigned to exactly n voters and the misrepresentation bound is z, C′ ∩B = ∅.

We argue that U ′ := {u ∈ U | cu ∈ C′} is a hitting set for F . To this end, a voter vFi
∈ VF can

only be represented by a candidate cu ∈ CU with misrepresentation cost at most z if u ∈ Fi since
all candidates cu′ with u′ ∈ U \ Fi occur in the preference list of vF after the candidates b1i , . . . , b

z
i .

Thus, U ′ is a hitting set for F of size at most k.
This completes the proof for M-Multiwinner. The same construction yields a parameterized

reduction for CC-Multiwinner based on the same claim. The direction from left to right follows
in complete analogy. For the other direction, the only difference is that here a solution set C′ of
the CC-Multiwinner instance might contain a candidate from B. However, if there is such a
candidate bji , then it can represent at most one voter (that is, vi) in the required misrepresentation
bound and hence can be replaced by a candidate cu ∈ Fi that represents the corresponding voter
even better.

For for the proof of Minimax M-Multiwinner and Minimax CC-Multiwinner, it follows
directly from the arguments above that there is a size-k hitting set for F if and only if there is a
winner set for Minimax M/CC-Multiwinner consisting of k candidates that represent all voters
with maximum misrepresentation at most R := m. Hence, W[2]-hardness as well as NP-hardness
follow.
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4.2.2 Parameter Misrepresentation Bound

Recall that for the approval misrepresentation function, all four problems are NP-hard even in the
fully personalized setting, that is, R := 0. In contrast, for CC-MW and M-MW for the Borda
misrepresentation function, we provide polynomial-time algorithms for every constant R while the
minimax versions are NP-hard for R ≥ 1. First, by a simple exhaustive search strategy, one obtains
the following.

Theorem 3. For the Borda misrepresentation function, CC-Multiwinner and M-Multiwinner
are solvable in polynomial time when the misrepresentation bound R is constant.

Proof. In every solution, at most R voters can be represented with misrepresentation greater than 0.
Thus, for constant values of R, one can try all O(|V |R) subsets of at most R voters to find a
set V ′ ⊆ V of voters that are not represented with misrepresentation value zero by an optimal
winner set. For each such subset V ′, for each voter of v ∈ V ′, one further tries all possible
misrepresentation values from 1 to R, that is, one tries O(RR) possibilities for each V ′. For each
such possibility, the “misrepresentation value” of each voter is determined and since for Borda
there is exactly one candidate that can represent a voter with a specific value, this also implies a
corresponding mapping to a set of candidates. For the case of CC-Multiwinner, it remains to
test whether the set of corresponding candidates represents all voters with total misrepresentation
at most R and has size at most k. In the case of M-Multiwinner one additionally needs to check
whether the corresponding assignment fulfills the M -criterion. It follows that in both cases an
optimal set of k winners can be computed in O((|V | ·R)R · |V ||C|) time.

Note that Theorem 3 does not imply fixed-parameter tractability with respect to R, which
remains open in this work. However, we provide fixed-parameter tractability results with respect
to the combined parameter (R, k) at the end of this section. Now, we contrast the results for
CC-MW and M-MW by showing that the minimax versions become provably more difficult. More
specifically, we show the following.

Theorem 4. For the Borda misrepresentation function, minimax CC-Multiwinner and mini-
max M-Multiwinner are solvable in polynomial time if the total misrepresentation bound R = 0
and are NP-hard for every R ≥ 1.

Proof. For R = 0 polynomial-time solvability follows directly from the fact that every voter v must
be assigned to a candidate c with r(v, c) = 0 and for the Borda misrepresentation function there is
only one such candidate. Hence, one only needs to check if there are less than k such candidates
and, for minimax M-Multiwinner whether the corresponding assignment fulfills the M-criterion.

Now, we show NP-hardness for R = 1 by a reduction from a special case of Hitting Set. More
specifically, Hitting Set is even NP-hard if every set consists of two elements and every element
appears in at most three sets [33, Theorem 2.4]3.

Given such a restricted HS-instance (F = {F1, . . . , Fn}, U = {u1, . . . , um}, k), build an instance
of M-Multiwinner as follows. Identify every set from F with a voter and identify every element
from U with a candidate. For each F = {u, v} ∈ F , let the misrepresentation of voter F be zero
for the candidate u and one for the candidate v, and the remaining misrepresentation values are
assigned arbitrarily to the remaining candidates. Then, the following claim is easy to see.

3The problem equals Vertex Cover on cubic graphs.
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Branch (V ′, R′, C′) :
Consider an arbitrary v ∈ V ′;1

V ′ := V ′ \ {v};2

for each c ∈ {c ∈ C | r(v, c) ≤ R′} do3

R′ := R′ − r(v, c) ;4

if c /∈ C′ then5

C′ := C′ ∪ {c};6

V ′ := V ′ \ {w ∈ V ′ | r(w, c) = 0};7

if
∑

w∈V ′(minc′∈C′ r(w, c′)) ≤ R′ then8

return ”yes”;9

if V ′ 6= ∅ and R′ ≥ 0 and |C′| < k then10

Branch (V ′, R′, C′);11

else12

return “no”;13

end14

Algorithm 1: Branching strategy for CC-Multiwinner showing fixed-parameter tractability
with respect to the combined parameter (R, k).

Claim: There is a hitting set of size k if and only if there is a set of k winners such that
the maximum misrepresentation per voter is at most 1.

This shows the theorem for Minimax CC-MW and R = 1. For Minimax M-MW, one can
use the following observation showing NP-hardness for an even more restricted setting. It follows
directly from the Hitting Set instances constructed in the NP-hardness proof [33, Theorem 2.4]
that for a yes-instance there is always a hitting set such that every element “hits” either two or
three sets from F . More specifically, in case of a yes-instance there is a hitting set U ′ ⊆ U such
that every u′ ∈ U ′ can be assigned either to two or three sets from F . Such a hitting set then
one-to-corresponds to a winner set fulfilling the M-criterion and hence the theorem also follows
for Minimax M-MW and R = 1. For every R > 1, similar arguments show NP-hardness. More
specifically, here one needs to go from sets of size two over to sets of size R− 1 and then can argue
analogously.

4.2.3 Combined Parameter Number of Winners and Misrepresentation Bound

In this paragraph, we focus on the scenario that one has a small set of winners that can represent
all the voters with small total misrepresentation modelled by a combined parameter.

Theorem 5. For the Borda misrepresentation function, CC-Multiwinner and Minimax CC-
Multiwinner are fixed-parameter tractable with respect to the combined parameter (R, k) where k
denotes the number of winners and R the misrepresentation bound.

Proof. We first provide a branching strategy for Minimax CC-MW. Start with an empty solution
set C′. Step I: For an arbitrary voter v ∈ V , branch according to all candidates c with r(v, c) ≤ R.
For each possibility, add the candidate c to C′ and delete each voter w with r(w, c) ≤ R from V .
While |C′| < k and V 6= ∅, go back to Step I. If V is empty, then return “yes”, else return “no”.
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The correctness of the algorithm is obvious since it tries all possibilities for a winner set. Regard-
ing the running time, one branches into R+1 possibilities for every considered voter and considers
at most k voters since |C′| is increased by one in every step.

