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Abstract

In this paper we give structural charaterizations for disjunctive and conjunc-
tive hierarchical simple games by characterizing them as complete games
with a unique shift-maximal losing and, respectively, shift-minimal winning
coalitions. We prove canonical representation theorems for both types of hi-
erarchical games and establish duality between them. We characterize those
disjunctive and conjunctive hierarchical games which are weighted major-
ity games. This paper was inspired by Beimel et al. (2008) and Farràs and
Padró (2010) characterizations of ideal weighted threshold access structures
of secret sharing schemes.
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1. Introduction

In many situations cooperating agents have different status with respect
to the activity they are going to undertake. To model a large class of such
situations von Neumann and Morgenstern (1944) came up with a definition
of a simple game which is the simplest possible type of a cooperative game,
where the payoffs of coalitions are either 1 or 0, i.e., coalitions are either
“winning” or “losing”. In the theory of simple games seniority of players is
modeled by assigning to them different weights and setting a threshold so
that a coalition is winning if the combined weight of its players is at least the
threshold. This is perfectly natural, for example, in the context of corporate
voting when different shareholders have different number of shares.
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The access structure in secret a sharing scheme (e.g., Simmons, 1990;
Stinson, 1992) can also be modeled by a simple game, but in this theory a
different approach to defining seniority is often used. To this end Simmons
(1990) introduced the concept of a hierarchical access structure. Such an
access structure stipulates that agents are partitioned into m levels, and a
sequence of thresholds k1 < k2 < . . . < km is set, so that a coalition is
authorized if it has either k1 agents of the first level or k2 agents of the first
two levels or k3 agents of the first three levels etc. Consider, for example,
the situation of a money transfer from one bank to another. If the sum
to be transferred is sufficiently large, this transaction must be authorized
by three senior tellers or two vice-presidents. However, two senior tellers
and a vice-president can also authorize the transaction. These hierarchical
structures are now called disjunctive, since only one of the m conditions
must be satisfied for a coalition to be authorized. If all conditions must be
satisfied, then the hierarchical access structure is called conjunctive (Tassa,
2007). A typical example of a conjunctive hierarchical game would be the
United Nations Security Council where for the passage of a resolution all five
permanent members must vote for it and also at least nine members in total.

Both disjunctive and conjunctive hierarchical access structures have been
proved to be ideal (Brickell, 1990; Tassa, 2007) which means they can carry
the most informationally efficient secret sharing scheme and be completely
secure (i.e., not giving any information about the secret to unauthorized
coalitions). Classification of ideal access structures proved to be extremely
difficult problem and the focus of attention has moved to classification of
ideal access structures in subclasses of access structures like weighted thresh-
old access structures introduced by Shamir (1979). This classification has
been presented by Beimel et al. (2008) and Farràs and Padró (2010) who
characterized irreducible weighted ideal access structures. All other ideal
weighted threshold access structures can be obtained by combining the inde-
composable ones using the operation of composition defined by Beimel et al.
(2008). Their proof was indirect, the cornerstone of their approach was an ap-
plication of the well-known connection between ideal secret sharing schemes
and matroids (Brickell and Davenport, 1990).

In this paper we use the game theoretic methods and terminology, and we
talk about hierarchical games, not access structures. We consider the classes
of hierarchical disjunctive and conjunctive games which is a narrower class
of games than the ideal ones. However, we give a complete description of
weighted majority games in these classes, not just indecomposable ones. We
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give a direct combinatorial proof for disjunctive hierarchical games based on
the technique of trading transforms developed in Taylor and Zwicker (1999).

We also characterize disjunctive hierarchical games as complete games
with a unique shift-maximal losing coalitions. Then we prove the duality
between disjunctive and conjunctive games. This allows us to characterize
weighted conjunctive hierarchical games and obtain their structural charac-
terization as complete games with a unique shift-minimal winning coalition.
We note that the class of complete games with a unique shift-minimal win-
ning coalition was studied in its own right in Freixas and Puente (2008)
without any reference to hierarchical games.

2. Preliminaries

The background material on simple games can be found in Taylor and
Zwicker (1999). Throughout the paper we will denote the set {1, 2, . . . , n}
as [n].

Definition 1. Let P = [n] be a set of players and let ∅ 6= W ⊆ 2P be a
collection of subsets of P that satisfies the following monotonic property:

if X ∈ W and X ⊆ Y , then Y ∈ W . (1)

In such case the pair G = (P,W ) is called a simple game and the set W is
called the set of winning coalitions of G. Coalitions that are not in W are
called losing.