In what follows, we show how to extend this branching strategy to work for CC-MW. The
branching recursion is displayed in Algorithm 1 and is invoked with the arguments (V,R, ∅). More-
over, C and k are provided as global variables. Regarding the correctness, for a considered voter
(Line 1), we try all possible ways of representation (Line 3) and decrease R′ by the value needed
for the representation of v by the corresponding candidate (Line 4). If this possibility implies that
a new candidate is added to the current solution (Line 6), then we can clearly assign all voters that
are optimally represented by this candidate to it and hence delete the corresponding voters (Line 7).
If for any of the considered possibilities, all voters can be assigned to the current candidate set C′

such that the total misrepresentation is at most R′, then the algorithm returns “yes” (Line 9).

Regarding the running time, we show that in each recursive call (Line 10) the algorithm de-
creases R′ or increases |C′| (or both). In the initial call, clearly |C′| is increased by one. For every
further call, the only case in which |C′| is not increased is that the considered candidate c is already
in the current solution set. In this case, one cannot have r(v, c) = 0 since then v would have been
deleted from V ′ at the point when c has been added to C′. Hence, r(v, c) > 0 and R′ is decreased
(Line 4). Since the recursion ends when R′ < 0 or |C′| > k − 1, it follows that one can have a
recursion depth of at most R+ k. Moreover, in each recursive call, one branches according to R+1
possible candidates (Line 3). Hence, the algorithm can be executed in (R + 1)R+k · poly(n,m)
time.

The branching strategy for CC-MW from the previous theorem cannot be directly transferred
to M-MW since due to the M-criterion one cannot just assign a voter to a candidate even in case of
an optimal representation with misrepresentation value zero. Hence, this would lead to branching
possibilities in which the parameter cannot be reduced and does not result in a “search tree” of
bounded size. However, we apply a structural observation based on the M-criterion which allows
us to obtain fixed-parameter tractability.

Theorem 6. For the Borda misrepresentation function, M-Multiwinner is fixed-parameter tractable
with respect to the combined parameter (R, k) where k denotes the number of winners and R the
misrepresentation bound.

Proof. Let a zero-candidate be a candidate c with r(v, c) = 0 for at least one voter v ∈ V . We say
that such a voter v corresponds to the zero-candidate c.

Observation 3. In a yes-instance, there can be at most R+ k zero-candidates.

To see the correctness, we apply a proof by contradiction. Assume that there are more than R+k
zero-candidates and there is a size-k winner set C′ ⊂ C representing all voters with misrepresenta-
tion at most R. Out of the more than R+k voters that correspond to the zero-candidates at most k
can be represented with misrepresentation value zero by a size-k winner set. Hence, there remain
more than R voters that are represented with misrepresentation at most one, a contradiction.

To make use of the bounded number of zero-candidates, we provide another observation that
exploits the M-criterion of a solution.

Observation 4. If the number n of voters is greater than (R+1)k, then every size-k set of winners
consists of zero-candidates.
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To see the correctness, we apply a proof by contradiction. Assume there are more than (R+1)k
voters and a candidate c in the solution set does not represent any of the voters with misrepresen-
tation value zero. Due to the M-criterion and since there are more than (R + 1)k voters, c must
represent at least ((R+1)k)/k = R+1 voters with misrepresentation value at least one, respectively.
Since the total bound for the misrepresentation is R, c cannot be part of a solution. This finishes
the proof of Observation 4.

Now, the algorithm can be described by distinguishing two cases.

• If n ≤ (R+ 1)k, then fixed-parameter tractability follows from Proposition 1 (showing fixed-
parameter tractability w.r.t. the number of voters),

• else, there are at most R+k zero-candidates (see Observation 3) and the solution must consist
of k zero-candidates (see Observation 4). After removing all but the zero-candidates, fixed-
parameter tractability follows from Proposition 2 (showing fixed-parameter tractability w.r.t.
the number of candidates).

Regarding the running time, the first case leads to a running time of ((R+1)k)(R+1)k ·poly(n,m)
while the second case can be accomplished in 2R+k ·poly(n,m) time. Hence, the theorem follows.

Finally, for Minimax M-MW with the Borda misrepresentation function, we show fixed-
parameter tractability with respect to k if R = 1. The fixed-parameter tractability with respect
to the combined parameter (R, k) is left open for this case. The provided algorithm relies on a re-
duction to the fixed-parameter tractable Capacitated Vertex Cover (CVC) problem defined
as follows. Given an undirected graph G = (U,E) a capacity function U → {1, . . . , |E|}, and an
integer k > 0, it asks whether there is a size-k subset U ′ ⊆ U and a mapping from E to U ′ that
assigns every edge to one vertex and the number of edges assigned to a vertex is at most its capacity.

The parameterized complexity of CVC was an open question in [35] and the first fixed-parameter
tractability result has been provided by Guo et al. [36]. The currently fastest algorithm with running
time k3k · nO(1) is due to Dom et al. [17]. A simple reduction shows the following.

Theorem 7. For the Borda misrepresentation function, Minimax M-Multiwinner is fixed-
parameter tractable with respect to the number of winners when the misrepresentation bound R
is one.

Proof. Every instance of Minimax M-Multiwinner with R = 1 can be transformed into a CVC
instance by identifying the candidates with the vertices and adding edges as follows. For every
voter, one adds one edge that is adjacent to the two candidate vertices that represent this voter
with misrepresentation one and zero, respectively. Moreover, the capacity of every vertex is set to
⌈n/k⌉. It is straightforward to see that the graph has a capacitated vertex cover of size k if and
only if the Minimax M-Multiwinner instance is a yes-instance.

Note that for R > 1, the analogous approach would be to reduce Minimax M-MW to Capac-
itated (R + 1)-Hitting Set. However, it is not hard to see that this problem is W[1]-hard with
respect to k even for R = 2.4 Hence, such a reduction does not lead to fixed-parameter tractabil-

4A corresponding reduction from the W[1]-hard Partial Vertex Cover (PVC) [36] is sketched in the following.
Given an undirected graph G = (U,E), and integers k, d > 0, PVC asks whether there is a size k-subset U ′ ⊆ U such
that at least d edges are incident to vertices from U ′. Now, construct a Capacitated 3-Hitting Set instance as
follows. Identify the elements with the vertices and additionally add one new element x. For every edge {u, v} ∈ E

there is the set {u, v, x}. Finally, set the capacity of x to |E| − d and to the degree of the corresponding vertex for
every other element. It is not hard to verify that there is a capacitated hitting set of size k if and only if there is a
size-k partial vertex cover.
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ity. On the other side, it seems not obvious how to reduce Capacitated (R + 1)-Hitting Set
to Minimax M-MW since the capacities of different elements might differ while the M-criterion
requires to have the roughly the same “capacity” for every candidate.

5 Single-peaked elections

As discussed in the introduction (Subsection 1.4), single-peakedness is a central notion in political
sciences where a single issue dominates the preferences of all voters. Let us now formally define
single-peakedness.

Definition 5. Let V be a profile over a candidate set C, and let ⊐ be a linear order over C (the
societal axis). We say that an order v over C is compatible with ⊐ if for all c, d, e ∈ C such that
either c ⊐ d ⊐ e or e ⊐ d ⊐ c it holds that

posv(c) < posv(d) =⇒ posv(d) < posv(e). (1)

We say that V is single-peaked with respect to ⊐ if for each i = 1, . . . , n the order vi is compatible
with ⊐. A profile V is called single-peaked if there exists a linear order ⊐ over C such that V is
single-peaked with respect to ⊐; we will say that ⊐ witnesses the single-peakedness of V and refer
to ⊐ as societal order.

Proposition 3. Let V be a single-peaked profile over a set of candidates C witnessed by the societal
order ⊐. Let r be a misrepresentation function for V . Then for every triple {ci, cj , ck} ⊆ C with
ci ⊐ cj ⊐ ck or ck ⊐ cj ⊐ ci

r(v, ci) < r(v, cj) =⇒ r(v, cj) ≤ r(v, ck).

Proof. By the definition of misrepresentation function (see Definition 1) r(v, ci) < r(v, cj) implies
posv(ci) < posv(cj). Now the result follows by (1) and again Definition 1.

In this section, we investigate the computational complexity of computing proportional repre-
sentation using Chamberlin & Courant and Monroe methods together with their variants, when
the input profile is single-peaked. As discussed in the introduction, when the input profile is single-
peaked all voters can be viewed as located on a certain axis where their location is their bliss point.
Their most preferred candidate will be either the one closest on the right or the one closest on the
left. Without loss of generality we may assume that for each voter her bliss point is the location of
one of the candidates (who is then most preferred by her). An alternative description of a single-
peaked profile would be to consider the order of candidates on the axis forgetting about the axis
itself. More specifcally, this order is the societal order that witnesses the single-peakedness of the
profile.

It is clear that the misrepresentation function r(v, c) for a single-peaked profile must satisfy the
following. If we fix the voter v and change c from one direction of the societal axis to the other
the value r(v, c) should decrease monotonically to v’s most preferred candidate at the bliss point
and then increase again monotonically for all candidates beyond the bliss point. That is, for each
voter the function expressing the voter’s misrepresentation by candidates is single-troughed (that
is, has exactly one local minimum) with respect to the order that witnesses single-peakedness of
the profile.
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Figure 1: An election consists of three voters with the following preferences: c1 > c2 > c3 > c4,
c2 > c3 > c4 > c1, and c3 > c2 > c1 > c4. It is single-peaked witnessed by the societal order
c1 ⊐ c2 ⊐ c3 ⊐ c4. The diagram on the left-hand side shows, for every voter, the Borda score
that each alternative gets from this voter marked by the solid line, dashed line and dotted line,
respectively. Note that every “preference order” has one local maximum. If the voters express
their Borda misrepresentations values instead, then one obtains the diagram on the right. Here,
the misrepresentation function for an arbitrary fixed voter has one local minimum.

Before describing our results, we briefly outline a typical shape of some most prominent mis-
representation functions in single-peaked settings. The Borda misrepresentation function is strictly
ascending when moving away from the local minimum in both directions. Moreover, if from the
candidate preceding the candidate at the local minimum the misrepresentation function drops
by d > 0 points, then, for the next d − 1 candidates on the other side of the local minimum, the
misrepresentation function must ascend in size-one steps.

In contrast, for the approval misrepresentation function, there is exactly one interval of consec-
utive candidates on the societal axis for whom the misrepresentation is zero while for all remaining
candidates outside the interval the misrepresentation is one. For the minimax variants one obtains
a similar structure, in the sense that there can be only one interval in which a particular voter
can be represented without exceeding the given misrepresentation bound. Note that there is some
remote similarity here between the last two cases and preferences over intervals in the aggregating
range values model introduced by Farfel and Conitzer [28].

In the remainder of this section, we provide the following results (see also Table 2, Page 8). We
show that CC-Multiwinner, Minimax CC-Multiwinner, and Minimax M-Multiwinner for
single-peaked elections can be solved in polynomial time for an arbitrary misrepresentation function
(Theorem 8, Theorem 9, and Theorem 10, respectively). In contrast to the three aforementioned
problems, we present a reduction from an NP-hard version of the Exact 3-Cover problem which
shows that M-Multiwinner is NP-hard even when restricted to single-peaked profiles (Theo-
rem 13). However, for the approval misrepresentation function, we still obtain polynomial-time
solvability for M-Multiwinner and single-peaked input profiles (Theorem 12). We leave open the
computational complexity for M-Multiwinner for the Borda misrepresentation function in the
single-peaked case.
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Function SinglePeaked-CC-MW(V , C, r, k)
Input: A multiset of voters V := {v1, . . . , vn}, a set of candidates C := {c1, . . . , cm}, a

misrepresentation function r, and a positive integer k. The voters have single-peaked
preferences according to the societal order ⊐, where c1 ⊐ c2 ⊐ . . . ⊐ cm.

Output: The minimum total misrepresentation for k winners.

begin1

for i = 1, . . . ,m do2

z(i, 1) :=
∑

v∈V r(v, ci);3

end4

for i = 2, . . . ,m do5

for j = 2, . . . ,min(k, i) do6

z(i, j) := minp∈{j−1,...,i−1}

(

z(p, j − 1)−
∑

v∈V max{0, r(v, cp)− r(v, ci)}
)

;7

end8

end9

return mini∈{k,...,m}(z(i, k));10

end11

Algorithm 2: Dynamic programming algorithm for CC-Multiwinner for single-peaked input
profiles.

5.1 (Minimax) CC-Multiwinner

We show that on single-peaked input profiles CC-Multiwinner and Minimax CC-Multiwinner
are polynomial-time solvable for an arbitrary misrepresentation function. We first provide a dy-
namic programming algorithm for the case of CC-Multiwinner. Second, we show that Minimax
CC-Multiwinner can be solved optimally by a greedy algorithm when the input profile is single-
peaked.

5.1.1 A dynamic programming procedure for CC-Multiwinner

For CC-Multiwinner the polynomial-time solvability is established by presenting a dynamic pro-
gramming algorithm leading to the following.

Theorem 8. For a single-peaked input profile and an arbitrary misrepresentation function CC-
Multiwinner can be solved in O(nm3) time.

Proof. For a set C′ ⊆ C, the minimum total misrepresentation is defined as

s(C′) =
∑

v∈V

min
c′∈C′

{r(v, c′)}.

We define a dynamic programming table z, containing an entry z(i, j) for all 1 ≤ i ≤ m and all
1 ≤ j ≤ min{i, k}. Informally speaking, the entry z(i, j) gives the minimum total misrepresentation
for a set of j winners from {c1, . . . , ci} including ci.

The dynamic programming procedure SinglePeaked-CC-MW is provided in Algorithm 2. We
show that it correctly solves CC-Multiwinner in the claimed running time. Regarding the cor-
rectness, we will show that after the execution of SinglePeaked-CC-MW the following equation is
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satisfied
z(i, j) = min{s(C′) | C′ ⊆ {c1, . . . , ci} ∧ |C′| = j ∧ ci ∈ C′}. (2)

Then, the minimum total misrepresentation of an optimal size-k winner set is clearly given by
mini∈{k,...,m} z(i, k) (see Line 10).