Due to the property (1) the subset W is completely determined by the
set Wmin of minimal winning coalitions of G. A player who does not belong
to any minimal winning coalition is called a dummy. Such a player can be
removed from any winning coalition without making it losing.

Definition 2 (von Neumann & Morgenstern, 1944). A simple game G =
(P,W ) is called a weighted majority game if there exist nonnegative real
numbers w1, . . . , wn, called weights, and a nonnegative real number q, called
the threshold, such that

X ∈ W ⇐⇒
∑
i∈X

wi ≥ q. (2)
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In secret sharing, weighted threshold access structures were introduced
by Shamir (1979).

A distinctive feature of many games is that the set of players is partitioned
into subsets, and players in each of the subsets have equal status. We suggest
analyzing such games with the help of multisets. Given a simple game G we
define a relation ∼G on P by setting i ∼G j if for every set X ⊆ P not
containing i and j

X ∪ {i} ∈ W ⇐⇒ X ∪ {j} ∈ W. (3)

Lemma 1. (Taylor and Zwicker, 1999, Proposition 3.2.4) ∼G is an equiva-
lence relation.

Example 1. Suppose we have P = {a1, a2, b, c} as the set of players with
weights as follows: a1 and a2 have weights 1 and 1.5, respectively, b has
weight 2 and c has weight 3. Let us set the threshold q = 3. Then the set of
minimal winning coalitions for this game will be

Wmin = {{a1, b}, {a2, b}, {c}}.

This gives a1 ∼G a2, ai 6∼G b, ai 6∼G c, b 6∼G c, and the equivalence classes
are {a1, a2}, {b} and {c}.

We now need the notion of a multiset.

Definition 3. A multiset on the set [m] is a mapping µ : [m] → Z+ of [m]
into the set of nonnegative integers. It is often written in the form

µ = {1k1 , 2k2 , . . . ,mkm}, (4)

where ki = µ(i) is called the multiplicity of i in µ.

A multiset ν = {1j1 , . . . ,mjm} is a submultiset of a multiset µ given in
(4), iff ji ≤ ki for all i ∈ [m]. This is denoted as ν ⊆ µ.

The existence of large equivalence classes relative to ∼G allows us to
compress the information about the game. This is done by the following
construction. Let now G = (P,W ) be a game and ∼G be its corresponding
equivalence relation. Then P can be partitioned into a finite number of
equivalence classes P = P1 ∪ P2 ∪ . . . ∪ Pm relative to ∼G and suppose that
|Pi| = ni. Then we put in correspondence to the set of players P a multiset
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P̄ = {1n1 , 2n2 , . . . ,mnm}. We take our base set P , identify those players
which are equivalent and we do not distinguish between them any further.
We carry over the game structure to P̄ by defining the set of submultisets
W̄ ⊆ 2P̄ by assuming that a submultiset Q = {1`1 , 2`2 , . . . ,m`m} is winning
in Ḡ if a subset of P containing `i players from Pi (i = 1, 2, . . . ,m), is winning
in G. This definition is correct since the sets Pi are defined in such a way
that it does not matter which `i players from Pi are involved. We will call
Ḡ = (P̄ , W̄ ) the multiset representation of G.

Definition 4. A pair Ḡ = (P̄ , W̄ ) where P̄ = {1n1 , 2n2 , . . . ,mnm} and W̄ is
a system of submultisets of the multiset P̄ is said to be a simple game on P̄
if X ∈ W̄ and X ⊆ Y implies Y ∈ W̄ .

So the multiset representation of a simple game on a set of players P is
a simple game on the multiset P̄ .

Given a game G on a set of players P we may also define a relation �G
on P by setting i �G j if for every set X ⊆ U not containing i and j

X ∪ {j} ∈ W =⇒ X ∪ {i} ∈ W. (5)

This relation is known as Isbel’s desirability relation (Taylor and Zwicker,
1999). The game is called complete if �G is a total (weak) order. We also
define the relation i �G j as i �G j but not j �G i.

Definition 5. We say that Ḡ = (P̄ , W̄ ) is a weighted majority game if
there exist non-negative weights w1, . . . , wm and q ≥ 0 such that a multiset
Q = {1`1 , 2`2 , . . . ,m`m} is winning iff

∑m
i=1 `iwi ≥ q.

If G is weighted, then it is well-known (see, e.g., (Taylor and Zwicker,
1999, p.91)) that we can find a weighted representation, for which equivalent
players have equal weights. Hence we obtain

Proposition 1. A simple game G = (P,W ) is a weighted majority game if
and only if the corresponding simple game Ḡ = (P̄ , W̄ ) is.