The proof of Equation 2 follows by induction on j. First, we argue that the entries z(i, 1)
fulfill Equation (2), yielding the induction base. To this end, observe that if there is only one
candidate ci in the winner set, then all voters must be assigned to ci, yielding the misrepresentation
sum s({ci}) =

∑

v∈V r(v, ci), see Line 3.
Next, we show that an entry z(i, j) with j > 1 (as computed in Line 7) complies with Equa-

tion (2) provided that z(p, j−1) does for all 1 ≤ p < i. Consider a set C∗ ⊆ {c1, . . . , ci} with ci ∈ C∗

of j candidates such that s(C∗) is minimum among all such sets. We argue that z(i, j) = s(C∗).
Let p < i such that cp ∈ C∗ and cℓ 6∈ C∗ for all p < ℓ < i. This implies that p ≥ j − 1. The crucial
observation is as follows. If for a voter v it holds that r(v, ci) ≤ r(v, cp), then the single-peakedness
implies that r(v, cq) ≥ r(v, cp) ≥ r(v, ci) for all q < p. Hence, if we consider a set C′′ of j− 1 candi-
dates from {c1, . . . , cp} with cp ∈ C′′, then we can assume that the value r(v, cp) is the contribution
of voter v to the total misrepresentation s(C′′). Hence, by adding ci to C′′ there is an improvement
of r(v, cp) − r(v, ci) for each voter v with r(v, cp) ≥ r(v, ci). For every remaining voter v, it holds
that r(v, ci) ≥ r(v, cp) and hence one cannot improve the representation by assigning it to ci. It
follows that s(C∗) = s(C′′)−

∑

v∈V max{0, r(v, cp)− r(v, ci)} and by the induction assumption we
have z(j − 1, p) = s(C′′). Finally, since the algorithm tries all possible choices of p (see Line 7) we
have that z(i, j) = s(C∗).

It is straightforward to verify that the overall running time is O(m3n) (see Algorithm 2).

5.1.2 A greedy algorithm for Minimax CC-Multiwinner

For single-peaked input profiles, the minimax version of CC-Multiwinner can be solved by a
greedy algorithm presented in Algorithm 3. Basically, the algorithm iterates over the candidates
according to the societal order and puts into the solution the first candidate for whom there is a
voter that cannot be represented by a later candidate.

Theorem 9. For a single-peaked input profile and an arbitrary misrepresentation function Minimax-
CC-Multiwinner can be solved in O(nm) time.

Proof. We show that the procedure SP-MiniMax-CC-MW (Algorithm 3) decidesMinimax-CC-Multi-
winner correctly (and if it outputs “yes”, the set C′ is a valid winner set). To this end, we argue
that at every step of the algorithm, the following two points hold:

1. at least one candidate with index at most p must be in the solution,

2. if for a voter v ∈ V ′, r(v, ci) ≤ R for an i ∈ {1, . . . , p− 1}, then r(v, cp) ≤ R.

The first point is a direct consequence of the single-peakedness, implying that when a voter gets over
the misrepresentation threshold R, then he cannot be represented with misrepresentation threshold
at most R by any of the following candidates. Hence, at least one candidate with index at most p
must be in the solution to represent a voter v ∈ V with p(v) = p.

The second point can be seen by a simple proof by contradiction: Assume that there is a voter
v ∈ V ′ such that r(v, ci) ≤ R for an 1 ≤ i ≤ p−1 and r(v, cp) > R. In such a case single-peakedness
of the profile implies that r(v, cj) > R for every m ≥ j > p. Then, however, in the corresponding
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Function SP-MiniMax-CC-MW(V , C, r, R, k)
Input: A multiset of voters V := {v1, . . . , vn}, a set of candidates C := {c1, . . . , cm}, a

misrepresentation function r, a maximum misrepresentation bound R, and a positive
integer k. The voters have single-peaked preferences according to the societal
order ⊐, where c1 ⊐ c2 ⊐ . . . ⊐ cm.

Output: “Yes”, if there are k winners with total misrepresentation R; otherwise, “No”

begin1

for v ∈ V do p(v) := max{i ∈ {1, . . . ,m} | r(v, ci) ≤ R} (rightmost candidate that can2

represent v);
if p(v) = ∅ for some v ∈ V then3

return “No”;4

V ′ := V (the multiset of voters that are not represented so far);5

C′ := ∅ (the set of winners);6

while |C′| < k and V ′ 6= ∅ do7

p := min{p(v) | v ∈ V ′};8

C′ := C′ ∪ {cp};9

Remove all voters v ∈ V ′ with r(v, cp) ≤ R from V ′;10

end11

if V ′ = ∅ then12

return “Yes”;13

else14

return “No”;15

end16

Algorithm 3: Greedy algorithm for Minimax-CC-Multiwinner for single-peaked input pro-
files.

step of the algorithm not cp but a candidate with a smaller index would have been selected (Line 8)
since p(v) would be smaller than p.

Regarding the running time, the sets p(v) can be computed and stored for all voters in O(nm)
time. The search for a minimum p (Line 8) can be accomplished in O(n) time and the set of voters
assigned to cp (Line 10) can be found in O(n) time as well. Finally, the while loop (Line 7) is
executed at most k ≤ m times.

5.2 (Minimax) M-Multiwinner

We focus on the case that the assignment of the candidates to the winner set satisfies the M-
criterion, that is, it is required that each winner represents about the same number of candi-
dates. This additional constraint makes the winner determination more involved. Indeed, we can
show that for an integer-valued misrepresentation function M-Multiwinner is NP-hard even if
the input profile is single-peaked. On the positive side, we show that M-Multiwinner for the
approval misrepresentation function and Minimax M-Multiwinner for arbitrary misrepresenta-
tion functions are polynomial-time solvable for single-peaked input profiles. However, the solving
strategies (that are also based on dynamic programming) are more intricate than for (Minimax)
CC-Multiwinner. For proving polynomial-time solvability we establish a close relationship to the
so-called 1-dimensional Rectangle Stabbing. We start with the polynomial-time algorithms
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followed by the NP-hardness proof. The computational complexity for M-Multiwinner for the
Borda misrepresentation function for single-peaked input profiles is left open.

5.2.1 M-Multiwinner for Approval and Minimax M-Multiwinner

The results of this subsection rely on a close connection between the considered problems and
a rectangle stabbing problem as described below. More specifically, for single-peaked input pro-
files, the polynomial-time solvability for Minimax M-Multiwinner and the special case of M-
Multiwinner where the misrepresentation bound is zero can be directly obtained by a polynomial-
time algorithm for the one-dimensional rectangle stabbing problem by Even et al. [23]. For M-
Multiwinner for the approval misrepresentation function Even et al.’s algorithm cannot be ap-
plied directly but the polynomial-time solvability when having single-peaked input profiles can be
extended to this case as well. We start with introducing the rectangle stabbing problem and explain
its relation to (Minimax) M-Multiwinner.

Even et al. [23] introduce the following capacitated version of 1-dimensional Rectangle
Stabbing (in what follows, we use the same notation as Even et al. [23] whenever possible). The
input consists of a set U of horizontal intervals and a set S of vertical lines with capacity c(S) ∈
{0, . . . , |U|} for every line S ∈ S. Informally, the task is to cover (or stab) all intervals by a
minimum number of vertical lines from S, where each line S covers at most c(S) intervals (a vertical
line can cover a horizontal interval if they intersect). Since a line S ∈ S can cover at most c(S)
intervals, one has to specify which interval is assigned to which line in the solution. Let U(S)
denote the set of intervals from U intersecting with S ∈ S. An assignment is a function A : S → 2U ,
where A(S) ⊆ U(S). A set S ′ ⊆ S is a cover if there is an assignment A with |A(S)| ≤ c(S) for
all S ∈ S and

⋃

S∈S′ A(S) = U .

One-Dimensional Rectangle Stabbing with Hard Constraints (Hard-1-RS):
Input: As set U of horizontal intervals and as set S of vertical lines with capaci-
ties c(S) ∈ {0, . . . , |U|} for every line S ∈ S.
Task: Find a minimum-cardinality cover S ′ ⊆ S (and a corresponding assignment).

An instance of M-Multiwinner with R = 0 and single-peaked input profile can be reduced
to Hard-1-RS as follows. For every candidate there is a vertical line according to its position in
the societal order. Since each voter v must be represented by a candidate c with r(v, c) = 0 and
all the candidates with r(v, c) = 0 are ordered consecutively in the societal order, we can represent
each voter by a horizontal interval reaching from the leftmost candidate c with r(v, c) = 0 to the
rightmost such candidate. Finally, each vertical line is associated with a capacity of ⌈n/k⌉. Clearly,
there is a solution for the M-Multiwinner instance with R = 0 if and only if there is a size-k
cover of the constructed instance of Hard-1-RS.

Even et al. [23] presented a dynamic programming for Hard-1-RS with running time O(|U|2 ·
|S|2 · (|U| + |S|)). Since the transformation described above can be easily accomplished in linear
time, one directly obtains the following.

Corollary 1. M-Multiwinner for instances with single-peaked profile and R = 0 (and an arbi-
trary misrepresentation function) can be solved in O(n2 ·m2 · (n+m)) time.

Recall that an instance of Minimax M-Multiwinner with R > 0 can be reduced to an
instance of M-Multiwinner with R′ = 0 by setting for each voter v and each candidate c the
misrepresentation value to zero if r(v, c) ≤ R and to one otherwise (see Observation 2). Moreover, by
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Observation 1 Minimax M-Multiwinner and M-Multiwinner coincide for R = 0. Altogether,
we arrive at the following.

Theorem 10. Minimax M-Multiwinner for single-peaked input profiles (and for an arbitrary
misrepresentation function) can be solved in O(n2 ·m2 · (n+m)) time.

Finally, we show that for single-peaked input profiles, M-Multiwinner for the approval mis-
representation function (and arbitrary misrepresentation bound R) can be solved in polynomial
time. To this end, we show that these instances can be reduced to a version of capacitated one-
dimensional rectangle stabbing where the goal is to stab a maximum number of horizontal intervals
with k vertical lines. More specifically, we introduce the following problem which to the best of our
knowledge has not been studied before.

Maximum One-Dimensional Rectangle Stabbing with Hard Constraints (Max-
Hard-1-RS):
Input: A set U = {u1, . . . , un} of horizontal intervals and as set S = {S1, . . . , Sm}
of vertical lines with capacity c(S) ∈ {1, . . . , n} for every line S ∈ S, and a positive
integer k.
Task: Find a size-k set S ′ ⊆ S and an assignment A with |A(S)| ≤ c(S) for each S ∈ S ′

such that |
⋃

S∈S′ A(S)| is maximal.

The main difference between Max-Hard-1-RS and Hard-1-RS is that in the case of Hard-1-
RS all intervals must be covered by a minimum number of lines whereas in case of Max-Hard-1-
RS the goal is to cover a maximum number of intervals with k lines. Note that a polynomial-time
algorithm for Max-Hard-1-RS would imply a polynomial-time algorithm for Hard-1-RS. Indeed,
we could apply an algorithm for Max-Hard-1-RS for increasing values of k (starting with k = 1)
to find the minimum number k such that all intervals are covered. On the other hand, it is not
obvious how a polynomial-time algorithm for Hard-1-RS can be used for solving Max-Hard-1-
RS. However, we show that the dynamic programming algorithm of Even et al. [23] for Hard-1-RS
can be adapted to work for Max-Hard-1-RS. To this end, we employ the same decomposition
property (stated in Observation 5 below) as Even et al. but the dynamic programming table and
the algorithm are different.

We introduce the following notation needed for dynamic programming. Following Even et al.,
for an interval u ∈ U , let r(u) denote the right endpoint of u and l(u) denote the left endpoint
of u (that is, l(u) ≤ r(u)). We assume that all vertical lines are at integral coordinates, all end-
and start-points of the horizontal intervals are integers and that at each coordinate there is at
most one interval that starts or ends at this coordinate. As also mentioned by Even et al. [23]
this does not constitute any restriction since every instance of Max-Hard-1-RS can be easily
transformed into an equivalent instance with at most 2n +m coordinates and at each coordinate
at most one interval starts or ends at it. Moreover, we assume that the intervals u1, . . . , un are
ordered so that l(ui) < l(uj) for all i < j. Let x(S) denote the coordinate of line S ∈ S. We assume
that l(u1) = 1. Let N := r(un) and S(x) denote the vertical line associated with x ∈ [1, N ]. Note
that S(x) is not necessarily contained in S. For two integers x1 ≤ x2 we use S(x1, x2) to denote the
lines from S with coordinates from [x1, x2], that is, S(x1, x2) = {S(x) | x ∈ [x1, x2] ∧ S(x) ∈ S}.

The algorithm makes use of the fact that there is always an optimal solution that satisfies the
following leftmost interval first property [23]. Let S ′ denote a size-k set of lines and let A denote
an assignment. We say that (S ′, A) has the leftmost interval first property if the following holds.
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Let S ∈ S ′ and let ui ∈ A(S). Every S′ ∈ S ′ with l(ui) ≤ x(S′) < x(S) (if exists) is assigned to
min(|U(S′)|, c(S′)) intervals and for every uj with uj ∈ A(S′), either j < i or r(uj) < x(S).

The dynamic programming is based on the following decomposition property which follows
directly from the leftmost interval first property.

Observation 5 ([23]). Let (S ′, A) be an optimal assignment that satisfies the leftmost interval first
property. For any range [x1, x2] ⊆ [1, N ], let u be the interval with the minimum l(u) among the
intervals covered by a line from S(x1, x2). If u is covered by line S, then the right endpoint of all
intervals covered by lines in the range [x1, x(S)− 1] are to the left of x(S).

Basically, Observation 5 is used in the algorithm in the following way. Consider the range
[x1, x2] with x2 = xn and assume that S(x1) is the first (leftmost) line of the considered solution.
Moreover, assume that u is the leftmost interval that is covered by a line S(x) from S(x1, x2).
Then, every interval v with l(v) < l(u) will not be covered by the solution, every interval ul with
l(u) < l(ul) < x can only be covered by lines from S(x1, x−1), and every interval ur with x < l(ur)
can only be covered by lines from S(x, x2). This implies a decomposition of the instance into two
subinstances. A “left” instance consisting of the intervals ul with l(u) < l(ul) < x and a “right”
instance consisting of the intervals ur with x < l(ur). Basically, in any dynamic programming
procedure the algorithm tries to combine all solutions for the left subinstance with the solutions for
the right subinstance to find a solution for the whole instance.