One of the most interesting classes of complete games is hierarchical
games. They can be of two types (Beimel et al. (2008), Tassa (2007)), and
they will be considered in the next section.

If a game G is complete, then we define shift-minimal (δ-minimal in (Car-
reras and Freixas, 1996)) winning coalitions and shift-maximal losing coali-
tions as follows. By a shift we mean a replacement of a player of a coalition by
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a less desirable player which did not belong to it. Formally, given a coalition
X, player p ∈ X and another player q /∈ X such that q ≺G p, we say that the
coalition (X \{p})∪{q} is obtained from X by a shift. A winning coalition X
is shift-minimal if every coalition contained in it and every coalition obtained
from it by a shift are losing. A losing coalition Y is said to be shift-maximal
if every coalition that contains it is winning and there does not exist another
losing coalition from which Y can be obtained by a shift.

The definition of a shift in the multiset context must be adapted as fol-
lows.

Definition 6. Let G be a complete simple game on a multiset P = {1n1 , . . . ,mnm},
where 1 �G 2 �G . . . �G m. Suppose a submultiset

A′ = {. . . , i`i , . . . , j`j , . . .}

has `i ≥ 1 and `j < nj for some i < j. Then we will say that the submultiset

A′ = {. . . , i`i−1, . . . , j`j+1, . . .}

is obtained from A by a shift.

Shift-minimal winning and shift-maximal losing coalitions are then de-
fined straightforwardly.

For X ⊂ P we will denote its complement P \X by Xc.

Definition 7. Let G = (P,W ) be a simple game and A ⊆ P . Let us define
subsets

Wsg = {X ⊆ Ac | X ∈ W}, Wrg = {X ⊆ Ac | X ∪ A ∈ W}.

Then the game GA = (Ac,Wsg) is called a subgame of G and GA = (Ac,Wrg)
is called a reduced game of G.

It is easy to show that every subgame and every reduced game of a
weighted majority game is also a weighted majority game. For example,
in the case of subgame one just has to retain the same weights for elements
of Ac as in G and the same threshold.

Let us briefly recap the concept of duality in games. The dual game of
a game G = (P,W ) is defined as G∗ = (P,Lc). Equivalently, the winning
coalitions of the game G∗ dual to G are exactly the complements of losing
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coalitions of G. We have G = G∗∗. We note also that, If A ⊆ P , then:
(GA)∗ = (G∗)A and (GA)∗ = (G∗)A. Moreover, the operation of taking the
dual is known to preserve weightedness. We will also use the fact that Isbel’s
desirability relation is self-dual, that is x �G y if and only if x �G∗ y. All
these concepts can be immediately reformulated for the games on multisets.

Let us remind the reader of some more facts from the theory of simple
games. The sequence of an even number 2j of coalitions

T = (X1, . . . , Xj;Y1, . . . , Yj) (6)

is called a trading transform if the first j coalitions X1, . . . , Xj can be con-
verted into the second j coalitions Y1, . . . , Yj by rearranging players. In other
words, for any player p the cardinality of the set {i | p ∈ Xi} is the same as
the cardinality of the set {i | p ∈ Yi}. We say that the trading transform T
in (6) has length j.

Theorem 1. (Taylor and Zwicker, 1999) A game G = (P,W ) is a weighted
majority game if for no j does there exist a trading transform (6) such that
X1, . . . , Xj are winning and Y1, . . . , Yj are losing.

This theorem allows to prove the existence of weights for a given game
by means of a combinatorial argument.

Definition 8. (Gvozdeva and Slinko, 2011) Let G = (P,W ) be a simple
game. A trading transform (6) where all X1, . . . , Xj are winning in G and
all Y1, . . . , Yj are losing in G is called certificate of non-weightedness for G.

For complete games the criterion can be made easier to check, by the
following result.

Theorem 2. (Freixas and Molinero, 2009) A complete game is a weighted
majority game if and only if it does not have certificates of non-weightedness
(6) such that X1, . . . , Xj are shift-minimal winning coalitions and Y1, . . . , Yj
are losing coalitions.

3. Canonical Representations and Duality of Hierarchical Games

Definition 9 (Disjunctive Hierarchical Game). Suppose that the set of play-
ers P is partitioned into m disjoint subsets P = ∪mi=1Pi and let k1 < k2 <
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. . . < km be a sequence of positive integers. Then we define the game
H = H∃(P,W ) by setting

W = {X ∈ 2P | ∃i
(∣∣X ∩ (∪ij=1Pi

)∣∣ ≥ ki
)
}.

From the definition it follows that any disjunctive hierarchical game H is
complete, moreover for any i ∈ [m] and u, v ∈ Pi we have u ∼H v. However,
for arbitrary values of parameters we cannot guarantee that the canonical rep-
resentation H̄ of H will be defined on the multiset P̄ = {1n1 , 2n2 , . . . ,mnm},
since it is possible to have less than m equivalence classes. Here is an example
of redundancy in the description.

Example 2. Let us consider P = ∪3
i=1Pi with |P1| = |P2| = |P3| = 3. Let us

also take (k1, k2, k3) = (4, 5, 6) and let H = H∃(P,W ) be the corresponding
disjunctive hierarchical game. For this game the condition |X ∩ P1| ≥ k1

is never satisfied. As a result we will have x ∼H y for every x ∈ P1 and
y ∈ P2 leading to the multiset representation for this game on a multiset
P̄ = {16, 23}. The same game could be obtained by taking P = P1 ∪ P2 with
|P1| = 6, |P2| = 3 and (k1, k2) = (5, 6).

We see that one level of this game could be collapsed. The next theorem
shows when this does not happen.

Theorem 3. Let H = H∃(P,W ) be a disjunctive hierarchical game defined
on the set of players P partitioned into m disjoint subsets P = ∪mi=1Pi with
ni = |Pi| by a sequence of positive thresholds k1 < k2 < . . . < km. Then ∼H
has exactly m equivalence classes (which are then P1, . . . , Pm) if and only if

(a) k1 ≤ n1, and

(b) ki < ki−1 + ni for every 1 < i < m.

Moreover, if conditions (a) and (b) are satisfied, then H contains a shift-
minimal coalition of size ki for all i ∈ [m− 1] and k1, . . . , km−1 are the only
possible sizes of a shift-minimal winning coalition in H.

Furthermore, H does not have dummies if and only if km < km−1 + nm,
in which case there exists a shift-minimal winning coalition consisting of km
players. If km ≥ km−1 + nm then Pm consists entirely of dummies.

Proof. As was discussed earlier, the players within each Pi are equivalent to
each other. Let us prove by induction that conditions (a) and (b) imply that,
for every i ∈ [m − 1], there exists a shift-minimal winning coalition Mi of
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size ki that intersects with Pi nontrivially and reaches only the ith threshold.
Consider the condition (a). If k1 ≤ n1, then any k1 players from P1 form
a winning coalition M1 of size k1 which ceases to be winning if we replace
one of them with a player of Pj for every j > 1. We now use an inductive
argument. Suppose i < m − 1. Let us now construct the shift-minimal
winning coalition Mi+1. We start with subtracting an element a ∈ Mi ∩ Pi
from Mi. The coalition M ′

i = Mi \ {a} is losing as it does not reach any
threshold. By (b) we have ki+1− ki + 1 ≤ ni+1. This means that we can add
to M ′

i exactly ki+1 − ki + 1 elements of Pi+1 so that the resulting set X will
reach the (i+1)th threshold and will therefore be winning. We now apply all
possible shifts to X within the set ∪i+1

j=1Pj and take the resulting set as Mi+1.
This will secure that the coalition Mi+1 is a shift-minimal winning coalition.

It is now easy to show that Pi 6∼H Pj for every i 6= j. Suppose i < j and
x ∈ Mi ∩ Pi and y ∈ Pj. Then (Mi \ {x}) ∪ {y} is losing and x �H y and
Pi 6∼H Pj.

Let us now prove that if Pi 6∼H Pi+1, for all i ∈ [m− 1], then conditions
(a) and (b) are satisfied. It is easy to see that P1 6∼H P2 implies (a). Suppose
now that for i > 1 we have p ∈ Pi, q ∈ Pi+1 and p 6∼H q. Then there exist
X ⊆ P such that X ∪ {p} is winning and X ∪ {q} is losing. This could only
happen if the coalition X ∪{p} reaches the ith threshold and does not reach
any other threshold, i.e., when |X ∩ ∪sj=1Pj| ≤ ks − 1 for s ∈ [i − 1] and

|X ∩∪ij=1Pj| = ki− 1. In particular, we have |X ∩∪i−1
j=1Pj| ≤ ki−1− 1. Since

p ∈ Pi \X we have ni − 1 ≥ |X ∩ Pi| ≥ ki − ki−1 and (b) is proved.
It remains to prove that players of Pm are dummies if and only if km ≥

km−1 + nm. If this was not true and km < km−1 + nm, arguing as above
we would find a shift minimal winning coalition Mm of cardinality km that
would nontrivially intersect Pm. In this case players of Pm are not dummies.
If km ≥ km−1 +nm, then the last threshold is never achieved and in this case
all players of Pm are indeed dummies.