Theorem 11. Maximum One-Dimensional Rectangle Stabbing with Hard Constraints
can be solved in O(n5mk3) time.

Proof. We use the following definitions to state the algorithm. For ui ∈ U and for any two coordi-
nates x1 ≤ x2 such that r(ui) ∈ [x1, x2], let

U(ui, x1, x2) := {uj ∈ U | j ≥ i ∧ r(uj) ∈ [x1, x2]}.

Note that for x1 = x2 = r(ui), it holds that U(ui, x1, x2) = {ui} (because of the assumption that
at each position there is at most one interval that ends or starts at this position).

The dynamic programming table Π(ui, x1, x2, k
′, b) is defined for every ui ∈ U , for any two

coordinates x1 ≤ x2 such that r(ui) ∈ [x1, x2] and S(x1) ∈ S, for each 1 ≤ k′ ≤ k, and for
each 0 ≤ b ≤ c(S(x1)). Informally, the table entry contains the maximum number of intervals
from U(ui, x1, x2) that can be covered by k′ lines in S(x1, x2) under the assumption that S(x1) is
contained in the solution, ui is covered by a line from S(x1, x2), and that the capacity of S(x1) is b.

For ui ∈ U , two coordinates x1 ≤ x2 such that r(ui) ∈ [x1, x2], and x ∈ S(x1, x2) let

Ul(ui, x, x1, x2) := {uj ∈ U | j > i ∧ r(uj) ∈ [x1, x− 1]}, and

Ur(ui, x, x1, x2) := U(ui, x1, x2) \ (Ul(ui, x, x1, x2) ∪ {ui})

Finally, we can describe the algorithm. The initialization is as follows. For each ui ∈ U
and for every two coordinates x1 ≤ x2 such that r(ui) ∈ [x1, x2] and S(x1) ∈ S, and for every
integer b ∈ [0, c(S(x1))], let

Π(ui, x1, x2, 1, b) := min(b, |{u ∈ U(ui, x1, x2) : x1 ∈ u}|).

The update of a table entry Π(ui, x1, x2, k
′, b) is provided by Algorithm 4 and the iteration loops

by Algorithm 5. Finally, the algorithm returns the value of

max
ui∈U,b,x1

Π(u1, x1, N, k, b).
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Function UpdateΠ(ui, x1, x2, k
′, b) :

begin1

m = 0;2

for every x = max(x1, l(ui)) to r(ui) with S(x) ∈ S do3

for all kl ≥ 1 and kr ≥ 1 with kl + kr = k′ do4

ml := 0;5

for u′
j ∈ Ul(ui, x1, x2, x) (compute minimum solution for “left” subinstance) do6

ll := Π(u′
j , x1, x− 1, kl, b);7

ml := max(ll,ml);8

end9

mr := 0;10

for u′′
j ∈ Ur(ui, x1, x2, x) (compute minimum solution for “right” subinstance) do11

if x = x1 then12

lr = Π(u′′
j , x1, x2, k

′, b− 1) (x1 is used to cover ui);13

else14

lr := Π(u′′
j , x, x2, kr, c(S(x))− 1) (x 6= x1 is used to cover ui);15

mr := max(lr,mr);16

end17

m := max(m,ml +mr);18

end19

end20

Π(ui, x1, x2, k
′, b) := m+ 1;21

end22

Algorithm 4: Update step employed by the dynamic programming algorithm for Max-Hard-
1-RS presented in the proof of Theorem 11.

Regarding the correctness, we discuss that in every stage of the dynamic programming an entry
Π(ui, x1, x2, k

′, b) contains the maximum number of intervals from U(ui, x1, x2) that can be covered
by k′ lines in S(x1, x2) if

• S(x1) is part of the solution,

• ui is covered by a line from S(x1, x2), and

• the capacity of S(x1) is b (while the other capacities are as specified in the input).

For the initialization step, this is clearly fulfilled since it allows only one line to be part of the
solution and since this line must be S(x1), it can cover at most min(b, |{u ∈ U(ui, x1, x2) : x1 ∈ u}|)
intervals. Regarding the update step (see Algorithm 4), ui must be covered by one of the lines in the
considered range and all such possibilities are considered by the variable x (Line 3). Then, according
to the Observation 5, the instance can be divided into two subinstances. All combinations of sizes
of the subsolutions are tested by iterating over kl and kr (Line 4). Lines 6–8 compute then an
optimal subsolution for the “left” instance (which is zero for x = x1) and Lines 11–16 compute a
solution for the right subinstance obtained after assigning ui to S(x1).

By iterating over the table entries as described in Algorithm 5, one ensures that the algorithm
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Main :
for k′ = 2, . . . , k do1

for d = 1, 2, . . . , N − 1 do2

for every x1 with S(x1) ∈ S do3

if x1 + d ≤ N and |S(x1, x1 + d)| ≥ k′ then4

x2 := x1 + d;5

for b = 1, . . . , c(S(x1)) do6

for ui ∈ U(ui, x1, x2, k
′, b) do7

Π(ui, x1, x2, k
′, b) := UpdateΠ(ui, x1, x2, k

′, b);8

end9

end10

end11

end12

end13

end14

Algorithm 5: Main loop after the initialization.

only access other entries that have been computed before. Hence, the overall correctness follows.
Regarding the running time, the update can be accomplished inO(kN3m) time (see Algorithm 4)

and the overall loop gives an additional factor of O(N2k2) (see Algorithm 5). Hence the claimed
running time follows.

Since M-Multiwinner for the approval misrepresentation function for instances with a single-
peaked input profile can be reduced to Max-Hard-1-RS in linear time in a straightforward way,
one arrives at the following.

Theorem 12. M-Multiwinner for the approval misrepresentation function and single-peaked
input profiles can be decided in O(n5mk3) time.

5.2.2 NP-hardness of M-Multiwinner for a single-peaked election

Constrasting the polynomial-time solvability results for the other three considered problems, we
show that there is an integer-valued misrepresentation function such that M-Multiwinner is NP-
complete even restricted to instances coming with a single-peaked input profile. More specifically,
we show that M-Multiwinner is NP-hard even for single-peaked input profiles and integer-valued
misrepresentation functions such that the maximum misrepresentation value of a voter is bounded
from above by a polynomial in the number of candidates. Note that for establishing the NP-hardness
we have to allow that a voter can assign the same misrepresentation value to several candidates.

The NP-hardness follows by a reduction from a restricted variant of Exact 3-Cover.

Restricted Exact 3-Cover (rX3C)
Input: A family S := {S1, . . . , Sm} of sets over elements E := {e1, . . . , en} such that
every set from S has size three and every element occurs in exactly three sets.
Question: Is there a subset S ′ ⊆ S such that every element occurs in exactly one set
of S ′ and

⋃

S∈S′ S = E?
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Such a set S ′ is called an exact 3-cover of E. Since in every yes-instances n is a multiple of three,
in what follows we assume that n is divisible by three. The NP-hardness of rX3C follows from
an NP-hardness reduction for the case that every element occurs in at most three subsets [32] and
a construction to extend this NP-hardness to the case that every element occurs in exactly three
subsets [34].