It is clear that in the case when Pm consists of dummies we can always
change the mth threshold to km = km−1 + nm. We will now always do that.

Definition 10. Let H = H∃(P,W ) be a disjunctive hierarchical game defined
on the set of players P partitioned into m disjoint subsets P = ∪mi=1Pi with
ni = |Pi| by a sequence of positive thresholds k1 < k2 < . . . < km. We will say
that H is canonically represented if the conditions (a) and (b) of Theorem 3
are satisfied (i.e., ∼H has exactly m equivalence classes) and km = km−1 +nm
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in case when Pm consists of dummies. We will denote such a game H∃(n,k),
where n = (n1, . . . , nm) and k = (k1, . . . , km).

If the game is canonically represented, then every level in it, except maybe
the last one, adds a new class of minimal winning coalitions. We note that
n = (n1, . . . , nm) and k = (k1, . . . , km) in the canonical representation are
uniquely defined. Indeed, the numbers k1, . . . , km−1 are the cardinalities of
the minimal winning coalitions that exist, km is a bit special but also defined
uniquely.

Corollary 1. Let G = H∃(n,k) be an m-level disjunctive hierarchical game.
Then we have ni > 1 for every 1 < i < m.

Proof. If ni = 1 for some 1 < i < m, then (b) cannot hold.

We note that the first and the last mth level are special. If k1 = 1, then
every user of the first level is self-sufficient (passer) and its presence makes
any coalition winning and if km ≥ km−1 + nm, then the mth level consists
entirely of dummies.

Definition 11 (Conjunctive Hierarchical Game). Suppose that the set of
players P is partitioned into m disjoint subsets P = ∪mi=1Pi, and let k1 <
. . . < km−1 ≤ km be a sequence of positive integers. Then we define the game
H∀(P,W ) by setting

W = {X ∈ 2P | ∀i
(∣∣X ∩ (∪ij=1Pi

)∣∣ ≥ ki
)
}.

Of course, it is easy to come up with an example similar to Example 2,
so we need to look for conditions on n = (n1, . . . , nm) and k = (k1, . . . , km)
which guarantee that the game H∀(P,W ) has indeed m levels.

Definition 12. Let H = H∀(P,W ) be a conjunctive hierarchical game de-
fined on the set of players P partitioned into m disjoint subsets P = ∪mi=1Pi
with ni = |Pi| by a sequence of positive thresholds k1 < . . . < km−1 ≤ km.
We will say that H is canonically represented by n = (n1, . . . , nm) and
k = (k1, . . . , km) if Pi 6∼ Pj for every distinct i, j ∈ [m] or equivalently
∼H has exactly m equivalence classes. We will denote such a game H∀(n,k).

As in the disjunctive case, canonical representation of a conjunctive hier-
archical game is unique.
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The following result was mentioned in (Tassa, 2007, Proposition 4.1) with-
out a proof. Since it is our main tool here we present it with a proof. In
the proof it will be convenient to use multiset representations of hierarchical
games.

Theorem 4. Let n = (n1, . . . , nm) and k = (k1, . . . , km). Then for an m-
level hierarchical games H∃(n,k)∗ = H∀(n,k

∗) and H∀(n,k)∗ = H∃(n,k
∗),

where

k∗ = (n1 − k1 + 1, n1 + n2 − k2 + 1, . . . ,
∑
i∈[m]

ni − km + 1).

Proof. We will prove only the first equality. As Isbel’s desirability relation
is self-dual, the canonical representation of H∃(n,k)∗ will involve the same
equivalence classes and hence it will be defined on the same multiset. Let
k∗ = (k∗1, k

∗
2, . . . , k

∗
m). It is easy to see that k∗i < k∗i+1 is equivalent to ki+1 <

ki + ni+1 so we have k∗1 < . . . < k∗m−1 ≤ k∗m and k∗m−1 = k∗m if and only if
km = km−1 + nm. So k∗ is well-defined. Consider a losing coalition X =
{1`1 , 2`2 , . . . ,m`m} in H∃(n,k). It satisfies

∑
j∈[i] `j < ki for all i ∈ [m]. Then∑

j∈[i]

(nj − `j) >
∑
j∈[i]

nj − ki,

for all i ∈ [m], and the coalition Xc = {1n1−`1 , 2n2−`2 , . . . ,mnm−`m} satisfies
the condition

∑
j∈[i](nj − `j) ≥

∑
j∈[i] nj − ki + 1 = k∗i , for all i ∈ [m].

Therefore, Xc is winning in H∀(n,k
∗).

We need also to show that the complement of every winning in H∃(n,k)
coalition is losing in H∀(n,k

∗). Consider a coalition X = {1`1 , 2`2 , . . . ,m`m}
which is winning in H∃(n,k). It means that there is an i ∈ [m] such that∑

j∈[i] `j ≥ ki. But then the condition∑
j∈[i]

(nj − `j) ≤
∑
j∈[i]

nj − ki <
∑
j∈[i]

nj − ki + 1 = k∗i

holds. Thus, the complement Xc = {1n1−`1 , 2n2−`2 , . . . ,mnm−`m} is losing in
H∀(n,k

∗).

We note a certain duality for the second parameter as k∗∗ = k.

For conjunctive hierarchical games the theorem analogous to Theorem 3
can be proved.

11



Theorem 5. Let H∀(P,W ) be a conjunctive hierarchical game defined on
the set of players P partitioned into m disjoint subsets P = ∪mi=1Pi, where
ni = |Pi|, by a sequence of positive thresholds k1 < · · · < km−1 ≤ km. Then
P1, . . . , Pm are exactly the equivalence classes for ∼H if and only if

(a) k1 ≤ n1, and

(b) ki < ki−1 + ni for every 1 < i ≤ m.

The last mth level consists entirely of dummies if and only if km−1 = km.

Proof. This is a direct consequence of duality and Theorem 3.

Further we will need the following two propositions.

Proposition 2. Let n = (n1, . . . , nm), k = (k1, . . . , km) and G = H∃(n,k).
If n′ = (n1, . . . , nm−1), k′ = (k1, . . . , km−1), then H(n′,k′) is a subgame GA

of G for A = {mnm}.

Proposition 3. Let n = (n1, . . . , nm), k = (k1, . . . , km) and G = H∀(n,k).
Suppose k1 = n1, n′ = (n2, . . . , nm), and k′ = (k2 − k1, . . . , km − k1). Then
H∀(n

′,k′) is a reduced game GA, where A = {1n1}.

4. Characterizations of Disjunctive Hierarchical Games

First, we will obtain a structural characterization of hierarchical disjunc-
tive games.

Theorem 6. The class of disjunctive hierarchical simple games is exactly
the class of complete games with a unique shift-maximal losing coalition.

Proof. Let G = H∃(n,k) be an m-level hierarchical game. If km < km−1+nm,
then the following coalition is a shift-maximal losing one:

M = {1k1−1, 2k2−k1 , . . . ,mkm−km−1}. (7)

Indeed, for every i = 1, 2, . . . ,m it has ki−1 players from the first i levels, and
so any replacement of a player with more influential one makes it winning.
If km ≥ km−1 + nm, then it has to be modified as

M = {1k1−1, 2k2−k1 , . . . , (m− 1)km−1−km−2 ,mnm}. (8)
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Suppose now that G is complete with the multiset representation on a mul-
tiset P = {1n1 , 2n2 , . . . ,mnm}, where 1 �G · · · �G m, and has a unique shift-
maximal losing coalition M = {1`1 , 2`2 , . . . ,m`m}. We claim that `i < ni for
all 1 ≤ i < m. Suppose not, and `i = ni. We know that i �G i + 1. It
means there exists a multiset X such that X ∪{i} is winning but X ∪{i+1}
is losing. We first take X to be of maximal possible cardinality, and then
shift-maximal with the property X ∪ {i} ∈ W and X ∪ {i + 1} ∈ L. This
will make X ∪ {i + 1} a shift-maximal losing coalition. Indeed, we cannot
add any more elements to X without making it winning, also replacing any
element of X with a more desirable one makes it winning as well. Since
X ∪{i+ 1} is not equal to M (the multiplicity of i is not at full capacity) we
get a contradiction. Hence `i < ni. Then {1`1 , . . . , (i− 1)`i−1 , i`i+1} must be
winning. Then every coalition with ki = `1 + . . .+`i+1 players from the first
i levels is winning. Now if `m = nm we set km = km−1 +nm, alternatively we
set km = `1 + . . .+ `m + 1. It is easy to see that G is in fact H∃(n,k).

Now we turn our attention to classification of weighted games in this
class.

Theorem 7. Let G = H∃(n,k) be an m-level disjunctive hierarchical simple
game. Then G is a weighted majority game iff one of the following conditions
is satisfied:

(1) m = 1;

(2) m = 2 and k2 = k1 + 1;

(3) m = 2 and n2 = k2 − k1 + 1;

(4) m ∈ {2, 3} and k1 = 1. When m = 3, G is weighted if and only if the
subgame H∃(n

′,k′), where n′ = (n2, n3) and k′ = (k2, k3) falls under
(2) or (3);

(5) m ∈ {2, 3, 4}, km ≥ km−1 + nm, and the subgame H∃(n
′,k′), where

n′ = (n1, . . . , nm−1) and k′ = (k1, . . . , km−1) falls under one of the
cases (1)–(4).