Theorem 13. M-Multiwinner is NP-hard for single-peaked input profiles and an integer-valued
misrepresentation function even if the maximum misrepresentation value of every voter is polyno-
mial in the number of candidates (and every winner represents exactly three voters).

Proof. We use the following notation. Consider an rX3C instance (S, E). For an element e ∈ E
that occurs in the three subsets Si, Sj , and Sk with i < j < k, we say that the first occurrence of e
is in Si, the second occurrence is in Sj , and the third occurrence is in Sk.

For an rX3C instance (S, E), define an M-MW instance as follows. The set of candidates is

C := E ∪ {sj | Sj ∈ S}

and the multiset of voters is

V := {vxi | ei ∈ E and x ∈ {1, 2, 3}} ∪ {fi | ei ∈ E}.

That is, there is a candidate for each element and each subset and there are four voters for each
element. Next, we specify the misrepresentation functions of the voters:

for i ∈ {1, . . . , n} r(fi, ei) := 0
for i ∈ {1, . . . , n}, c ∈ C \ {ei} r(fi, c) := 2n2 + 1
for i ∈ {1, . . . , n}, x ∈ {1, 2, 3}, 1 ≤ z ≤ i r(vxi , ez) := i+ z − 1
for i ∈ {1, . . . , n}, x ∈ {1, 2, 3}, z > i r(vxi , ez) := 2n2 + 1
for 1 ≤ j ≤ m, x ∈ {1, 2, 3}, if the xth occurrence of ei is in Sj r(vxi , sj) := 0

else r(vxi , sj) := 1

Finally, set the misrepresentation bound to R := 2n2 and let the number of winners be k :=
n/3+n. Before showing the correctness of the reduction, we discuss three crucial properties of the
construction.

First, we verify that the profile is single-peaked witnessed by the societal order

s1 ⊐ · · · ⊐ sm ⊐ e1 ⊐ · · · ⊐ en.

For every voter fi single-peakedness is obvious since his misrepresentation is 0 for one candidate
and 2n2 + 1 for every other candidate. For every vxi , within the candidate set E, the misrepre-
sentation function decreases monotonously when we move from en to e1 along the societal axis:
For z > i, this is obvious since the misrepresentation remains at the value 2n2 + 1 and for z ≤ i
the misrepresentation value is i + z − 1 and hence the function clearly assumes smaller values for
decreasing values of z. This settles the single-peakedness for the “range” from e1 to en. To see the
overall single-peakedness, first note that for e1 the misrepresentation of every vxi is at least one.
Then, since the misrepresentation is one for all but one of the candidates from {s1, . . . , sm} and
zero for the remaining candidate, single-peakedness for every vxi follows.

Second, since there are 4n voters and k = (4n)/3, exactly three voters have to be assigned to
every winner candidate of a solution.
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Third, we show that the four voters that can be strictly represented best by candidate ei
are fi, v

1
i , v

2
i , v

3
i . More specifically, for every ei and x ∈ {1, 2, 3}, r(vxi , ei) < r(y, ei) for every

y ∈ V \ ({fi} ∪ {vxi }) (Observation 1). To see the correctness, observe that for every 1 ≤ z < i
one has r(vxz , ei) = 2n2+1. Moreover, for every i < z ≤ n, r(vxz , ei) = i+ z− 1 > 2i− 1 = r(vxi , ei).
Finally, for every fj , j 6= i one also has misrepresentation value r(fj , ei) = 2n2 + 1.

Now, we show the following.

Claim: There is an exact 3-cover for (S, E) if and only if there is a set of k = n+ n/3
candidates that can represent all voters with total misrepresentation R = 2n2 such that
exactly three voters are assigned to one candidate.

“⇐” Given an exact 3-cover S ′ ⊆ S, we show that the candidate set {sj | Sj ∈ S′} ∪E is a winner
set as required by the claim. The corresponding mapping is as follows.

• For every 1 ≤ i ≤ n, the voter fi is assigned to the candidate ei.

• For 1 ≤ i ≤ n and x ∈ {1, 2, 3}, if ei occurs for the xth time in Sj for a Sj ∈ S ′, then assign vxi
to sj , else assign vxi to ei.

Since in the exact 3-cover every element is covered exactly ones, it follows that every voter is
assigned to exactly one candidate and every winner candidate “represents” three voters. More
specifically, for the three voters v1i , v

2
i , and v3i corresponding to the three occurrences of the element

ei, one of them is represented by the candidate corresponding to the solution set in which ei occurs
and the two other voters by the candidate ei (the third candidate represented by ei is fi). It
remains to compute the total misrepresentation of this solution. Due to definition, every candidate
sj represents all three voters with misrepresentation zero. Moreover, every candidate ei represents
fi with misrepresentation zero and two voters from {v1i , v

2
i , v

3
i } with misrepresentation r(vxi , ei) =

i+ i− 1 = 2i− 1 for x ∈ {1, 2, 3}. Hence, the total misrepresentation is

n
∑

i=1

2(2i− 1) = 2n(n+ 1)− 2n = 2n2. (3)

“⇒” Consider a size-k set C′ ⊆ C of winners that represent all voters with total misrepresenta-
tion R = 2n2. Since for every voter fi, the only candidate that can represent fi with misrep-
resentation at most R is ei, it follows that E ⊆ C′. Recall that due to the M-criterion, every
candidate must represent exactly three voters. Thus, every candidate ei ∈ E must represent two
further voters (besides fi). Clearly, a lower bound for the total misrepresentation is hence given
by assigning to every ei ∈ E two further voters which can be represented as least as good as all
other voters by ei. Due to Observation 1, these two voters must be from {v1i , v

2
i , v

3
i }. Moreover,

according to Equation 3 the corresponding lower bound for the total misrepresentation matches
the total misrepresentation R = 2n2. This implies that ei is assigned to exactly two voters from
{v1i , v

2
i , v

3
i }. Finally, for every 1 ≤ i ≤ n, there remains one voter vxi that must be represented by a

candidate from C′ \ E. Since |C′ \ E| = n/3 and a candidate sj can only represent a voter vxi by
misrepresentation zero if the element ei occurs in Sj, the sets corresponding to the candidates in
C′ \ E must form an exact 3-cover.
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6 Conclusion and Outlook

We start with summarizing the relevance of the results of this work. This will be followed by a
discussion of closely related problems and models that might be investigated in future research. We
conclude with several questions that directly follow from our results.

6.1 Relevance of results

The computation of a set of candidates that “fully proportionally” represent the society has appli-
cations in many relevant settings. The main problem with the suggested approaches in the extant
literature is that the corresponding combinatorial problems are NP-hard, that is, they cannot be
solved efficiently in general. This raises the question whether these approaches despite the theoret-
ically proven advantages (see, e.g., a detailed discussion of those in [8]) are useless in practice.

One approach is of course to try to escape high complexity by modifying the concept while
keeping it still meaningful. In this regard we tried to change the way the total misrepresentation is
calculated taking the minimax (or Rawlsian) approach. This appeared not to help in the general
case—all problems remain computationally hard—however, it partially helped for single-peaked
elections: while the classical Monroe scheme remains NP-hard, its minimax version can be solved
in polynomial time.