Proof. We will prove this theorem using the combinatorial technique of trad-
ing transforms. If km ≥ km−1 + nm, then users of the last level are dummies
and they never participate in any minimal winning coalition. As a result, if
there exists a certificate of non-weightedness

T = (X1, . . . , Xj;Y1, . . . , Yj) (9)
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with minimal winning coalitions X1, . . . , Xj, which exist by Theorem 2, then
no dummies may be found in any of the X1, . . . , Xj, hence they are not
participating in this certificate. HenceG is weighted if and only if its subgame
H∃(n

′,k′), where n′ = (n1, . . . , nm−1) and k′ = (k1, . . . , km−1) is weighted.
So we reduce our theorem to the case without dummies, and in this case we
have to prove that G falls under one of the cases (1)-(4). Let us assume that
km < km−1 + nm.

If k1 = 1, then every user of the first level is self-sufficient (passer), that
is, any coalition with participation of this player is winning. If a certificate
of non-weightedness (9) exists, then a 1 cannot be a member of any set
X1, . . . , Xj, since then it will have to be also in one of the Y1, . . . , Yj and
at least one of them will not be losing. Hence G is weighted if and only
if its subgame H∃(n

′,k′), where n′ = (n2, . . . , nm) and k′ = (k2, . . . , km) is
weighted.

This shows that a disjunctive hierarchical simple game is weighted if and
only if its subgame without passers and dummies is weighted. Hence without
loss of generality we can consider games without passers and dummies. This
is equivalent to assuming k1 > 1 and km < km−1 + nm.

The case m = 1 is trivial. Next we show that if at least one of the two
conditions (2) and (3) is met, then G is weighted. So we assume that m = 2
and k1 ≥ 2. One can easily check that each game satisfying the second
condition is weighted either with weights w1 = 1/k1, w2 = 1/k2 (if n2 ≥ k2)
or w1 = 1

k1
, w2 = n2−1

k1n2
(if n2 < k2). In the case the third condition is met, a

game is weighted with weights w1 = 1/k1 and w2 = 1/k1n2.
Conversely, we show that if all conditions (1)-(3) fail, then G is not

weighted. If m = 2, this means that k2 ≥ k1 + 2 and n2 ≥ k2 − k1 + 2.
In this case the game possesses the following certificate of non-weightedness:

({1k1}, {1k1−2, 2k2−k1+2}; {1k1−1, 2b(k2−k1+2)/2c}, {1k1−1, 2d(k2−k1+2)/2e}).

Since n2 ≥ k2−k1 +2, all the coalitions are well-defined. Also, the restriction
k2 ≥ k1 + 2 secures that dk2−k1+2

2
e ≤ k2−k1 and makes both multisets in the

right-hand-side of the trading transform losing.

Now suppose m ≥ 3, k1 ≥ 2. By Theorem 3 we have k1 ≤ n1, k2 < k1 +n2

and k3 < k2 + n3. Suppose first that k3 ≤ n3. Then, since k3 ≥ k2 + 1 ≥
k1 + 2 ≥ 4, the following is a certificate of non-weightedness.

({1k1}, {3k3}; {1k1−1, 32}, {1, 3k3−2}).
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Suppose k3 > n3. If at the same time k3 ≤ n2 + n3, then since k3 − n3 < k2

we have a legitimate certificate of non-weightedness

({1k1}, {2k3−n3 , 3n3}; {1k1−1, 2, 3}, {1, 2k3−n3−1, 3n3−1}).

Finally, if k3 > n3 and k3 > n2 +n3, then the certificate of non-weightedness
will be

({1k1}, {1k3−n2−n3 , 2n2 , 3n3};
{1k1−1, 2, 3}, {1k3−n2−n3+1, 2n2−1, 3n3−1}).

All we have to check is that the second coalition of the losing part is indeed
losing. To show this we note that k3 − n3 < k2 and k3 − n2 − n3 + 1 <
k2 − n2 + 1 ≤ k1. This shows that the second coalition of the losing part is
indeed losing and proves the theorem.

5. Characterizations of Conjunctive Hierarchical Games

First we obtain a structural characterization of conjunctive hierarchical
games.

Theorem 8. The class of conjuctive hierarchical simple games is exactly the
class of complete games with a unique shift-minimal winning coalition.

Proof. Let H∀(n,k) be a conjunctive hierarchical game. By Theorem 4, the
dual game of H∀(n,k) is a disjunctive hierarchical game H∃(n,k

∗). If we can
prove that the class of complete games with a unique shift-minimal winning
coalition is dual to the class of complete games with a unique shift-maximal
losing coalition, then by Theorem 6 this will be sufficient.

Let G = (P,W ) be a simple game with the unique shift-maximal losing
coalition S. By definition, Sc is winning in G∗. Let us prove that it is a
shift-minimal winning coalition. Consider any other coalition X that can be
obtained from Sc by a shift in G∗. It means that there are players i ∈ X and
j /∈ X such that j ≺G∗ i and X = (Sc \ {i}) ∪ {j}. The complement of X
is the set Xc = (S \ {j}) ∪ {i}. Furthermore, j ≺G i. The coalition Xc is
winning in G, because there does not exist a losing coalition from which S
can be obtained by a shift. Therefore, X is losing in G∗ and every coalition
obtained from Sc by a shift is also losing in G∗. Consider now a subset X of
Sc. The complement Xc of X is a superset of S. Hence, Xc is winning in G
and X is losing in G∗. Thus, Sc is the shift-minimal winning coalition in G∗.
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We claim that Sc is the unique shift-minimal winning coalition in G∗.
Assume, to the contrary, there is another shift-minimal winning coalition X
in G∗. As we have seen above Xc would be shift-maximal losing coalition in
G and it is different from S, a contradiction.

It is interesting that the class of complete games with a unique shift-
minimal winning coalition was studied before Freixas and Puente (2008),
without noticing that this class is actually the class of conjunctive hierarchical
games.

Theorem 9. Let G = H∀(n,k) be an m-level conjunctive hierarchical simple
game. Then G is a weighted majority game iff one of the following conditions
is satisfied:

(1) m = 1;

(2) m = 2 and k2 = k1 + 1;

(3) m = 2 and n2 = k2 − k1 + 1;

(4) m ∈ {2, 3} and k1 = n1. When m = 3, G is weighted if and only if
the reduced game H∀(n,k){1

n1} = H∀(n
′,k′), where n′ = (n2, n3) and

k′ = (k2 − k1, k3 − k1) falls under (2) or (3);

(5) m ∈ {2, 3, 4}, km = km−1, and the reduced game H
{mnm}
∀ (n,k) =

H∀(n
′,k′), where n′ = (n1, . . . , nm−1) and k′ = (k1, . . . , km−1) falls

under one of the (1) – (4);

Proof. The theorem straightforwardly follows from Theorem 7, the duality
between conjunctive hierarchical games and disjunctive hierarchical game
and Propositions 2 and 3.

6. Conclusion and Further Research

It is interesting to compare our results with the results by Farràs and
Padró (2010) (their classification is more accurate than the one in Beimel
et al. (2008)). They list seven types of indecomposable simple games: k-
out-of-n symmetric simple games; three bipartite types B1, B2, B3 and three
tripartite ones T1, T2, T3. The k-out-of-n symmetric game is the case (1) of
both Theorems 9 and 7. As to the rest, B1 is conjunctive hierarchical and
corresponds to case (3) of Theorems 9. Both types B2 and B3 correspond to
subcases of case (2) of Theorem 7. The tripartite games are neither disjunc-
tive nor conjunctive hierarchical.
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A very natural question to ask is to characterize all weighted tripartite
games as defined in Beimel et al. (2008)). Farràs and Padró (2010) character-
ized all weighted indecomposable tripartite simple games. Also the operation
of composition of games employed in Beimel et al. (2008)) and Farràs and
Padró (2010) is not well-understood from the algorithmic point of view and
there are no efficient algorithms to find the decomposition if the game is
decomposable. The uniqueness of the decomposition into indecomposable
games has not been proved.

One obvious conclusion that can be drawn from our research is that the
two methods of modeling seniority, namely, by assigning weights and as-
signing a level in a hierarchy, are very different. Another conclusion is that
hierarchical games of both types provide very natural examples of complete
games without weighted voting representation.

It would be interesting to know how many more hierarchical games are
contained in the class of roughly weighted games which was introduced
in Taylor and Zwicker (1999) and studied in Gvozdeva and Slinko (2011).
Roughly weighted games allow just one special value (the threshold) such
that coalitions whose weight are equal to this value could be either winning
or losing. A further development of this idea realized in Gvozdeva et al.
(2010) stipulate an interval of special values—such games are called super-
roughly weighted. We have a hierarchy of super-roughly weighted games Cα
parameterized by a real number α which is the length of the interval of spe-
cial values. It would be interesting to know how many levels a hierarchical
game from the class Cα might have.
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