In general, there are several ways to deal with NP-hard problems. For example, NP-hardness
is based on the worst-case analysis and hence one might be able to develop algorithms that work
efficiently for most instances. However, although unlikely, it still might happen that the outcome
of an election leads to a hard instance. Then, this would lead to the situation of political impasse
with unpredictable consequences.

Another common approach to tackle NP-hard problems is to invoke approximation algorithms.
While for some scenarios a nearly optimal solution might be sufficient, for other scenarios, like
political elections, it seems unlikely that the voters will accept such a solution.

Based on the previous discussion, it seems clearly desirable to identify well-specified settings
for which an optimal solution can be computed efficiently. This will extend the applicability of
the fully proportional representation approach to such settings. In this regard, we conducted an
investigation in two different directions. The first is the parameterized complexity analysis, and,
the second, is the special case of single-peaked elections.

Regarding the parameterized complexity of the four studied problems, most of our results are
negative (see Table 1, page 7). In particular, for the natural and well-motivated parameter number
of winners, the corresponding problems turned out to be W[2]-complete. However, if in addition,
there is a winner set that can represent all voters with a small total misrepresentation, three of
the problems become tractable for the Borda misrepresentation function. Moreover, the fixed-
parameter tractability results with respect to the number of voters and candidates, respectively,
are usefull for such restricted settings.

Regarding single-peaked elections, almost all of our results are positive and come with polynomial-
time algorithms (see Table 2, page 8). A possible critique of this approach is to claim that single-
peakedness is in a way an idealized model which is not robust enough. A smallest honest mistake of
a voter in filling her ballot may result in election becoming not single-peaked. Also there may be a
secondary issue in the election that is also important for some voters which may lead to the election
being “almost” single-peaked but not exactly single-peaked. In this regard it would be interesting
to investigate how difficult is to find a single-peaked profile “closest” to the given one. For this one
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might employ techniques of the so-called distance rationalizability approach [1, 42, 20, 21]. Since
our algorithms show polynomial-time solvability for the important basic case of single-peakedness,
they might be a basis for developing efficient algorithms for such extended settings.

Summarizing, our work contributes to the important topic of making fully proportional repre-
sentation ideas practical and complements the analysis of this method by Brams [8], who mainly
concentrated on integer linear programming approach, as well as former computational complexity
results for the considered problems [49, 40].

6.2 Related problems and scenarios

Before ending the work with some concrete open questions, we, first, describe some relations of
the considered problems to facility location problems and, second, describe a reasonable alternative
multi-winner model. Both topics might also lead to interesting questions for future research.

Relations to facility location. A basic scenario for this problem is that a company needs to
choose a set of facility locations to serve a set of customers with as little cost to them as possible.
Fellows and Fernau [29] investigated the parameterized complexity of a variant of this problem that
is closely related to CC-Multiwinner. Basically, the facility locations can be considered as the
set of candidates, the customers as the multiset of voters and the goal is to find a set of facility
locations to serve the customers. The only difference is the cost function: In addition to a term
that resembles the misrepresentation for every voter (customer), every facility location comes with
a certain cost that is required to install the facility.

Similar to our study, Fellows and Fernau [29] studied the parameter number k of winners/selected
facilities locations and the total cost. For the parameter k, W[2]-hardness for CC-Multiwinner
follows from the reduction given for the facility location problem. Regarding the parameter “total
cost”, the results of the two papers are not directly comparable. This is due to the fact that
the facility location problem in [29] comes with a minimum cost of one for serving a customer
even at the “best” facility location (which would be an analogue of the condition r(v, c) ≥ 1
for the misrepresentation function r). In this case, the considered problem is fixed-parameter
tractable with respect to the total cost. This might not come as a surprise since here the total
cost/misrepresentation is at least the number of voters and fixed-parameter tractability with respect
this parameter holds for all four considered voting problem (Proposition 2). In contrast, using the
condition r(v, c) ≥ 0 all considered problems are at least W[2]-hard with respect to the total
misrepresentation/cost (see Table 1).

The close connection between facility location and multi-winner problems clearly seems to de-
serve more attention in future work. We remark that the considered variants of this work might also
make sense in the context of the facility location problem. For example, the Monroe model might
apply for sets of facilities such that every facility can serve about the same number of customers.
Moreover, the single-peaked scenario translates, for example, to the setting that all potential facility
locations are along one main street and each resident ranks the cost of using the facility according
to the distance from that facility to the place of his residence.

Multiset of candidates model. There may be a compromise solution between the two systems
of Chamberlin & Courant and Monroe. We may still divide voters into equal or almost equal groups
but we may assign the same representative to more than one group of voters. Say, if there are n
voters and k representatives are to be elected we may split voters into groups of sizes ⌊n/k⌋ and
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⌊n/k⌋ + 1 but allow the same candidate to represent more than one group. Mathematically this
would result in selecting not a set of representatives of cardinality k but a multiset of the same
cardinality. The classic Monroe example [43] which considers subscription of newspapers for the
common room is in fact a better fit for the multiset model since if demand, say for Financial Times,
is strong several copies of this newspaper can be subscribed. We will still need to use weighted
voting in the assembly but in this case all weights will be integers.

To illustrate the difference let us consider six people electing a representative assembly of three.
Suppose our candidates must come from the set A = {a, b, c, d} and the preferences of voters are as
follows:

4 2
a c
b b
c a
d d

A set variant of Monroe scheme will give us the set of representatives {a, b, c} while from the multiset
point of view it is more natural to have a multiset {a2, c} as the answer which could be interpreted
to mean that two votes given to a and one to c. Multiset point of view seems more natural here,
indeed, b does not seem to represent anybody nicely. So the misrepresentation will be nonzero in
the set version and zero in the multiset one.

As far as we know the computational complexity for the computation of a winner in the multiset
model is unstudied so far. On a first glance, it seems conceivable that the computational complexity
for the multiset model lies between the complexity for CC-Multiwinner and M-Multiwinner.
This leads to interesting questions such as whether a set of winners according to the multiset model
can be computed in polynomial time when the electorate is single peaked.

6.3 Open questions

Several concrete questions arise from this work.

• For CC- and M-Multiwinner for the Borda misrepresentation function we provided algo-
rithms showing polynomial-time solvability for a constant misrepresentation bound R. Are
these problems fixed-parameter tractable with respect to R?

• Is Minimax M-Multiwinner for the Borda misrepresentation function fixed-parameter
tractable with respect to the composite parameter (R, k)?

• For M-Multiwinner for single-peaked elections we have shown NP-hardness for integer-
valued misrepresentation functions. Is the problem fixed-parameter tractable with respect to
the number of winners k or/and with respect to the misrepresentation bound R?

• Is M-Multiwinner for the Borda misrepresentation function polynomial-time solvable for
single-peaked instances?

• Can the results for single-peaked elections be extended to generalized single-peakedness (e.g.,
as defined by Nehring and Puppe [45]) or to “almost” single-peaked profiles (in some sense)?
This might be of particular particular interest if the problem of finding the “closest” single-
peaked profile to a given one would turn out to be polynomial-time solvable (for some distance
on the set of profiles).
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